## ===== Packages =====
suppressPackageStartupMessages({
  library(MASS)
  library(Matrix)
  library(dplyr)
  library(tidyr)
  library(ggplot2)
  library(forcats)
  library(scales)   
})
## Warning: package 'forcats' was built under R version 4.4.3
set.seed(12345)

## ===== Global config =====
nsim       <- 10000
n_per_arm  <- 225
alpha_tot  <- 0.05
sided      <- "two"
pC         <- 0.50

endpts <- c("H1","H2","H3","H4","H5","H6")

## ===== Correlation (fixed) =====
Sigma <- matrix(c(
  1.0, 0.1, 0.5, 0.1, 0.1, 0.1,
  0.1, 1.0, 0.1, 0.8, 0.5, 0.5,
  0.5, 0.1, 1.0, 0.1, 0.1, 0.1,
  0.1, 0.8, 0.1, 1.0, 0.5, 0.5,
  0.1, 0.5, 0.1, 0.5, 1.0, 0.5,
  0.1, 0.5, 0.1, 0.5, 0.5, 1.0
), 6, 6, byrow=TRUE, dimnames=list(endpts,endpts))
if (min(eigen(Sigma, symmetric=TRUE, only.values=TRUE)$values) < 1e-8) {
  Sigma <- as.matrix(nearPD(Sigma)$mat)
}
Sigma <- (Sigma + t(Sigma))/2

## ===== Graphs for D1–D6 =====
G13 <- rbind(
  H1 = c(0,0,1,0,0,0),
  H2 = c(0,0,1,0,0,0),
  H3 = c(0,0,0,1,0,0),
  H4 = c(0,0,0,0,1,0),
  H5 = c(0,0,0,0,0,1),
  H6 = c(0,0,0,0,0,0)
); colnames(G13) <- rownames(G13) <- endpts

G4 <- rbind(
  H1 = c(0,0,1,0,0,0),
  H2 = c(0,0,0,1,0,0),
  H3 = c(0,1,0,0,0,0),
  H4 = c(0,0,0,0,1,0),
  H5 = c(1,0,0,0,0,0),
  H6 = c(0,0,0,0,0,0)
); colnames(G4) <- rownames(G4) <- endpts

G5 <- rbind(
  H1 = c(0, 2/3, 1/3, 0, 0, 0),
  H2 = c(0, 0,   1,   0, 0, 0),
  H3 = c(0, 0,   0,   1, 0, 0),
  H4 = c(0, 0,   0,   0, 1, 0),
  H5 = c(0, 0,   0,   0, 0, 1),
  H6 = c(1, 0,   0,   0, 0, 0)
); colnames(G5) <- rownames(G5) <- endpts

G6 <- rbind(
  H1 = c(0,0,1,0,0,0),
  H2 = c(0,0,0,1,0,0),
  H3 = c(0,0,0,0,1,0),
  H4 = c(1,0,0,0,0,0),
  H5 = c(0,1,0,0,0,0),
  H6 = c(0,0,0,0,0,0)
); colnames(G6) <- rownames(G6) <- endpts

# Initial weights
w_D1 <- c(H1=1/2, H2=1/2, H3=0, H4=0, H5=0, H6=0)
w_D2 <- c(H1=4/5, H2=1/5, H3=0, H4=0, H5=0, H6=0)
w_D3 <- c(H1=2/3, H2=1/3, H3=0, H4=0, H5=0, H6=0)
w_D4 <- c(H1=1/2, H2=1/2, H3=0, H4=0, H5=0, H6=0)
w_D5 <- c(H1=4/5, H2=1/5, H3=0, H4=0, H5=0, H6=0)
w_D6 <- c(H1=4/5, H2=1/5, H3=0, H4=0, H5=0, H6=0)

## ===== Colors =====
cols <- c("D1"="#1f77b4","D2"="#ff7f0e","D3"="#2ca02c",
          "D4"="#9467bd","D5"="#8c564b","D6"="#17becf")

