data("USArrests") #reading the R-embedded dataset, "USArrests"
head(USArrests, 10) #looking at the first 10 rows of our dataset
##             Murder Assault UrbanPop Rape
## Alabama       13.2     236       58 21.2
## Alaska        10.0     263       48 44.5
## Arizona        8.1     294       80 31.0
## Arkansas       8.8     190       50 19.5
## California     9.0     276       91 40.6
## Colorado       7.9     204       78 38.7
## Connecticut    3.3     110       77 11.1
## Delaware       5.9     238       72 15.8
## Florida       15.4     335       80 31.9
## Georgia       17.4     211       60 25.8
summary(USArrests) #using summary function to produce some basic summary statistics for the dataset 
##      Murder          Assault         UrbanPop          Rape      
##  Min.   : 0.800   Min.   : 45.0   Min.   :32.00   Min.   : 7.30  
##  1st Qu.: 4.075   1st Qu.:109.0   1st Qu.:54.50   1st Qu.:15.07  
##  Median : 7.250   Median :159.0   Median :66.00   Median :20.10  
##  Mean   : 7.788   Mean   :170.8   Mean   :65.54   Mean   :21.23  
##  3rd Qu.:11.250   3rd Qu.:249.0   3rd Qu.:77.75   3rd Qu.:26.18  
##  Max.   :17.400   Max.   :337.0   Max.   :91.00   Max.   :46.00
#some additional stats 
var(USArrests$Murder) #calculating the variance of US murders
## [1] 18.97047
var(USArrests$Assault) #calculating the variance of US assaults 
## [1] 6945.166
var(USArrests$UrbanPop) #calculating the variance of US urban population 
## [1] 209.5188
var(USArrests$Rape) #calculating the variance of US rapes
## [1] 87.72916
sd(USArrests$Murder) #calculating the standard deviation of US murders
## [1] 4.35551
sd(USArrests$Assault) #calculating the standard deviation of US assaults 
## [1] 83.33766
sd(USArrests$UrbanPop) #calculating the standard deviation of US urban population
## [1] 14.47476
sd(USArrests$Rape) #calculating the standard deviation of US rapes
## [1] 9.366385