mydata<-data.frame("ID"=c(1,2,3,4),
                   "Age"=c(22,23,24,25),
                   "Height"=c(180,186,175,170),
                   "Gender"=c(0,0,1,1))
print(mydata)
##   ID Age Height Gender
## 1  1  22    180      0
## 2  2  23    186      0
## 3  3  24    175      1
## 4  4  25    170      1
mydata[4,3] <- 169
print(mydata)
##   ID Age Height Gender
## 1  1  22    180      0
## 2  2  23    186      0
## 3  3  24    175      1
## 4  4  25    169      1
mydata$Weight <-c(85,70,72,92 )

##Calculate BMI (new variable)

mydata$BMI <- mydata$Weight/((mydata$Height/100)^2)

#Descriptiv statistic

summary(mydata$BMI)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   20.23   22.69   24.87   25.55   27.73   32.21

Mean=most common value

#Activating pacages

#install.packages("pastecs")
library(pastecs)
round(stat.desc(mydata$BMI),2)
##      nbr.val     nbr.null       nbr.na          min          max        range 
##         4.00         0.00         0.00        20.23        32.21        11.98 
##          sum       median         mean      SE.mean CI.mean.0.95          var 
##       102.19        24.87        25.55         2.54         8.08        25.76 
##      std.dev     coef.var 
##         5.08         0.20

##Tabel for all variables

round(stat.desc(mydata),2)
##                 ID   Age Height Gender Weight    BMI
## nbr.val       4.00  4.00   4.00   4.00   4.00   4.00
## nbr.null      0.00  0.00   0.00   2.00   0.00   0.00
## nbr.na        0.00  0.00   0.00   0.00   0.00   0.00
## min           1.00 22.00 169.00   0.00  70.00  20.23
## max           4.00 25.00 186.00   1.00  92.00  32.21
## range         3.00  3.00  17.00   1.00  22.00  11.98
## sum          10.00 94.00 710.00   2.00 319.00 102.19
## median        2.50 23.50 177.50   0.50  78.50  24.87
## mean          2.50 23.50 177.50   0.50  79.75  25.55
## SE.mean       0.65  0.65   3.62   0.29   5.27   2.54
## CI.mean.0.95  2.05  2.05  11.51   0.92  16.76   8.08
## var           1.67  1.67  52.33   0.33 110.92  25.76
## std.dev       1.29  1.29   7.23   0.58  10.53   5.08
## coef.var      0.52  0.05   0.04   1.15   0.13   0.20

##Removing ID and Age columns

round(stat.desc(mydata[ ,-c(1,4)]),2)
##                Age Height Weight    BMI
## nbr.val       4.00   4.00   4.00   4.00
## nbr.null      0.00   0.00   0.00   0.00
## nbr.na        0.00   0.00   0.00   0.00
## min          22.00 169.00  70.00  20.23
## max          25.00 186.00  92.00  32.21
## range         3.00  17.00  22.00  11.98
## sum          94.00 710.00 319.00 102.19
## median       23.50 177.50  78.50  24.87
## mean         23.50 177.50  79.75  25.55
## SE.mean       0.65   3.62   5.27   2.54
## CI.mean.0.95  2.05  11.51  16.76   8.08
## var           1.67  52.33 110.92  25.76
## std.dev       1.29   7.23  10.53   5.08
## coef.var      0.05   0.04   0.13   0.20

#Calculation of standard deviation for Weight

sd(mydata$Weight)
## [1] 10.5317

##All standard deviations for all variables but ID and Gender doesnt make seance so we exclude them

sapply(mydata[,-c(1,4)], FUN=sd)
##       Age    Height    Weight       BMI 
##  1.290994  7.234178 10.531698  5.075201

##Converting 0 and 1 of gender to M and F (categorical variable)

mydata$Gender <- factor(mydata$Gender,
                        levels=c(0,1),
                        labels=c("M","F"))

##(Now we see frequency distribution for gender;two mailand two female)

summary(mydata)
##        ID            Age            Height      Gender     Weight     
##  Min.   :1.00   Min.   :22.00   Min.   :169.0   M:2    Min.   :70.00  
##  1st Qu.:1.75   1st Qu.:22.75   1st Qu.:173.5   F:2    1st Qu.:71.50  
##  Median :2.50   Median :23.50   Median :177.5          Median :78.50  
##  Mean   :2.50   Mean   :23.50   Mean   :177.5          Mean   :79.75  
##  3rd Qu.:3.25   3rd Qu.:24.25   3rd Qu.:181.5          3rd Qu.:86.75  
##  Max.   :4.00   Max.   :25.00   Max.   :186.0          Max.   :92.00  
##       BMI       
##  Min.   :20.23  
##  1st Qu.:22.69  
##  Median :24.87  
##  Mean   :25.55  
##  3rd Qu.:27.73  
##  Max.   :32.21

##Average height for females

mean(mydata$Height[mydata$Gender=="F"])
## [1] 172

##other option for calculating

library(psych)
describeBy(mydata$Height, mydata$Gender)
## 
##  Descriptive statistics by group 
## group: M
##    vars n mean   sd median trimmed  mad min max range skew kurtosis se
## X1    1 2  183 4.24    183     183 4.45 180 186     6    0    -2.75  3
## ------------------------------------------------------------ 
## group: F
##    vars n mean   sd median trimmed  mad min max range skew kurtosis se
## X1    1 2  172 4.24    172     172 4.45 169 175     6    0    -2.75  3

Average hight of females is 172.