## ===== Engines & helpers =====
axis_limits <- function(mx) {
  if (is.na(mx) || mx <= 0) return(c(0, 0.25))
  if (mx < 0.25)  c(0, 0.25)
  else if (mx < 0.50) c(0, 0.50)
  else if (mx < 0.75) c(0, 0.75)
  else c(0, 1.00)
}
breaks_for_limits <- function(ylim) {
  top <- ylim[2]
  if (abs(top-0.25) < 1e-12) c(0, 0.25)
  else if (abs(top-0.50) < 1e-12) seq(0, 0.50, by=0.25)
  else if (abs(top-0.75) < 1e-12) seq(0, 0.75, by=0.25)
  else seq(0, 1.00, by=0.25)
}

has_path_to_nonrejected <- function(start, rejected, G) {
  q <- which(names(rejected)==start)
  visited <- setNames(rep(FALSE, length(rejected)), names(rejected))
  while (length(q)) {
    i <- q[1]; q <- q[-1]
    if (visited[i]) next
    visited[i] <- TRUE
    nbrs <- names(which(G[i,] > 0))
    for (jname in nbrs) {
      j <- which(names(rejected)==jname)
      if (!rejected[j]) return(TRUE)
      if (!visited[j]) q <- c(q, j)
    }
  }
  FALSE
}
push_alpha_through_rejected <- function(a, rejected, G) {
  repeat {
    moved <- FALSE
    for (i in seq_along(a)) {
      if (rejected[i] && a[i] > 0) {
        if (has_path_to_nonrejected(names(a)[i], rejected, G)) {
          ai <- a[i]; a <- a + ai * G[i, ]; a[i] <- 0; moved <- TRUE
        } else { a[i] <- 0; moved <- TRUE }
      }
    }
    if (!moved) break
  }
  a
}
run_graph <- function(p, w, G, alpha_tot=0.05) {
  stopifnot(abs(sum(w)-1) < 1e-12, identical(names(w), colnames(G)))
  a <- alpha_tot * w
  tested   <- setNames(rep(FALSE, 6), names(w))
  rejected <- setNames(rep(FALSE, 6), names(w))
  tested[a > 0] <- TRUE
  repeat {
    can_reject <- (!rejected) & (p <= a)
    if (!any(can_reject)) break
    rej_nodes <- names(which(can_reject))
    for (i in rej_nodes) {
      ai <- a[i]
      if (ai > 0) { a <- a + ai * G[i, ]; a[i] <- 0 }
      rejected[i] <- TRUE
    }
    a <- push_alpha_through_rejected(a, rejected, G)
    tested[a > 0] <- TRUE
  }
  list(tested=tested, rejected=rejected)
}
run_andgate_H6 <- function(p, w, G, alpha_tot=0.05) {
  a <- alpha_tot * w
  tested   <- setNames(rep(FALSE, 6), names(w))
  rejected <- setNames(rep(FALSE, 6), names(w))
  tested[a > 0] <- TRUE
  repeat {
    can_reject <- (!rejected[1:5]) & (p[1:5] <= a[1:5])
    if (!any(can_reject)) break
    rej_nodes <- names(which(can_reject))
    for (i in rej_nodes) {
      ai <- a[i]
      if (ai > 0) { a <- a + ai * G[i, ]; a[i] <- 0 }
      rejected[i] <- TRUE
    }
    a <- push_alpha_through_rejected(a, rejected, G)
    tested[a > 0] <- TRUE
  }
  if (all(rejected[1:5])) {
    tested["H6"]  <- TRUE
    rejected["H6"] <- (p["H6"] <= 0.05)
  }
  list(tested=tested, rejected=rejected)
}

