Airquality HW

Author

E Lott

Air Tutorial and Homework Assignment

Load the library

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.2
✔ ggplot2   3.5.2     ✔ tibble    3.3.0
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.1.0     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Load the dataset into your global environment

data("airquality")

Look at the structure of the data

View the data using the “head” function

head(airquality)
  Ozone Solar.R Wind Temp Month Day
1    41     190  7.4   67     5   1
2    36     118  8.0   72     5   2
3    12     149 12.6   74     5   3
4    18     313 11.5   62     5   4
5    NA      NA 14.3   56     5   5
6    28      NA 14.9   66     5   6

Calculate Summary Statistics

mean(airquality$Temp)
[1] 77.88235
mean(airquality[,4]) 
[1] 77.88235

Calculate Median, Standard Deviation, and Variance

median(airquality$Temp)
[1] 79
sd(airquality$Wind)
[1] 3.523001
var(airquality$Wind)
[1] 12.41154

Rename the Months from number to names

airquality$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September"

Now look at the summary statistics of the dataset

summary(airquality$Month)
   Length     Class      Mode 
      153 character character 

Month is a categorical variable with different levels, called factors.

airquality$Month<-factor(airquality$Month, 
                         levels=c("May", "June","July", "August",
                                  "September"))

Plot 1: Create a histogram categorized by Month

Plot 1 Code

p1 <- airquality |>
  ggplot(aes(x=Temp, fill=Month)) +
  geom_histogram(position="identity")+
  scale_fill_discrete(name = "Month", 
                      labels = c("May", "June","July", "August", "September")) +
  labs(x = "Monthly Temperatures from May - Sept", 
       y = "Frequency of Temps",
       title = "Histogram of Monthly Temperatures from May - Sept, 1973",
       caption = "New York State Department of Conservation and the National Weather Service")  #provide the data source

Plot 1 Output

p1
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Plot 2: Improve the histogram of the Average Temperature by Month

Plot 2 Code

p2 <- airquality |>
  ggplot(aes(x=Temp, fill=Month)) +
  geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September")) +
  labs(x = "Monthly Temperatures from May - Sept", 
       y = "Frequency of Temps",
       title = "Histogram of Monthly Temperatures from May - Sept, 1973",
       caption = "New York State Department of Conservation and the National Weather Service")

Plot 2 Output

p2

Plot 3: Create side-by-side boxplots categorized by Month

p3 <- airquality |>
  ggplot(aes(Month, Temp, fill = Month)) + 
  labs(x = "Months from May through September", y = "Temperatures", 
       title = "Side-by-Side Boxplot of Monthly Temperatures",
       caption = "New York State Department of Conservation and the National Weather Service") +
  geom_boxplot() +
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))

Plot 3 Output

p3

Plot 4: Side by Side Boxplots in Gray Scale

Plot 4 Code

p4 <- airquality |>
ggplot(aes(Month, Temp, fill = Month)) + 
  labs(x = "Monthly Temperatures", y = "Temperatures", 
       title = "Side-by-Side Boxplot of Monthly Temperatures",
       caption = "New York State Department of Conservation and the National Weather Service") +
  geom_boxplot()+
  scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))

Plot 4 Output

p4

Plot 5:

p5 <- airquality |>
  ggplot(aes(x=Solar.R, y=Temp)) +
  geom_line(position="identity", alpha=0.7, color = "purple") +
  labs(x = "Monthly Temperatures from May - Sept", 
       y = "Temperature",
       title = "Line Graph of correlation between temperature and solar radiation",
       caption = "New York State Department of Conservation and the National Weather Service")
p5
Warning: Removed 7 rows containing missing values or values outside the scale range
(`geom_line()`).

Write a brief essay here

The line graph I created shows the temperature in relation to the data given for solar radiation. Solar radiation is the independent variable and temperature is the dependent variable. The line graph shares the possible positive correlation there is between temp. and solar R. This is because as solar radiation increases, temperature relatively does too. However, after solar radiation reaches 200+, the temperature shows a decrease (weak).