data("USArrests") #reading the R-embedded dataset, "USArrests"
head(USArrests, 10) #looking at the first 10 rows of our dataset
## Murder Assault UrbanPop Rape
## Alabama 13.2 236 58 21.2
## Alaska 10.0 263 48 44.5
## Arizona 8.1 294 80 31.0
## Arkansas 8.8 190 50 19.5
## California 9.0 276 91 40.6
## Colorado 7.9 204 78 38.7
## Connecticut 3.3 110 77 11.1
## Delaware 5.9 238 72 15.8
## Florida 15.4 335 80 31.9
## Georgia 17.4 211 60 25.8
summary(USArrests) #using summary function to produce some basic summary statistics for the dataset
## Murder Assault UrbanPop Rape
## Min. : 0.800 Min. : 45.0 Min. :32.00 Min. : 7.30
## 1st Qu.: 4.075 1st Qu.:109.0 1st Qu.:54.50 1st Qu.:15.07
## Median : 7.250 Median :159.0 Median :66.00 Median :20.10
## Mean : 7.788 Mean :170.8 Mean :65.54 Mean :21.23
## 3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:77.75 3rd Qu.:26.18
## Max. :17.400 Max. :337.0 Max. :91.00 Max. :46.00
#some additional stats
var(USArrests$Murder) #calculating the variance of US murders
## [1] 18.97047
var(USArrests$Assault) #calculating the variance of US assaults
## [1] 6945.166
var(USArrests$UrbanPop) #calculating the variance of US urban population
## [1] 209.5188
var(USArrests$Rape) #calculating the variance of US rapes
## [1] 87.72916
sd(USArrests$Murder) #calculating the standard deviation of US murders
## [1] 4.35551
sd(USArrests$Assault) #calculating the standard deviation of US assaults
## [1] 83.33766
sd(USArrests$UrbanPop) #calculating the standard deviation of US urban population
## [1] 14.47476
sd(USArrests$Rape) #calculating the standard deviation of US rapes
## [1] 9.366385