## ===== Data & p-values =====
gen_arm <- function(trt, n, Sigma, Delta, SD, pC) {
  Z <- mvrnorm(n, mu=rep(0,6), Sigma=Sigma); colnames(Z) <- endpts
  means <- setNames(rep(0,6), endpts)
  if (trt==1) means[c("H1","H2","H4","H5","H6")] <- Delta[c("H1","H2","H4","H5","H6")]
  dat <- data.frame(
    kccq   = means["H1"] + SD["H1"] * Z[,"H1"],
    pvo2   = means["H2"] + SD["H2"] * Z[,"H2"],
    zscore = means["H4"] + SD["H4"] * Z[,"H4"],
    ntprob = means["H5"] + SD["H5"] * Z[,"H5"],
    lavi   = means["H6"] + SD["H6"] * Z[,"H6"],
    trt    = trt
  )
  p <- if (trt==1) pmin(pmax(pC + Delta["H3"], 1e-8), 1-1e-8) else pC
  dat$imp <- as.integer(Z[,"H3"] <= qnorm(p))
  dat
}
p_two_or_one <- function(tstat, sided=c("two","one"), delta_sign=1) {
  sided <- match.arg(sided)
  if (sided=="two") 2*pnorm(-abs(tstat)) else pnorm(-delta_sign*tstat)
}
pvals_from_data <- function(dt, Delta) {
  pv <- setNames(rep(NA_real_,6), endpts)
  pv["H1"] <- p_two_or_one(t.test(kccq ~ trt, data=dt, var.equal=FALSE)$statistic, sided=sided, delta_sign=sign(Delta["H1"]))
  pv["H2"] <- p_two_or_one(t.test(pvo2 ~ trt, data=dt, var.equal=FALSE)$statistic, sided=sided, delta_sign=sign(Delta["H2"]))
  pv["H3"] <- suppressWarnings(chisq.test(table(dt$trt, dt$imp), correct=FALSE)$p.value)
  pv["H4"] <- p_two_or_one(t.test(zscore ~ trt, data=dt, var.equal=FALSE)$statistic, sided=sided, delta_sign=sign(Delta["H4"]))
  pv["H5"] <- p_two_or_one(t.test(ntprob ~ trt, data=dt, var.equal=FALSE)$statistic, sided=sided, delta_sign=sign(Delta["H5"]))
  pv["H6"] <- p_two_or_one(t.test(lavi   ~ trt, data=dt, var.equal=FALSE)$statistic, sided=sided, delta_sign=sign(Delta["H6"]))
  pv
}

## ===== Scenarios 1–8 =====
H5_fix <- list(diff=-1.0, sd=1.0)
H6_fix <- list(diff=-3.5, sd=10.0)

scenarios <- list(
  "Scenario 1" = list(H1=list(diff=5.00,  sd=15), H2=list(diff=1.00,  sd=3),
                      H3=0.20,               H4=list(diff=0.33, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 2" = list(H1=list(diff=3.75,  sd=15), H2=list(diff=0.75, sd=3),
                      H3=0.20,               H4=list(diff=0.33, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 3" = list(H1=list(diff=2.70,  sd=15), H2=list(diff=0.54, sd=3),
                      H3=0.20,               H4=list(diff=0.33, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 4" = list(H1=list(diff=1.50,  sd=15), H2=list(diff=0.30, sd=3),
                      H3=0.20,               H4=list(diff=0.33, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 5" = list(H1=list(diff=5.00,  sd=15), H2=list(diff=1.00,  sd=3),
                      H3=0.15,               H4=list(diff=0.20, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 6" = list(H1=list(diff=3.75,  sd=15), H2=list(diff=0.75, sd=3),
                      H3=0.15,               H4=list(diff=0.20, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 7" = list(H1=list(diff=2.70,  sd=15), H2=list(diff=0.54, sd=3),
                      H3=0.15,               H4=list(diff=0.20, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 8" = list(H1=list(diff=1.50,  sd=15), H2=list(diff=0.30, sd=3),
                      H3=0.15,               H4=list(diff=0.20, sd=1), H5=H5_fix, H6=H6_fix)
)

## ===== Sim with shared datasets per scenario =====
simulate_designs_for_scenario <- function(sc) {
  Delta <- c(H1=sc$H1$diff, H2=sc$H2$diff, H3=sc$H3, H4=sc$H4$diff, H5=sc$H5$diff, H6=sc$H6$diff)
  SD    <- c(H1=sc$H1$sd,   H2=sc$H2$sd,                 H4=sc$H4$sd,   H5=sc$H5$sd,   H6=sc$H6$sd)

  p_list <- vector("list", nsim)
  for (b in seq_len(nsim)) {
    trt <- gen_arm(1, n_per_arm, Sigma, Delta, SD, pC)
    ctl <- gen_arm(0, n_per_arm, Sigma, Delta, SD, pC)
    dt  <- rbind(trt, ctl)
    p_list[[b]] <- pvals_from_data(dt, Delta)
  }

