#Importing the data
data()
data(package = .packages(all.available = TRUE))
mydata <- force(USArrests) #Reading the dataset, saved in R
summary(mydata)
## Murder Assault UrbanPop Rape
## Min. : 0.800 Min. : 45.0 Min. :32.00 Min. : 7.30
## 1st Qu.: 4.075 1st Qu.:109.0 1st Qu.:54.50 1st Qu.:15.07
## Median : 7.250 Median :159.0 Median :66.00 Median :20.10
## Mean : 7.788 Mean :170.8 Mean :65.54 Mean :21.23
## 3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:77.75 3rd Qu.:26.18
## Max. :17.400 Max. :337.0 Max. :91.00 Max. :46.00
library(psych)
mydata2 <- force(sat.act)
Calculate the descriptive statistics for variables ACT, SATV, SATQ, separate by gender
mydata2$gender <- factor(mydata2$gender,
levels = c(1, 2),
labels = c("M", "F"))
describeBy(mydata2[ , c("ACT", "SATV", "SATQ")],
group = mydata2$gender)
##
## Descriptive statistics by group
## group: M
## vars n mean sd median trimmed mad min max range skew kurtosis
## ACT 1 247 28.79 5.06 30 29.23 4.45 3 36 33 -1.06 1.89
## SATV 2 247 615.11 114.16 630 622.07 118.61 200 800 600 -0.63 0.13
## SATQ 3 245 635.87 116.02 660 645.53 94.89 300 800 500 -0.72 -0.12
## se
## ACT 0.32
## SATV 7.26
## SATQ 7.41
## ------------------------------------------------------------
## group: F
## vars n mean sd median trimmed mad min max range skew kurtosis
## ACT 1 453 28.42 4.69 29 28.63 4.45 15 36 21 -0.39 -0.42
## SATV 2 453 610.66 112.31 620 617.91 103.78 200 800 600 -0.65 0.42
## SATQ 3 442 596.00 113.07 600 602.21 133.43 200 800 600 -0.58 0.13
## se
## ACT 0.22
## SATV 5.28
## SATQ 5.38
mydata2F <- mydata2 [mydata2$gender == "F", ]
mean(mydata2F$SATQ, na.rm = TRUE)
## [1] 595.9955