Airquality_HW

Author

yonas

Load the library

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.3.0
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.1.0     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Load the dataset into your global environment

data("airquality")

Look at the structure of the data

View the data using the “head” function

head(airquality)
  Ozone Solar.R Wind Temp Month Day
1    41     190  7.4   67     5   1
2    36     118  8.0   72     5   2
3    12     149 12.6   74     5   3
4    18     313 11.5   62     5   4
5    NA      NA 14.3   56     5   5
6    28      NA 14.9   66     5   6

Calculate Summary Statistics

mean(airquality$Temp)
[1] 77.88235
mean(airquality[,4]) 
[1] 77.88235

Calculate Median, Standard Deviation, and Variance

median(airquality$Temp)
[1] 79
sd(airquality$Wind)
[1] 3.523001
var(airquality$Wind)
[1] 12.41154

Rename the Months from number to names

airquality$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September"

Now look at the summary statistics of the dataset

summary(airquality$Month)
   Length     Class      Mode 
      153 character character 

Month is a categorical variable with different levels, called factors.

airquality$Month<-factor(airquality$Month, 
                         levels=c("May", "June","July", "August",
                                  "September"))

Plot 1: Create a histogram categorized by Month

p1 <- airquality |>
  ggplot(aes(x=Temp, fill=Month)) +
  geom_histogram(position="identity")+
  scale_fill_discrete(name = "Month", 
                      labels = c("May", "June","July", "August", "September")) +
  labs(x = "Monthly Temperatures from May - Sept", 
       y = "Frequency of Temps",
       title = "Histogram of Monthly Temperatures from May - Sept, 1973",
       caption = "New York State Department of Conservation and the National Weather Service")  #provide the data source

Plot 1 Output

p1
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Improve the histogram of Average Temperature by Month

p2 <- airquality |>
  ggplot(aes(x=Temp, fill=Month)) +
  geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September")) +
  labs(x = "Monthly Temperatures from May - Sept", 
       y = "Frequency of Temps",
       title = "Histogram of Monthly Temperatures from May - Sept, 1973",
       caption = "New York State Department of Conservation and the National Weather Service")

Plot 2 Output

p2

Plot 3: Create side-by-side boxplots categorized by Month

p3 <- airquality |>
  ggplot(aes(Month, Temp, fill = Month)) + 
  labs(x = "Months from May through September", y = "Temperatures", 
       title = "Side-by-Side Boxplot of Monthly Temperatures",
       caption = "New York State Department of Conservation and the National Weather Service") +
  geom_boxplot() +
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))

Plot 3 Output

p3

Plot 4: Side by Side Boxplots in Gray Scale

p4 <- airquality |>
ggplot(aes(Month, Temp, fill = Month)) + 
  labs(x = "Monthly Temperatures", y = "Temperatures", 
       title = "Side-by-Side Boxplot of Monthly Temperatures",
       caption = "New York State Department of Conservation and the National Weather Service") +
  geom_boxplot()+
  scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))

Plot 4 Output

p4

side-by-side boxplots of monthly wind

p5 <- airquality |>
  ggplot(aes(Month, Wind, fill = Month)) + 
  labs(x = "Months from May through September", y = "Wind", 
       title = "Side-by-Side Boxplot of Monthly Wind",
       caption = "New York State Department of Conservation and the National Weather Service") +
  geom_boxplot() +
  scale_fill_viridis_d(name = "Month", labels = c("May", "June","July", "August", "September"))
p5

In this code I made a side-by-side boxplot of the monthly wind from May-September. This plot shows the minimum, maximum, and mean Wind in the months May-September. The minimum and maximum are shown by the black vertical lines that are above and below the boxes and the mean is shown by the horizontal lines that are in the boxes. The code here is similar to the Side-by-Side Boxplot of Monthly Temperatures but I changed Temperatures to Wind. I also changed the colors by using scale_fill_viridis_d.

mean(airquality[-(32:153),3]) 
[1] 11.62258
mean(airquality[-(1:123),3]) 
[1] 10.18
mean(airquality[,3]) 
[1] 9.957516