Preprocessing
Read data
filepath <- here("data/ESM_W2_WITH_MISSING_V1_no exclusions.csv")
df_raw <- read_csv(filepath)
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.g.:
## dat <- vroom(...)
## problems(dat)
Process data
df_emos <- df_raw %>%
select(ID, timeStampSent, matches("panas.*scale.*beep"), -matches("new")) %>%
# TODO: what is panas scale new
rename(
panas_neg = PANAS_negativescale_beep,
panas_pos = PANAS_positivescale_beep
)
df_er <- df_raw %>%
select(ID, timeStampSent, matches("Emotionregulation_[a-z]+$"),
-Emotionregulation_selfcompassion1,
-Emotionregulation_selfcompassion2,
-Emotionregulation_selfcompassion,
-Emotionregulation_engagement) %>%
rename_all(~str_replace(., "Emotionregulation_", "er_"))
df_indiff <- df_raw %>%
select(ID, Sex, Birth_year, Birth_month, Ethnicity,
matches("SCARED.*scale"), matches("SMFQ.*scale"),
# matches("panas"),
-matches("omit")) %>%
rename_all(~str_remove(., "_scale_w2")) %>%
distinct() %>%
left_join(
df_emos %>%
filter(!is.na(panas_neg) & !is.na(panas_pos)) %>%
group_by(ID) %>%
summarize(
panas_neg = mean(panas_neg, na.rm=T),
panas_pos = mean(panas_pos, na.rm=T),
n_beeps = n()
)
) %>%
mutate_at(vars(SCARED, SMFQ, panas_neg, panas_pos), list(z=scale))
# confirm 1 row per person
df_indiff %>%
count(ID) %>%
arrange(desc(n))
## # A tibble: 265 × 2
## ID n
## <chr> <int>
## 1 10015 1
## 2 10016 1
## 3 10017 1
## 4 10018 1
## 5 10020 1
## 6 10021 1
## 7 10022 1
## 8 10026 1
## 9 10027 1
## 10 10028 1
## # ℹ 255 more rows
df_indiff_2 <- df_raw %>%
select(ID, Sex, Birth_year, Birth_month, Ethnicity,
matches("SCARED.*scale"), matches("SMFQ.*scale"),
# matches("panas"),
-matches("omit")) %>%
rename_all(~str_remove(., "_scale_w2")) %>%
distinct() %>%
left_join(
df_emos # %>%
# filter(!is.na(panas_neg) & !is.na(panas_pos)) %>%
) %>%
mutate_at(vars(SCARED, SMFQ, panas_neg, panas_pos), list(z=scale))
Calculate Metrics
Mean ER
df_mean_er_strat <- df_er %>%
pivot_longer(cols=starts_with("er_"),
names_to="strat",
values_to="rating") %>%
drop_na(rating) %>%
group_by(ID, strat) %>%
summarize(
mean_er = mean(rating)
) %>%
ungroup
Relative Within SD
d <- df_er %>%
pivot_longer(cols=starts_with("er_"),
names_to="strat",
values_to="rating") %>%
drop_na(rating)
d %>%
group_by(ID, strat) %>%
summarize(
n = n()
) %>%
# arrange(desc(n))
arrange(n)
## # A tibble: 1,325 × 3
## # Groups: ID [265]
## ID strat n
## <chr> <chr> <int>
## 1 1029 er_distraction 1
## 2 1029 er_reappraisal 1
## 3 1029 er_rumination 1
## 4 1029 er_socialsupport 1
## 5 1029 er_suppresion 1
## 6 8048 er_distraction 1
## 7 8048 er_reappraisal 1
## 8 8048 er_rumination 1
## 9 8048 er_socialsupport 1
## 10 8048 er_suppresion 1
## # ℹ 1,315 more rows
df_rwsd <- d %>%
group_by(ID, strat) %>%
mutate(n = n()) %>%
filter(n > 1) %>%
filter(mean(rating) < 7) %>%
filter(mean(rating) > 1) %>%
summarize(
rwsd = relativeSD(rating, 1, 7),
n = n()
) %>%
summarize(
rwsd = mean(rwsd),
n = mean(n)
) %>%
ungroup
hist(df_rwsd$rwsd)

# rwsd for each ER strat
df_rwsd_st <- d %>%
group_by(ID, strat) %>%
mutate(n = n()) %>%
filter(n > 1) %>%
filter(mean(rating) < 7) %>%
filter(mean(rating) > 1) %>%
summarize(
rwsd = relativeSD(rating, 1, 7),
n = n()
)
Relative Between SD
d <- df_er %>%
pivot_longer(cols=starts_with("er_"),
names_to="strat",
values_to="rating") %>%
drop_na(rating)
d %>%
group_by(ID, timeStampSent) %>%
summarize(
n = n()
) %>%
# arrange(desc(n))
arrange(n)
## # A tibble: 12,590 × 3
## # Groups: ID [265]
## ID timeStampSent n
## <chr> <dbl> <int>
## 1 7034 1652955304 2
## 2 11187 1653992106 3
## 3 11143 1653768014 4
## 4 11143 1653940813 4
## 5 11143 1654027212 4
## 6 11143 1654157103 4
## 7 11143 1654449309 4
## 8 11170 1653768014 4
## 9 2026 1650967206 4
## 10 2026 1651782618 4
## # ℹ 12,580 more rows
df_rbsd <- d %>%
group_by(ID, timeStampSent) %>%
mutate(n = n()) %>%
filter(n > 1) %>%
filter(mean(rating) > 1) %>%
filter(mean(rating) < 7) %>%
summarize(
rbsd = relativeSD(rating, 1, 7),
n = n()
) %>%
summarize(
rbsd = mean(rbsd),
n = mean(n)
)
hist(df_rbsd$rbsd)

# rbsd across moments
df_rbsd_st <- d %>%
group_by(ID, timeStampSent) %>%
mutate(n = n()) %>%
filter(n > 1) %>%
filter(mean(rating) > 1) %>%
filter(mean(rating) < 7) %>%
summarize(
rbsd = relativeSD(rating, 1, 7),
n = n()
)
Successive Difference
d <- df_er %>%
pivot_longer(cols=starts_with("er_"),
names_to="strat",
values_to="rating") %>%
drop_na(rating)
d %>%
group_by(ID, strat) %>%
summarize(
n = n()
) %>%
# arrange(desc(n))
arrange(n)
## # A tibble: 1,325 × 3
## # Groups: ID [265]
## ID strat n
## <chr> <chr> <int>
## 1 1029 er_distraction 1
## 2 1029 er_reappraisal 1
## 3 1029 er_rumination 1
## 4 1029 er_socialsupport 1
## 5 1029 er_suppresion 1
## 6 8048 er_distraction 1
## 7 8048 er_reappraisal 1
## 8 8048 er_rumination 1
## 9 8048 er_socialsupport 1
## 10 8048 er_suppresion 1
## # ℹ 1,315 more rows
df_rwrmssd <- d %>%