  simulate_with_p <- function(label, w_init, Gmat, mode=c("generic","andgate")) {
    mode <- match.arg(mode)
    tested_acc <- matrix(0L, nsim, 6, dimnames=list(NULL,endpts))
    reject_acc <- matrix(0L, nsim, 6, dimnames=list(NULL,endpts))
    for (b in seq_len(nsim)) {
      p <- p_list[[b]]
      out <- if (mode=="andgate") run_andgate_H6(p, w_init, Gmat, alpha_tot)
             else                  run_graph      (p, w_init, Gmat, alpha_tot)
      tested_acc[b, ] <- as.integer(out$tested)
      reject_acc[b, ] <- as.integer(out$rejected)
    }
    tibble(endpoint=endpts,
           prob_tested=colMeans(tested_acc),
           power=colMeans(reject_acc),
           design=label)
  }

  bind_rows(
    simulate_with_p("D1", w_D1, G13, "generic"),
    simulate_with_p("D2", w_D2, G13, "generic"),
    simulate_with_p("D3", w_D3, G13, "generic"),
    simulate_with_p("D4", w_D4, G4,  "andgate"),
    simulate_with_p("D5", w_D5, G5,  "generic"),
    simulate_with_p("D6", w_D6, G6,  "andgate")
  )
}

## ===== Run all scenarios and plot (dynamic y-axis per figure) =====
for (sc_name in names(scenarios)) {
  res <- simulate_designs_for_scenario(scenarios[[sc_name]])

  ## Probability of being tested: ONLY H3–H6
  res_prob <- res %>%
    filter(endpoint %in% paste0("H",3:6)) %>%
    mutate(endpoint=factor(endpoint, levels=paste0("H",3:6)))
  ylims_prob <- axis_limits(max(res_prob$prob_tested, na.rm=TRUE))

  p_prob <- ggplot(res_prob, aes(endpoint, prob_tested, fill=design)) +
    geom_col(position=position_dodge(width=0.82), width=0.72) +
    labs(title=paste("Probability of Being Tested —", sc_name),
         x="Endpoint", y="Probability tested") +
    scale_y_continuous(limits=ylims_prob,
                       breaks = breaks_for_limits(ylims_prob),
                       labels = scales::percent_format(accuracy=1),
                       expand = expansion(mult=c(0,0))) +
    theme_minimal(base_size=12) +
    scale_fill_manual(values=cols)
  print(p_prob)

  ## Power: H1–H6
  ylims_pow <- axis_limits(max(res$power, na.rm=TRUE))

  p_pow <- ggplot(res %>% mutate(endpoint=fct_inorder(endpoint)),
                  aes(endpoint, power, fill=design)) +
    geom_col(position=position_dodge(width=0.82), width=0.72) +
    labs(title=paste("Power by Endpoint —", sc_name),
         x="Endpoint", y="Power") +
    scale_y_continuous(limits=ylims_pow,
                       breaks = breaks_for_limits(ylims_pow),
                       labels = scales::percent_format(accuracy=1),
                       expand = expansion(mult=c(0,0))) +
    theme_minimal(base_size=12) +
    scale_fill_manual(values=cols)
  print(p_pow)

  cat("\n===== ", sc_name, " — Table =====\n", sep="")
  print(res %>% arrange(endpoint, design), n=Inf)
}

## 
## ===== Scenario 1 — Table =====
## # A tibble: 36 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1             1     0.901 D1    
##  2 H1             1     0.930 D2    
##  3 H1             1     0.920 D3    
##  4 H1             1     0.937 D4    
##  5 H1             1     0.938 D5    
##  6 H1             1     0.939 D6    
##  7 H2             1     0.904 D1    
##  8 H2             1     0.830 D2    
##  9 H2             1     0.874 D3    
## 10 H2             1     0.938 D4    
## 11 H2             1     0.925 D5    
## 12 H2             1     0.933 D6    
## 13 H3             0.988 0.980 D1    
## 14 H3             0.985 0.978 D2    
## 15 H3             0.988 0.981 D3    
## 16 H3             0.937 0.929 D4    
## 17 H3             0.985 0.977 D5    
## 18 H3             0.939 0.932 D6    
## 19 H4             0.980 0.905 D1    
## 20 H4             0.978 0.908 D2    
## 21 H4             0.981 0.908 D3    
## 22 H4             0.938 0.903 D4    
## 23 H4             0.977 0.896 D5    
## 24 H4             0.933 0.897 D6    
## 25 H5             0.905 0.905 D1    
## 26 H5             0.908 0.908 D2    
## 27 H5             0.908 0.908 D3    
## 28 H5             0.903 0.903 D4    
## 29 H5             0.896 0.896 D5    
## 30 H5             0.932 0.932 D6    
## 31 H6             0.905 0.862 D1    
## 32 H6             0.908 0.862 D2    
## 33 H6             0.908 0.864 D3    
## 34 H6             0.851 0.813 D4    
## 35 H6             0.896 0.851 D5    
## 36 H6             0.850 0.812 D6

