Window Functions
Load Libraries
# import(tidyverse)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.3
## Warning: package 'ggplot2' was built under R version 4.4.3
## Warning: package 'tibble' was built under R version 4.4.3
## Warning: package 'readr' was built under R version 4.4.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(glue)
## Warning: package 'glue' was built under R version 4.4.3
Load Data
delhi_data <- read.csv("DailyDelhiClimateTrain.csv")
Define Year to Date Function
yearToDate <- function(data, end, col) {
# Ensure dates in date column are of Date type
data <- data %>% mutate(date = ymd(data$date))
# Subset data from beginning of year to given date
subset_data <- data[data$date <= end, ,drop = FALSE]
# Find the mean for target column
mean_temp <- mean(subset_data[[col]], na.rm = TRUE)
return(mean_temp)
}
Testing YTD
# Testing
date1 <- ymd("2013-02-01")
test <- yearToDate(delhi_data, date1, "humidity") %>%
round(2)
glue("Expected YTD Result: 73.02 \n Actual Result: {test}")
## Expected YTD Result: 73.02
## Actual Result: 73.03
Define 6 Day Average Function
sixDayAvg <- function(data, start_date, col) {
# Ensure dates in date column are of Date type
data <- data %>% mutate(date = ymd(data$date))
# Define the 6-day window
end_date <- start_date + 5
# Subset the data for those 6 days
subset_data <- data[data$date >= start_date & data$date <= end_date, , drop = FALSE]
# Find mean for column
mean_temp <- mean(subset_data[[col]], na.rm = TRUE)
return(mean_temp)
}
Testing 6 Day Avg
date2 <- ymd("2013-02-01")
test2 <- sixDayAvg(delhi_data, date2, "humidity") %>%
round(2)
glue("Expected 6 Day Result: 75.68 \n Actual Result: {test2}")
## Expected 6 Day Result: 75.68
## Actual Result: 75.69