group_by(ID, strat) %>%
mutate(n = n()) %>%
filter(n > 1) %>%
filter(mean(rating) < 7) %>%
filter(mean(rating) > 1) %>%
summarize(
rwrmssd = relativeRMSSD(rating, 1, 7),
n = n()
) %>%
summarize(
rwrmssd = mean(rwrmssd),
n = mean(n)
) %>%
ungroup
hist(df_rwrmssd$rwrmssd)

# rwrmssd for each ER strat
df_rwrmssd_st <- d %>%
group_by(ID, strat) %>%
mutate(n = n()) %>%
filter(n > 1) %>%
filter(mean(rating) < 7) %>%
filter(mean(rating) > 1) %>%
summarize(
rwrmssd = relativeRMSSD(rating, 1, 7),
n = n()
) %>%
ungroup
Bray-Curtis
d <- df_er %>%
pivot_longer(cols=starts_with("er_"),
names_to="strat",
values_to="rating") %>%
group_by(ID, strat) %>%
arrange(timeStampSent) %>%
mutate(
rating_abs_diff = abs(rating - lag(rating)),
rating_sum = rating + lag(rating),
) %>%
ungroup %>%
drop_na(rating_abs_diff)
# momentary level (state)
df_bc_st <- d %>%
group_by(ID, timeStampSent) %>%
summarize(
bc = sum(rating_abs_diff, na.rm=T)/sum(rating_sum, na.rm=T)
)
hist(df_bc_st$bc)

# individual level (trait)
df_bc_tr <- d %>%
group_by(ID) %>%
summarize(
bc = sum(rating_abs_diff, na.rm=T)/sum(rating_sum, na.rm=T),
n = n()
)
hist(df_bc_tr$bc)

# checking for a relationship between number of observations and bc
df_bc_tr %>%
ggplot(aes(x = n, y = bc)) +
geom_smooth(se=F, size=.4, color="red") +
geom_smooth(method="lm") +
geom_point()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

Wentropy (Emotion Regulation Diversity)
# momentary (state)
df_wentropy_st <- df_er %>%
pivot_longer(cols=starts_with("er_"),
names_to="strat",
values_to="rating") %>%
drop_na(rating) %>%
group_by(ID, timeStampSent) %>%
mutate(
pr = rating/7,
ln_pr = log(pr),
pr_ln_pr = pr*ln_pr
) %>%
summarize(
wentropy = -sum(pr_ln_pr)
) %>%
ungroup
hist(df_wentropy_st$wentropy)

# individual (trait)
df_wentropy_tr <- df_er %>%
pivot_longer(cols=starts_with("er_"),
names_to="strat",
values_to="rating") %>%
drop_na(rating) %>%
group_by(ID, strat) %>%
summarize(
pr = sum(rating)/(7*n()),
ln_pr = log(pr),
pr_ln_pr = pr*ln_pr
) %>%
summarize(
wentropy = -sum(pr_ln_pr)
) %>%
ungroup
hist(df_wentropy_tr$wentropy)

Entropy
# momentary (state)
df_entropy_st <- df_er %>%
pivot_longer(cols=starts_with("er_"),
names_to="strat",
values_to="rating") %>%
drop_na(rating) %>%
group_by(ID, timeStampSent) %>%
mutate(
pr = rating/sum(rating),
ln_pr = log(pr),
pr_ln_pr = pr*ln_pr
) %>%
summarize(
entropy = -sum(pr_ln_pr)
) %>%
ungroup
hist(df_entropy_st$entropy, 50)

# individual (trait)
df_entropy_tr <- df_er %>%
pivot_longer(cols=starts_with("er_"),
names_to="strat",
values_to="rating") %>%
drop_na(rating) %>%
group_by(ID, strat) %>%
summarize(
sum_strategy_rating = sum(rating),
) %>%
mutate(
pr = sum_strategy_rating/sum(sum_strategy_rating),
ln_pr = log(pr),
pr_ln_pr = pr*ln_pr
) %>%
summarize(
entropy = -sum(pr_ln_pr)
) %>%
ungroup
hist(df_entropy_tr$entropy, breaks=30)

Trait (between-person analysis)
Cor Between Metrics
d <- df_rwsd %>%
select(-n) %>%
full_join(df_rbsd %>% select(-n), by="ID") %>%
full_join(df_rwrmssd %>% select(-n), by="ID") %>%
full_join(df_bc_tr %>% select(-n), by="ID") %>%
full_join(df_wentropy_tr, by="ID") %>%
full_join(df_entropy_tr, by="ID") %>%
full_join(df_mean_er_strat, by="ID") %>%
select(-ID) %>%
select(-strat)
## select: dropped one variable (n)
## select: dropped one variable (n)
## full_join: added one column (rbsd)
## > rows only in x 0
## > rows only in df_rbsd %>% select(-n) 1
## > matched rows 253
## > =====
## > rows total 254
## select: dropped one variable (n)
## full_join: added one column (rwrmssd)
## > rows only in x 1
## > rows only in df_rwrmssd %>% select(-n) 0
## > matched rows 253
## > =====
## > rows total 254
## select: dropped one variable (n)
## full_join: added one column (bc)
## > rows only in x 6
## > rows only in df_bc_tr %>% select(-n) 9
## > matched rows 248
## > =====
## > rows total 263
## full_join: added one column (wentropy)
## > rows only in x 0
## > rows only in df_wentropy_tr 2
## > matched rows 263
## > =====
## > rows total 265
## full_join: added one column (entropy)
## > rows only in x 0
## > rows only in df_entropy_tr 0
## > matched rows 265
## > =====
## > rows total 265
## full_join: added 2 columns (strat, mean_er)
## > rows only in x 0
## > rows only in df_mean_er_strat 0
## > matched rows 1,325 (includes duplicates)
## > =======
## > rows total 1,325
## select: dropped one variable (ID)
## select: dropped one variable (strat)
corrplot::corrplot(cor(d, use="pairwise.complete.obs"))

cor(d, use="pairwise.complete.obs")