## 
## ===== Scenario 2 — Table =====
## # A tibble: 36 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1             1     0.659 D1    
##  2 H1             1     0.724 D2    
##  3 H1             1     0.699 D3    
##  4 H1             1     0.719 D4    
##  5 H1             1     0.735 D5    
##  6 H1             1     0.738 D6    
##  7 H2             1     0.664 D1    
##  8 H2             1     0.536 D2    
##  9 H2             1     0.604 D3    
## 10 H2             1     0.723 D4    
## 11 H2             1     0.685 D5    
## 12 H2             1     0.692 D6    
## 13 H3             0.874 0.864 D1    
## 14 H3             0.862 0.853 D2    
## 15 H3             0.870 0.861 D3    
## 16 H3             0.719 0.710 D4    
## 17 H3             0.862 0.849 D5    
## 18 H3             0.738 0.730 D6    
## 19 H4             0.864 0.801 D1    
## 20 H4             0.853 0.801 D2    
## 21 H4             0.861 0.803 D3    
## 22 H4             0.723 0.717 D4    
## 23 H4             0.849 0.757 D5    
## 24 H4             0.692 0.685 D6    
## 25 H5             0.801 0.801 D1    
## 26 H5             0.801 0.801 D2    
## 27 H5             0.803 0.803 D3    
## 28 H5             0.717 0.717 D4    
## 29 H5             0.757 0.757 D5    
## 30 H5             0.730 0.730 D6    
## 31 H6             0.801 0.750 D1    
## 32 H6             0.801 0.742 D2    
## 33 H6             0.803 0.748 D3    
## 34 H6             0.559 0.524 D4    
## 35 H6             0.757 0.698 D5    
## 36 H6             0.560 0.525 D6

## 
## ===== Scenario 3 — Table =====
## # A tibble: 36 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1             1     0.366 D1    
##  2 H1             1     0.440 D2    
##  3 H1             1     0.411 D3    
##  4 H1             1     0.407 D4    
##  5 H1             1     0.447 D5    
##  6 H1             1     0.450 D6    
##  7 H2             1     0.370 D1    
##  8 H2             1     0.253 D2    
##  9 H2             1     0.312 D3    
## 10 H2             1     0.410 D4    
## 11 H2             1     0.353 D5    
## 12 H2             1     0.354 D6    
## 13 H3             0.586 0.576 D1    
## 14 H3             0.570 0.560 D2    
## 15 H3             0.582 0.572 D3    
## 16 H3             0.407 0.398 D4    
## 17 H3             0.570 0.554 D5    
## 18 H3             0.450 0.443 D6    
## 19 H4             0.576 0.544 D1    
## 20 H4             0.560 0.532 D2    
## 21 H4             0.572 0.542 D3    
## 22 H4             0.410 0.410 D4    
## 23 H4             0.554 0.499 D5    
## 24 H4             0.354 0.354 D6    
## 25 H5             0.544 0.544 D1    
## 26 H5             0.532 0.532 D2    
## 27 H5             0.542 0.542 D3    
## 28 H5             0.410 0.410 D4    
## 29 H5             0.499 0.499 D5    
## 30 H5             0.443 0.443 D6    
## 31 H6             0.544 0.491 D1    
## 32 H6             0.532 0.475 D2    
## 33 H6             0.542 0.486 D3    
## 34 H6             0.227 0.206 D4    
## 35 H6             0.499 0.436 D5    
## 36 H6             0.231 0.210 D6