## rwsd rbsd rwrmssd bc wentropy entropy
## rwsd 1.00000000 0.69307528 0.90168342 -0.01388751 -0.1229160 -0.05263748
## rbsd 0.69307528 1.00000000 0.64130309 -0.03940082 -0.2611491 -0.29040009
## rwrmssd 0.90168342 0.64130309 1.00000000 -0.11901781 -0.1643954 0.02033524
## bc -0.01388751 -0.03940082 -0.11901781 1.00000000 0.5667578 0.01220801
## wentropy -0.12291598 -0.26114908 -0.16439543 0.56675784 1.0000000 0.21150563
## entropy -0.05263748 -0.29040009 0.02033524 0.01220801 0.2115056 1.00000000
## mean_er -0.44514455 -0.20574042 -0.55858523 0.21007821 -0.2679604 -0.16430195
## mean_er
## rwsd -0.4451445
## rbsd -0.2057404
## rwrmssd -0.5585852
## bc 0.2100782
## wentropy -0.2679604
## entropy -0.1643019
## mean_er 1.0000000
Relative Within SD
df_rwsd_outcomes <- df_rwsd %>%
left_join(df_indiff)
## Joining with `by = join_by(ID)`
## left_join: added 13 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff ( 12)
## > matched rows 253
## > =====
## > rows total 253
Depression
fit <- lm(SMFQ ~ rwsd, data=df_rwsd_outcomes)
tab_model(fit)
|
SMFQ
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
1.66
|
1.45 – 1.88
|
<0.001
|
rwsd
|
-0.29
|
-0.57 – -0.01
|
0.039
|
Observations
|
245
|
R2 / R2 adjusted
|
0.017 / 0.013
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Anxiety
fit <- lm(SCARED ~ rwsd, data=df_rwsd_outcomes)
tab_model(fit)
|
SCARED
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
2.19
|
1.98 – 2.41
|
<0.001
|
rwsd
|
-0.35
|
-0.63 – -0.06
|
0.017
|
Observations
|
244
|
R2 / R2 adjusted
|
0.023 / 0.019
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Neg Affect
fit <- lm(panas_neg ~ rwsd, data=df_rwsd_outcomes)
tab_model(fit)
|
panas_neg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
2.84
|
2.45 – 3.22
|
<0.001
|
rwsd
|
-1.37
|
-1.88 – -0.87
|
<0.001
|
Observations
|
253
|
R2 / R2 adjusted
|
0.103 / 0.100
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Pos Affect
fit <- lm(panas_pos ~ rwsd, data=df_rwsd_outcomes)
tab_model(fit)
|
panas_pos
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
3.97
|
3.40 – 4.55
|
<0.001
|
rwsd
|
1.56
|
0.81 – 2.31
|
<0.001
|
Observations
|
253
|
R2 / R2 adjusted
|
0.062 / 0.059
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Relative Between SD
df_rbsd_outcomes <- df_rbsd %>%
left_join(df_indiff)
## Joining with `by = join_by(ID)`
## left_join: added 13 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff ( 11)
## > matched rows 254
## > =====
## > rows total 254
Depression
fit <- lm(SMFQ ~ rbsd, data=df_rbsd_outcomes)
tab_model(fit)
|
SMFQ
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
1.55
|
1.40 – 1.70
|
<0.001
|
rbsd
|
-0.16
|
-0.38 – 0.05
|
0.141
|
Observations
|
246
|
R2 / R2 adjusted
|
0.009 / 0.005
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Anxiety
fit <- lm(SCARED ~ rbsd, data=df_rbsd_outcomes)
tab_model(fit)
|
SCARED
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
2.03
|
1.87 – 2.19
|
<0.001
|
rbsd
|
-0.14
|
-0.36 – 0.08
|
0.212
|
Observations
|
245
|
R2 / R2 adjusted
|
0.006 / 0.002
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Neg Affect
fit <- lm(panas_neg ~ rbsd, data=df_rbsd_outcomes)
tab_model(fit)
|
panas_neg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
2.23
|
1.94 – 2.51
|
<0.001
|
rbsd
|
-0.61
|
-1.01 – -0.21
|
0.003
|
Observations
|
254
|
R2 / R2 adjusted
|
0.034 / 0.030
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Pos Affect
fit <- lm(panas_pos ~ rbsd, data=df_rbsd_outcomes)
tab_model(fit)
|
panas_pos
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
4.69
|
4.27 – 5.11
|
<0.001
|
rbsd
|
0.66
|
0.07 – 1.26
|
0.028
|
Observations
|
254
|
R2 / R2 adjusted
|
0.019 / 0.015
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Successive Difference
df_rwrmssd_outcomes <- df_rwrmssd %>%
left_join(df_indiff)
## Joining with `by = join_by(ID)`
## left_join: added 13 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff ( 12)
## > matched rows 253
## > =====
## > rows total 253
Depression
fit <- lm(SMFQ ~ rwrmssd, data=df_rwrmssd_outcomes)
tab_model(fit)
|
SMFQ
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
1.68
|
1.51 – 1.85
|
<0.001
|
rwrmssd
|
-0.39
|
-0.65 – -0.13
|
0.004
|
Observations
|
245
|
R2 / R2 adjusted
|
0.034 / 0.030
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Anxiety
fit <- lm(SCARED ~ rwrmssd, data=df_rwrmssd_outcomes)
tab_model(fit)
|
SCARED
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
2.24
|
2.07 – 2.40
|
<0.001
|
rwrmssd
|
-0.49
|
-0.76 – -0.23
|
<0.001
|
Observations
|
244
|
R2 / R2 adjusted
|
0.053 / 0.049
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Neg Affect
fit <- lm(panas_neg ~ rwrmssd, data=df_rwrmssd_outcomes)
tab_model(fit)
|
panas_neg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
2.78
|
2.49 – 3.08
|
<0.001
|
rwrmssd
|
-1.58
|
-2.03 – -1.12
|
<0.001
|
Observations
|
253
|
R2 / R2 adjusted
|
0.156 / 0.153
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Pos Affect
fit <- lm(panas_pos ~ rwrmssd, data=df_rwrmssd_outcomes)
tab_model(fit)
|
panas_pos
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
4.23
|
3.78 – 4.68
|
<0.001
|
rwrmssd
|
1.47
|
0.77 – 2.18
|
<0.001
|
Observations
|
253
|
R2 / R2 adjusted
|
0.064 / 0.060
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Bray-Curtis
df_bc_tr_outcomes <- df_bc_tr %>%
left_join(df_indiff)
## Joining with `by = join_by(ID)`
## left_join: added 13 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff ( 8)
## > matched rows 257
## > =====
## > rows total 257
Depression
fit <- lm(SMFQ ~ bc, data=df_bc_tr_outcomes)
tab_model(fit)
|
SMFQ
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
1.37
|
1.27 – 1.47
|
<0.001
|
bc
|
0.45
|
-0.04 – 0.95
|
0.074
|
Observations
|
249
|
R2 / R2 adjusted
|
0.013 / 0.009
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Anxiety
fit <- lm(SCARED ~ bc, data=df_bc_tr_outcomes)
tab_model(fit)
|
SCARED
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
1.79
|
1.68 – 1.89
|
<0.001
|
bc
|
0.84
|
0.33 – 1.34
|
0.001
|
Observations
|
249
|
R2 / R2 adjusted
|
0.041 / 0.038
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Neg Affect
fit <- lm(panas_neg ~ bc, data=df_bc_tr_outcomes)
tab_model(fit)
|
panas_neg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
1.38
|
1.20 – 1.56
|
<0.001
|
bc
|
2.51
|
1.62 – 3.40
|
<0.001
|
Observations
|
257
|
R2 / R2 adjusted
|
0.108 / 0.105
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Pos Affect
fit <- lm(panas_pos ~ bc, data=df_bc_tr_outcomes)
tab_model(fit)
|
panas_pos
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
5.66
|
5.39 – 5.93
|
<0.001
|
bc
|
-2.97
|
-4.31 – -1.64
|
<0.001
|
Observations
|
257
|
R2 / R2 adjusted
|
0.070 / 0.066
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Wentropy (Emotion Regulation Diversity)
df_wentropy_tr_outcomes <- df_wentropy_tr %>%
left_join(df_indiff)
## Joining with `by = join_by(ID)`
## left_join: added 13 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff ( 0)
## > matched rows 265
## > =====
## > rows total 265
Depression
fit <- lm(SMFQ ~ wentropy, data=df_wentropy_tr_outcomes)
tab_model(fit)
|
SMFQ
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
1.31
|
0.95 – 1.67
|
<0.001
|
wentropy
|
0.08
|
-0.15 – 0.32
|
0.497
|
Observations
|
257
|
R2 / R2 adjusted
|
0.002 / -0.002
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Anxiety
fit <- lm(SCARED ~ wentropy, data=df_wentropy_tr_outcomes)
tab_model(fit)
|
SCARED
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
1.71
|
1.33 – 2.09
|
<0.001
|
wentropy
|
0.13
|
-0.11 – 0.38
|
0.284
|
Observations
|
256
|
R2 / R2 adjusted
|
0.005 / 0.001
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Neg Affect
fit <- lm(panas_neg ~ wentropy, data=df_wentropy_tr_outcomes)
tab_model(fit)
|
panas_neg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.89
|
0.21 – 1.57
|
0.010
|
wentropy
|
0.59
|
0.15 – 1.03
|
0.008
|
Observations
|
265
|
R2 / R2 adjusted
|
0.026 / 0.022
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Pos Affect
fit <- lm(panas_pos ~ wentropy, data=df_wentropy_tr_outcomes)
tab_model(fit)
|
panas_pos
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
7.08
|
6.09 – 8.06
|
<0.001
|
wentropy
|
-1.25
|
-1.88 – -0.61
|
<0.001
|
Observations
|
265
|
R2 / R2 adjusted
|
0.053 / 0.049
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Entropy
df_entropy_tr_outcomes <- df_entropy_tr %>%
left_join(df_indiff)
## Joining with `by = join_by(ID)`
## left_join: added 13 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff ( 0)
## > matched rows 265
## > =====
## > rows total 265
Depression
fit <- lm(SMFQ ~ entropy, data=df_entropy_tr_outcomes)
tab_model(fit)
|
SMFQ
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
3.78
|
2.13 – 5.42
|
<0.001
|
entropy
|
-1.47
|
-2.51 – -0.44
|
0.005
|
Observations
|
257
|
R2 / R2 adjusted
|
0.030 / 0.026
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Anxiety
fit <- lm(SCARED ~ entropy, data=df_entropy_tr_outcomes)
tab_model(fit)
|
SCARED
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
4.25
|
2.54 – 5.97
|
<0.001
|
entropy
|
-1.47
|
-2.55 – -0.39
|
0.008
|
Observations
|
256
|
R2 / R2 adjusted
|
0.028 / 0.024
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Neg Affect
fit <- lm(panas_neg ~ entropy, data=df_entropy_tr_outcomes)
tab_model(fit)
|
panas_neg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
3.82
|
0.69 – 6.96
|
0.017
|
entropy
|
-1.28
|
-3.25 – 0.70
|
0.204
|
Observations
|
265
|
R2 / R2 adjusted
|
0.006 / 0.002
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Pos Affect
fit <- lm(panas_pos ~ entropy, data=df_entropy_tr_outcomes)
tab_model(fit)
|
panas_pos
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
2.60
|
-2.02 – 7.23
|
0.268
|
entropy
|
1.62
|
-1.29 – 4.53
|
0.274
|
Observations
|
265
|
R2 / R2 adjusted