## 
## ===== Scenario 4 — Table =====
## # A tibble: 36 × 4
##    endpoint prob_tested  power design
##    <chr>          <dbl>  <dbl> <chr> 
##  1 H1            1      0.124  D1    
##  2 H1            1      0.166  D2    
##  3 H1            1      0.148  D3    
##  4 H1            1      0.132  D4    
##  5 H1            1      0.167  D5    
##  6 H1            1      0.168  D6    
##  7 H2            1      0.120  D1    
##  8 H2            1      0.0647 D2    
##  9 H2            1      0.0914 D3    
## 10 H2            1      0.128  D4    
## 11 H2            1      0.0874 D5    
## 12 H2            1      0.0876 D6    
## 13 H3            0.224  0.215  D1    
## 14 H3            0.217  0.210  D2    
## 15 H3            0.222  0.215  D3    
## 16 H3            0.132  0.125  D4    
## 17 H3            0.217  0.204  D5    
## 18 H3            0.168  0.162  D6    
## 19 H4            0.215  0.205  D1    
## 20 H4            0.210  0.200  D2    
## 21 H4            0.215  0.205  D3    
## 22 H4            0.128  0.128  D4    
## 23 H4            0.204  0.184  D5    
## 24 H4            0.0876 0.0872 D6    
## 25 H5            0.205  0.205  D1    
## 26 H5            0.200  0.200  D2    
## 27 H5            0.205  0.205  D3    
## 28 H5            0.128  0.128  D4    
## 29 H5            0.184  0.184  D5    
## 30 H5            0.162  0.162  D6    
## 31 H6            0.205  0.173  D1    
## 32 H6            0.200  0.170  D2    
## 33 H6            0.205  0.172  D3    
## 34 H6            0.0354 0.0303 D4    
## 35 H6            0.184  0.148  D5    
## 36 H6            0.0373 0.0324 D6

## 
## ===== Scenario 5 — Table =====
## # A tibble: 36 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1             1     0.903 D1    
##  2 H1             1     0.929 D2    
##  3 H1             1     0.920 D3    
##  4 H1             1     0.917 D4    
##  5 H1             1     0.931 D5    
##  6 H1             1     0.932 D6    
##  7 H2             1     0.900 D1    
##  8 H2             1     0.828 D2    
##  9 H2             1     0.869 D3    
## 10 H2             1     0.930 D4    
## 11 H2             1     0.915 D5    
## 12 H2             1     0.919 D6    
## 13 H3             0.987 0.887 D1    
## 14 H3             0.984 0.884 D2    
## 15 H3             0.986 0.886 D3    
## 16 H3             0.917 0.793 D4    
## 17 H3             0.984 0.880 D5    
## 18 H3             0.932 0.826 D6    
## 19 H4             0.887 0.500 D1    
## 20 H4             0.884 0.492 D2    
## 21 H4             0.886 0.497 D3    
## 22 H4             0.930 0.538 D4    
## 23 H4             0.880 0.493 D5    
## 24 H4             0.919 0.524 D6    
## 25 H5             0.500 0.500 D1    
## 26 H5             0.492 0.492 D2    
## 27 H5             0.497 0.497 D3    
## 28 H5             0.538 0.538 D4    
## 29 H5             0.493 0.493 D5    
## 30 H5             0.826 0.826 D6    
## 31 H6             0.500 0.465 D1    
## 32 H6             0.492 0.456 D2    
## 33 H6             0.497 0.462 D3    
## 34 H6             0.470 0.438 D4    
## 35 H6             0.493 0.458 D5    
## 36 H6             0.474 0.442 D6

## 
## ===== Scenario 6 — Table =====
## # A tibble: 36 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1             1     0.660 D1    
##  2 H1             1     0.723 D2    
##  3 H1             1     0.699 D3    
##  4 H1             1     0.699 D4    
##  5 H1             1     0.728 D5    
##  6 H1             1     0.731 D6    
##  7 H2             1     0.661 D1    
##  8 H2             1     0.522 D2    
##  9 H2             1     0.596 D3    
## 10 H2             1     0.711 D4    
## 11 H2             1     0.659 D5    
## 12 H2             1     0.667 D6    
## 13 H3             0.866 0.751 D1    
## 14 H3             0.849 0.737 D2    
## 15 H3             0.859 0.745 D3    
## 16 H3             0.699 0.584 D4    
## 17 H3             0.849 0.718 D5    
## 18 H3             0.731 0.627 D6    
## 19 H4             0.751 0.435 D1    
## 20 H4             0.737 0.414 D2    
## 21 H4             0.745 0.424 D3    
## 22 H4             0.711 0.489 D4    
## 23 H4             0.718 0.406 D5    
## 24 H4             0.667 0.450 D6    
## 25 H5             0.435 0.435 D1    
## 26 H5             0.414 0.414 D2    
## 27 H5             0.424 0.424 D3    
## 28 H5             0.489 0.489 D4    
## 29 H5             0.406 0.406 D5    
## 30 H5             0.627 0.627 D6    
## 31 H6             0.435 0.399 D1    
## 32 H6             0.414 0.375 D2    
## 33 H6             0.424 0.385 D3    
## 34 H6             0.352 0.327 D4    
## 35 H6             0.406 0.368 D5    
## 36 H6             0.355 0.331 D6

## 
## ===== Scenario 7 — Table =====
## # A tibble: 36 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1             1     0.367 D1    
##  2 H1             1     0.438 D2    
##  3 H1             1     0.408 D3    
##  4 H1             1     0.401 D4    
##  5 H1             1     0.443 D5    
##  6 H1             1     0.446 D6    
##  7 H2             1     0.373 D1    
##  8 H2             1     0.257 D2    
##  9 H2             1     0.317 D3    
## 10 H2             1     0.402 D4    
## 11 H2             1     0.338 D5    
## 12 H2             1     0.337 D6    
## 13 H3             0.590 0.486 D1    
## 14 H3             0.570 0.470 D2    
## 15 H3             0.583 0.480 D3    
## 16 H3             0.401 0.315 D4    
## 17 H3             0.570 0.442 D5    
## 18 H3             0.446 0.367 D6    
## 19 H4             0.486 0.317 D1    
## 20 H4             0.470 0.290 D2    
## 21 H4             0.480 0.301 D3    
## 22 H4             0.402 0.337 D4    
## 23 H4             0.442 0.259 D5    
## 24 H4             0.337 0.278 D6    
## 25 H5             0.317 0.317 D1    
## 26 H5             0.290 0.290 D2    
## 27 H5             0.301 0.301 D3    
## 28 H5             0.337 0.337 D4    
## 29 H5             0.259 0.259 D5    
## 30 H5             0.367 0.367 D6    
## 31 H6             0.317 0.279 D1    
## 32 H6             0.290 0.248 D2    
## 33 H6             0.301 0.264 D3    
## 34 H6             0.163 0.149 D4    
## 35 H6             0.259 0.217 D5    
## 36 H6             0.167 0.154 D6

## 
## ===== Scenario 8 — Table =====
## # A tibble: 36 × 4
##    endpoint prob_tested  power design
##    <chr>          <dbl>  <dbl> <chr> 
##  1 H1            1      0.124  D1    
##  2 H1            1      0.165  D2    
##  3 H1            1      0.149  D3    
##  4 H1            1      0.133  D4    
##  5 H1            1      0.166  D5    
##  6 H1            1      0.167  D6    
##  7 H2            1      0.120  D1    
##  8 H2            1      0.0662 D2    
##  9 H2            1      0.0949 D3    
## 10 H2            1      0.126  D4    
## 11 H2            1      0.0852 D5    
## 12 H2            1      0.0827 D6    
## 13 H3            0.224  0.168  D1    
## 14 H3            0.215  0.160  D2    
## 15 H3            0.224  0.166  D3    
## 16 H3            0.133  0.0906 D4    
## 17 H3            0.215  0.139  D5    
## 18 H3            0.167  0.124  D6    
## 19 H4            0.168  0.125  D1    
## 20 H4            0.160  0.107  D2    
## 21 H4            0.166  0.118  D3    
## 22 H4            0.126  0.121  D4    
## 23 H4            0.139  0.0847 D5    
## 24 H4            0.0827 0.079  D6    
## 25 H5            0.125  0.125  D1    
## 26 H5            0.107  0.107  D2    
## 27 H5            0.118  0.118  D3    
## 28 H5            0.121  0.121  D4    
## 29 H5            0.0847 0.0847 D5    
## 30 H5            0.124  0.124  D6    
## 31 H6            0.125  0.100  D1    
## 32 H6            0.107  0.0843 D2    
## 33 H6            0.118  0.0916 D3    
## 34 H6            0.0275 0.0233 D4    
## 35 H6            0.0847 0.0606 D5    
## 36 H6            0.0293 0.0251 D6