|
0.005 / 0.001
|
plot_model(fit, type="slope")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Momentary (within-person analysis)
Cor Between Metrics
df_bc_st_mean <- df_bc_st %>%
group_by(ID) %>%
summarize(mean_bc = mean(bc, na.rm = TRUE))
## group_by: one grouping variable (ID)
## summarize: now 257 rows and 2 columns, ungrouped
df_wentropy_st_mean <- df_wentropy_st %>%
group_by(ID) %>%
summarize(mean_wentropy = mean(wentropy, na.rm = TRUE))
## group_by: one grouping variable (ID)
## summarize: now 265 rows and 2 columns, ungrouped
df_entropy_st_mean <- df_entropy_st %>%
group_by(ID) %>%
summarize(mean_entropy = mean(entropy, na.rm = TRUE))
## group_by: one grouping variable (ID)
## summarize: now 265 rows and 2 columns, ungrouped
d <- df_rwsd %>%
select(-n) %>%
full_join(df_rbsd %>% select(-n), by="ID") %>%
full_join(df_rwrmssd %>% select(-n), by="ID") %>%
full_join(df_bc_st_mean, by="ID") %>%
full_join(df_wentropy_st_mean, by="ID") %>%
full_join(df_entropy_st_mean, by="ID") %>%
full_join(df_mean_er_strat, by="ID") %>%
select(-ID) %>%
select(-strat)
## select: dropped one variable (n)
## select: dropped one variable (n)
## full_join: added one column (rbsd)
## > rows only in x 0
## > rows only in df_rbsd %>% select(-n) 1
## > matched rows 253
## > =====
## > rows total 254
## select: dropped one variable (n)
## full_join: added one column (rwrmssd)
## > rows only in x 1
## > rows only in df_rwrmssd %>% select(-n) 0
## > matched rows 253
## > =====
## > rows total 254
## full_join: added one column (mean_bc)
## > rows only in x 6
## > rows only in df_bc_st_mean 9
## > matched rows 248
## > =====
## > rows total 263
## full_join: added one column (mean_wentropy)
## > rows only in x 0
## > rows only in df_wentropy_st_mean 2
## > matched rows 263
## > =====
## > rows total 265
## full_join: added one column (mean_entropy)
## > rows only in x 0
## > rows only in df_entropy_st_mean 0
## > matched rows 265
## > =====
## > rows total 265
## full_join: added 2 columns (strat, mean_er)
## > rows only in x 0
## > rows only in df_mean_er_strat 0
## > matched rows 1,325 (includes duplicates)
## > =======
## > rows total 1,325
## select: dropped one variable (ID)
## select: dropped one variable (strat)
corrplot::corrplot(cor(d, use="pairwise.complete.obs"))

cor(d, use="pairwise.complete.obs")
## rwsd rbsd rwrmssd mean_bc mean_wentropy
## rwsd 1.0000000 0.69307528 0.90168342 -0.14082009 -0.23403019
## rbsd 0.6930753 1.00000000 0.64130309 -0.06915301 -0.36418921
## rwrmssd 0.9016834 0.64130309 1.00000000 -0.27621472 -0.05835954
## mean_bc -0.1408201 -0.06915301 -0.27621472 1.00000000 -0.16626100
## mean_wentropy -0.2340302 -0.36418921 -0.05835954 -0.16626100 1.00000000
## mean_entropy -0.0435414 -0.33794978 0.12736986 -0.48980349 0.43857187
## mean_er -0.4451445 -0.20574042 -0.55858523 0.38774922 -0.57420085
## mean_entropy mean_er
## rwsd -0.0435414 -0.4451445
## rbsd -0.3379498 -0.2057404
## rwrmssd 0.1273699 -0.5585852
## mean_bc -0.4898035 0.3877492
## mean_wentropy 0.4385719 -0.5742008
## mean_entropy 1.0000000 -0.3772359
## mean_er -0.3772359 1.0000000
Relative Within SD
# all ER strategies
df_rwsd_outcomes <- df_rwsd %>%
left_join(df_indiff_2) %>%
left_join(
df_mean_er_strat %>%
group_by(ID) %>%
summarize(mean_ID_er = mean(mean_er, na.rm = TRUE)) %>%
select(ID, mean_ID_er) %>%
ungroup()
)
## Joining with `by = join_by(ID)`
## left_join: added 13 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff_2 ( 836)
## > matched rows 17,573 (includes duplicates)
## > ========
## > rows total 17,573
## group_by: one grouping variable (ID)
## summarize: now 265 rows and 2 columns, ungrouped
## select: no changes
## ungroup: no grouping variables remain
## Joining with `by = join_by(ID)`
## left_join: added one column (mean_ID_er)
## > rows only in x 0
## > rows only in df_mean_er_strat %>% gr.. ( 12)
## > matched rows 17,573
## > ========
## > rows total 17,573
Neg Affect
fit <- df_rwsd_outcomes %>%
lmer(panas_neg_z ~ rwsd + (1|ID), data = .)
tab_model(fit)
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.95
|
0.61 – 1.30
|
<0.001
|
rwsd
|
-1.24
|
-1.69 – -0.79
|
<0.001
|
Random Effects
|
σ2
|
0.45
|
τ00 ID
|
0.51
|
ICC
|
0.53
|
N ID
|
253
|
Observations
|
12099
|
Marginal R2 / Conditional R2
|
0.060 / 0.561
|
# controlling for mean ER
df_rwsd_outcomes %>%
lmer(panas_neg_z ~ rwsd + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.05
|
-0.44 – 0.55
|
0.828
|
rwsd
|
-0.63
|
-1.13 – -0.13
|
0.013
|
mean ID er
|
0.18
|
0.11 – 0.25
|
<0.001
|
Random Effects
|
σ2
|
0.45
|
τ00 ID
|
0.47
|
ICC
|
0.51
|
N ID
|
253
|
Observations
|
12099
|
Marginal R2 / Conditional R2
|
0.106 / 0.563
|
relative within SD predicts less neg affect
Pos Affect
fit <- df_rwsd_outcomes %>%
lmer(panas_pos_z ~ rwsd + (1|ID), data = .)
tab_model(fit)
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.73
|
-1.08 – -0.39
|
<0.001
|
rwsd
|
0.95
|
0.49 – 1.40
|
<0.001
|
Random Effects
|
σ2
|
0.47
|
τ00 ID
|
0.51
|
ICC
|
0.52
|
N ID
|
253
|
Observations
|
12096
|
Marginal R2 / Conditional R2
|
0.035 / 0.538
|
# controlling for mean ER
df_rwsd_outcomes %>%
lmer(panas_pos_z ~ rwsd + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.80
|
-1.32 – -0.29
|
0.002
|
rwsd
|
0.99
|
0.47 – 1.51
|
<0.001
|
mean ID er
|
0.01
|
-0.06 – 0.09
|
0.717
|
Random Effects
|
σ2
|
0.47
|
τ00 ID
|
0.51
|
ICC
|
0.52
|
N ID
|
253
|
Observations
|
12096
|
Marginal R2 / Conditional R2
|
0.035 / 0.538
|
relative within SD predicts more pos affect
Relative Between SD
df_rbsd_outcomes <- df_rbsd_st %>%
left_join(df_indiff_2) %>%
left_join(
df_mean_er_strat %>%
group_by(ID) %>%
summarize(mean_ID_er = mean(mean_er, na.rm = TRUE)) %>%
select(ID, mean_ID_er) %>%
ungroup()
) %>%
mutate(across(rbsd, ~scale(., scale = F), .names = "{.col}_pc")) %>%
mutate(across(rbsd_pc, ~scale(., scale = T), .names = "{.col}_z"))
## Joining with `by = join_by(ID, timeStampSent)`
## left_join: added 12 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff_2 (11,761)
## > matched rows 6,648
## > ========
## > rows total 6,648
## group_by: one grouping variable (ID)
## summarize: now 265 rows and 2 columns, ungrouped
## select: no changes
## ungroup: no grouping variables remain
## Joining with `by = join_by(ID)`
## left_join: added one column (mean_ID_er)
## > rows only in x 0
## > rows only in df_mean_er_strat %>% gr.. ( 11)
## > matched rows 6,648
## > =======
## > rows total 6,648
## mutate (grouped): new variable 'rbsd_pc' (double) with 3,128 unique values and
## 0% NA
## mutate (grouped): new variable 'rbsd_pc_z' (double) with 3,107 unique values
## and 1% NA
Neg Affect
fit <- df_rbsd_outcomes %>%
lmer(panas_neg_z ~ rbsd_pc_z + (1|ID), data = .)
tab_model(fit)
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.33
|
0.23 – 0.44
|
<0.001
|
rbsd pc z
|
-0.04
|
-0.06 – -0.03
|
<0.001
|
Random Effects
|
σ2
|
0.54
|
τ00 ID
|
0.60
|
ICC
|
0.53
|
N ID
|
231
|
Observations
|
6612
|
Marginal R2 / Conditional R2
|
0.002 / 0.528
|
# controlling for mean ER
df_rbsd_outcomes %>%
lmer(panas_neg_z ~ rbsd_pc_z + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.18
|
-0.05 – 0.42
|
0.130
|
rbsd pc z
|
-0.04
|
-0.06 – -0.03
|
<0.001
|
mean ID er
|
0.05
|
-0.02 – 0.13
|
0.167
|
Random Effects
|
σ2
|
0.54
|
τ00 ID
|
0.60
|
ICC
|
0.53
|
N ID
|
231
|
Observations
|
6612
|
Marginal R2 / Conditional R2
|
0.005 / 0.529
|
relative between SD predicts less neg affect (but effect size is
really small)
Pos Affect
fit <- df_rbsd_outcomes %>%
lmer(panas_pos_z ~ rbsd_pc_z + (1|ID), data = .)
tab_model(fit)
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.18
|
-0.27 – -0.09
|
<0.001
|
rbsd pc z
|
0.04
|
0.02 – 0.05
|
<0.001
|
Random Effects
|
σ2
|
0.49
|
τ00 ID
|
0.48
|
ICC
|
0.49
|
N ID
|
231
|
Observations
|
6610
|
Marginal R2 / Conditional R2
|
0.001 / 0.495
|
# controlling for mean ER
df_rbsd_outcomes %>%
lmer(panas_pos_z ~ rbsd_pc_z + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.28
|
-0.49 – -0.06
|
0.011
|
rbsd pc z
|
0.04
|
0.02 – 0.05
|
<0.001
|
mean ID er
|
0.04
|
-0.03 – 0.10
|
0.322
|
Random Effects
|
σ2
|
0.49
|
τ00 ID
|
0.48
|
ICC
|
0.49
|
N ID
|
231
|
Observations
|
6610
|
Marginal R2 / Conditional R2
|
0.003 / 0.495
|
relative between SD predicts more pos affect (but effect size is
really small)
Successive Difference
df_rwrmssd_outcomes <- df_rwrmssd %>%
left_join(df_indiff_2) %>%
left_join(
df_mean_er_strat %>%
group_by(ID) %>%
summarize(mean_ID_er = mean(mean_er, na.rm = TRUE)) %>%
select(ID, mean_ID_er) %>%
ungroup()
)
## Joining with `by = join_by(ID)`
## left_join: added 13 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff_2 ( 836)
## > matched rows 17,573 (includes duplicates)
## > ========
## > rows total 17,573
## group_by: one grouping variable (ID)
## summarize: now 265 rows and 2 columns, ungrouped
## select: no changes
## ungroup: no grouping variables remain
## Joining with `by = join_by(ID)`
## left_join: added one column (mean_ID_er)
## > rows only in x 0
## > rows only in df_mean_er_strat %>% gr.. ( 12)
## > matched rows 17,573
## > ========
## > rows total 17,573
Neg Affect
fit <- df_rwrmssd_outcomes %>%
lmer(panas_neg_z ~ rwrmssd + (1|ID), data = .)
tab_model(fit)
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.90
|
0.64 – 1.17
|
<0.001
|
rwrmssd
|
-1.42
|
-1.83 – -1.02
|
<0.001
|
Random Effects
|
σ2
|
0.45
|
τ00 ID
|
0.48
|
ICC
|
0.52
|
N ID
|
253
|
Observations
|
12099
|
Marginal R2 / Conditional R2
|
0.092 / 0.562
|
# controlling for mean ER
df_rwrmssd_outcomes %>%
lmer(panas_neg_z ~ rwrmssd + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.21
|
-0.26 – 0.68
|
0.378
|
rwrmssd
|
-0.86
|
-1.37 – -0.35
|
0.001
|
mean ID er
|
0.14
|
0.06 – 0.22
|
0.001
|
Random Effects
|
σ2
|
0.45
|
τ00 ID
|
0.46
|
ICC
|
0.51
|
N ID
|
253
|
Observations
|
12099
|
Marginal R2 / Conditional R2
|
0.116 / 0.564
|
successive differences predicts less neg affect
Pos Affect
fit <- df_rwrmssd_outcomes %>%
lmer(panas_pos_z ~ rwrmssd + (1|ID), data = .)
tab_model(fit)
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.58
|
-0.85 – -0.31
|
<0.001
|
rwrmssd
|
0.89
|
0.47 – 1.31
|
<0.001
|
Random Effects
|
σ2
|
0.47
|
τ00 ID
|
0.51
|
ICC
|
0.52
|
N ID
|
253
|
Observations
|
12096
|
Marginal R2 / Conditional R2
|
0.036 / 0.538
|
# controlling for mean ER
df_rwrmssd_outcomes %>%
lmer(panas_pos_z ~ rwrmssd + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.81
|
-1.31 – -0.32
|
0.001
|
rwrmssd
|
1.08
|
0.54 – 1.62
|
<0.001
|
mean ID er
|
0.05
|
-0.04 – 0.13
|
0.268
|
Random Effects
|
σ2
|
0.47
|
τ00 ID
|
0.51
|
ICC
|
0.52
|
N ID
|
253
|
Observations
|
12096
|
Marginal R2 / Conditional R2
|
0.038 / 0.539
|
successive differences predicts more pos affect (large effect
size)
Bray-Curtis
df_bc_outcomes <- df_bc_st %>%
left_join(df_indiff_2) %>%
left_join(
df_mean_er_strat %>%
group_by(ID) %>%
summarize(mean_ID_er = mean(mean_er, na.rm = TRUE)) %>%
select(ID, mean_ID_er) %>%
ungroup()
) %>%
mutate(across(bc, ~scale(., scale = F), .names = "{.col}_pc")) %>%
mutate(across(bc_pc, ~scale(., scale = T), .names = "{.col}_z"))
## Joining with `by = join_by(ID, timeStampSent)`
## left_join: added 12 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff_2 (8,410)
## > matched rows 9,999
## > =======
## > rows total 9,999
## group_by: one grouping variable (ID)
## summarize: now 265 rows and 2 columns, ungrouped
## select: no changes
## ungroup: no grouping variables remain
## Joining with `by = join_by(ID)`
## left_join: added one column (mean_ID_er)
## > rows only in x 0
## > rows only in df_mean_er_strat %>% gr.. ( 8)
## > matched rows 9,999
## > =======
## > rows total 9,999
## mutate (grouped): new variable 'bc_pc' (double) with 3,901 unique values and 0%
## NA
## mutate (grouped): new variable 'bc_pc_z' (double) with 3,901 unique values and
## 4% NA
Neg Affect
fit <- df_bc_outcomes %>%
lmer(panas_neg_z ~ bc_pc_z + (1|ID), data = .)
tab_model(fit)
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.04
|
-0.06 – 0.14
|
0.421
|
bc pc z
|
0.10
|
0.09 – 0.11
|
<0.001
|
Random Effects
|
σ2
|
0.44
|
τ00 ID
|
0.59
|
ICC
|
0.58
|
N ID
|
244
|
Observations
|
9578
|
Marginal R2 / Conditional R2
|
0.009 / 0.580
|
# controlling for mean ER
df_bc_outcomes %>%
lmer(panas_neg_z ~ bc_pc_z + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.51
|
-0.70 – -0.32
|
<0.001
|
bc pc z
|
0.10
|
0.09 – 0.11
|
<0.001
|
mean ID er
|
0.22
|
0.15 – 0.28
|
<0.001
|
Random Effects
|
σ2
|
0.44
|
τ00 ID
|
0.50
|
ICC
|
0.54
|
N ID
|
244
|
Observations
|
9578
|
Marginal R2 / Conditional R2
|
0.101 / 0.583
|
BC predicts MORE neg affect (effect size does not change when
controlling for mean ER; small effect size)
Pos Affect
fit <- df_bc_outcomes %>%
lmer(panas_pos_z ~ bc_pc_z + (1|ID), data = .)
tab_model(fit)
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.04
|
-0.14 – 0.05
|
0.381
|
bc pc z
|
-0.05
|
-0.06 – -0.04
|
<0.001
|
Random Effects
|
σ2
|
0.46
|
τ00 ID
|
0.56
|
ICC
|
0.55
|
N ID
|
244
|
Observations
|
9575
|
Marginal R2 / Conditional R2
|
0.002 / 0.547
|
# controlling for mean ER
df_bc_outcomes %>%
lmer(panas_pos_z ~ bc_pc_z + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.09
|
-0.11 – 0.29
|
0.382
|
bc pc z
|
-0.05
|
-0.06 – -0.04
|
<0.001
|
mean ID er
|
-0.05
|
-0.12 – 0.02
|
0.141
|
Random Effects
|
σ2
|
0.46
|
τ00 ID
|
0.55
|
ICC
|
0.54
|
N ID
|
244
|
Observations
|
9575
|
Marginal R2 / Conditional R2
|
0.008 / 0.548
|
BC predicts LESS pos affect (effect size does not change when
controlling for mean ER; small effect size)
Wentropy (Emotion Regulation Diversity)
df_wentropy_outcomes <- df_wentropy_st %>%
left_join(df_indiff_2) %>%
left_join(
df_mean_er_strat %>%
group_by(ID) %>%
summarize(mean_ID_er = mean(mean_er, na.rm = TRUE)) %>%
select(ID, mean_ID_er) %>%
ungroup()
) %>%
mutate(across(wentropy, ~scale(., scale = F), .names = "{.col}_pc")) %>%
mutate(across(wentropy_pc, ~scale(., scale = T), .names = "{.col}_z"))
## Joining with `by = join_by(ID, timeStampSent)`
## left_join: added 12 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff_2 ( 5,819)
## > matched rows 12,590
## > ========
## > rows total 12,590
## group_by: one grouping variable (ID)
## summarize: now 265 rows and 2 columns, ungrouped
## select: no changes
## ungroup: no grouping variables remain
## Joining with `by = join_by(ID)`
## left_join: added one column (mean_ID_er)
## > rows only in x 0
## > rows only in df_mean_er_strat %>% gr.. ( 0)
## > matched rows 12,590
## > ========
## > rows total 12,590
## mutate: new variable 'wentropy_pc' (double) with 436 unique values and 0% NA
## mutate: new variable 'wentropy_pc_z' (double) with 436 unique values and 0% NA
Neg Affect
fit <- df_wentropy_outcomes %>%
lmer(panas_neg_z ~ wentropy_pc_z + (1|ID), data = .)
tab_model(fit)
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.02
|
-0.07 – 0.11
|
0.724
|
wentropy pc z
|
-0.05
|
-0.07 – -0.03
|
<0.001
|
Random Effects
|
σ2
|
0.43
|
τ00 ID
|
0.56
|
ICC
|
0.56
|
N ID
|
265
|
Observations
|
12590
|
Marginal R2 / Conditional R2
|
0.003 / 0.566
|
# controlling for mean ER
df_wentropy_outcomes %>%
lmer(panas_neg_z ~ wentropy_pc_z + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.52
|
-0.69 – -0.35
|
<0.001
|
wentropy pc z
|
-0.05
|
-0.06 – -0.03
|
<0.001
|
mean ID er
|
0.22
|
0.16 – 0.28
|
<0.001
|
Random Effects
|
σ2
|
0.43
|
τ00 ID
|
0.47
|
ICC
|
0.52
|
N ID
|
265
|
Observations
|
12590
|
Marginal R2 / Conditional R2
|
0.107 / 0.574
|
Wentropy predicts less neg affect (but small effect size)
Pos Affect
fit <- df_wentropy_outcomes %>%
lmer(panas_pos_z ~ wentropy_pc_z + (1|ID), data = .)
tab_model(fit)
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.00
|
-0.09 – 0.09
|
0.929
|
wentropy pc z
|
-0.04
|
-0.06 – -0.02
|
<0.001
|
Random Effects
|
σ2
|
0.46
|
τ00 ID
|
0.54
|
ICC
|
0.54
|
N ID
|
265
|
Observations
|
12587
|
Marginal R2 / Conditional R2
|
0.002 / 0.542
|
# controlling for mean ER
df_wentropy_outcomes %>%
lmer(panas_pos_z ~ wentropy_pc_z + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.23
|
0.04 – 0.41
|
0.016
|
wentropy pc z
|
-0.04
|
-0.06 – -0.02
|
<0.001
|
mean ID er
|
-0.09
|
-0.16 – -0.03
|
0.005
|
Random Effects
|
σ2
|
0.46
|
τ00 ID
|
0.53
|
ICC
|
0.53
|
N ID
|
265
|
Observations
|
12587
|
Marginal R2 / Conditional R2
|
0.013 / 0.541
|
Wentropy predicts LESS pos affecr (but small effect size)
Entropy
df_entropy_outcomes <- df_entropy_st %>%
left_join(df_indiff_2) %>%
left_join(
df_mean_er_strat %>%
group_by(ID) %>%
summarize(mean_ID_er = mean(mean_er, na.rm = TRUE)) %>%
select(ID, mean_ID_er) %>%
ungroup()
) %>%
mutate(across(entropy, ~scale(., scale = F), .names = "{.col}_pc")) %>%
mutate(across(entropy_pc, ~scale(., scale = T), .names = "{.col}_z"))
## Joining with `by = join_by(ID, timeStampSent)`
## left_join: added 12 columns (Sex, Birth_year, Birth_month, Ethnicity, SCARED,
## …)
## > rows only in x 0
## > rows only in df_indiff_2 ( 5,819)
## > matched rows 12,590
## > ========
## > rows total 12,590
## group_by: one grouping variable (ID)
## summarize: now 265 rows and 2 columns, ungrouped
## select: no changes
## ungroup: no grouping variables remain
## Joining with `by = join_by(ID)`
## left_join: added one column (mean_ID_er)
## > rows only in x 0
## > rows only in df_mean_er_strat %>% gr.. ( 0)
## > matched rows 12,590
## > ========
## > rows total 12,590
## mutate: new variable 'entropy_pc' (double) with 416 unique values and 0% NA
## mutate: new variable 'entropy_pc_z' (double) with 416 unique values and 0% NA
Neg Affect
fit <- df_entropy_outcomes %>%
lmer(panas_neg_z ~ entropy_pc_z + (1|ID), data = .)
tab_model(fit)
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.01
|
-0.08 – 0.10
|
0.748
|
entropy pc z
|
-0.09
|
-0.11 – -0.07
|
<0.001
|
Random Effects
|
σ2
|
0.43
|
τ00 ID
|
0.54
|
ICC
|
0.56
|
N ID
|
265
|
Observations
|
12590
|
Marginal R2 / Conditional R2
|
0.008 / 0.562
|
# controlling for mean ER
df_entropy_outcomes %>%
lmer(panas_neg_z ~ entropy_pc_z + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_neg_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.51
|
-0.68 – -0.34
|
<0.001
|
entropy pc z
|
-0.09
|
-0.10 – -0.07
|
<0.001
|
mean ID er
|
0.21
|
0.15 – 0.27
|
<0.001
|
Random Effects
|
σ2
|
0.43
|
τ00 ID
|
0.46
|
ICC
|
0.52
|
N ID
|
265
|
Observations
|
12590
|
Marginal R2 / Conditional R2
|
0.114 / 0.571
|
Entropy predicts less neg affect (but small effect size)
Pos Affect
fit <- df_entropy_outcomes %>%
lmer(panas_pos_z ~ entropy_pc_z + (1|ID), data = .)
tab_model(fit)
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.00
|
-0.09 – 0.08
|
0.918
|
entropy pc z
|
0.05
|
0.03 – 0.06
|
<0.001
|
Random Effects
|
σ2
|
0.46
|
τ00 ID
|
0.54
|
ICC
|
0.54
|
N ID
|
265
|
Observations
|
12587
|
Marginal R2 / Conditional R2
|
0.002 / 0.541
|
# controlling for mean ER
df_entropy_outcomes %>%
lmer(panas_pos_z ~ entropy_pc_z + mean_ID_er + (1|ID), data = .) %>%
tab_model()
|
panas_pos_z
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.17
|
-0.02 – 0.35
|
0.077
|
entropy pc z
|
0.05
|
0.03 – 0.06
|
<0.001
|
mean ID er
|
-0.07
|
-0.13 – -0.00
|
0.037
|
Random Effects
|
σ2
|
0.46
|
τ00 ID
|
0.53
|
ICC
|
0.54
|
N ID
|
265
|
Observations
|
12587
|
Marginal R2 / Conditional R2
|
0.014 / 0.543
|
Entropy predicts more pos affect (but small effect size)