title: “TPSS603_HW02_template” output: pdf_document - —
1. Create a potential randomization for a CR experiment that has 3 treatments and 5 replications per treatment.
#create a randomization for a CR design
#design.crd() #function from agricolae that will do the randomization
trt <- c("trt1", "trt2", "trt3") # Only 3 treatments
r <- c(5, 5, 5) # 5 replications for each treatment
# Create randomization for CR design
design.crd(trt, r)
## $parameters
## $parameters$design
## [1] "crd"
##
## $parameters$trt
## [1] "trt1" "trt2" "trt3"
##
## $parameters$r
## [1] 5 5 5
##
## $parameters$serie
## [1] 2
##
## $parameters$seed
## [1] -6067656
##
## $parameters$kinds
## [1] "Super-Duper"
##
## $parameters[[7]]
## [1] TRUE
##
##
## $book
## plots r trt
## 1 101 1 trt3
## 2 102 2 trt3
## 3 103 1 trt1
## 4 104 1 trt2
## 5 105 2 trt1
## 6 106 2 trt2
## 7 107 3 trt1
## 8 108 3 trt3
## 9 109 4 trt3
## 10 110 5 trt3
## 11 111 3 trt2
## 12 112 4 trt1
## 13 113 4 trt2
## 14 114 5 trt1
## 15 115 5 trt2
2. What is the Null Hypothesis? Answer: A hypothesis where there is no difference between the variables being tested. All fertilizer treatments have the same effect on plant height. H₀: μ₁ = μ₂ = μ₃ = … = μₜ
3. What is the Alternative hypothesis? Answer: A hypothesis where there is a difference or effect between the variables being tested. At least one fertilizer treatment has a different effect on plant height. Hₐ: At least one μᵢ ≠ μⱼ (where i ≠ j) or Hₐ: Not all μᵢ are equal
4. What is the Linear additive model? # this is the abstraction of the generalized model Answer: A linear additive model is where the variable being measured is explained by adding together different effects. This model says each plant height measurement equals the overall average plant height, plus the fertilizer treatment effect, plus random experimental error. Yᵢₖ = μ + αₖ + εᵢₖ μ = grand mean aₖ = an effect of treatment for group k εᵢₖ = a person i’s residual within group k
#this is where you use the data from the file attached
setwd("/Users/ashlyngodbehere/Desktop/R/R_class")
read.csv("~/Desktop/R/R_class/CR_design.csv")
## Trt Plant_height
## 1 Fert1 46
## 2 Fert1 42
## 3 Fert1 44
## 4 Fert1 43
## 5 Fert1 45
## 6 Fert1 49
## 7 Fert2 15
## 8 Fert2 16
## 9 Fert2 9
## 10 Fert2 10
## 11 Fert2 11
## 12 Fert2 14
## 13 Fert3 26
## 14 Fert3 24
## 15 Fert3 29
## 16 Fert3 28
## 17 Fert3 27
## 18 Fert3 31
cr=read.csv("CR_design.csv")
head(cr,6) #look at the first 6 lines of the data
## Trt Plant_height
## 1 Fert1 46
## 2 Fert1 42
## 3 Fert1 44
## 4 Fert1 43
## 5 Fert1 45
## 6 Fert1 49
#create the anova model for the design using the data provided
mod <- aov(Plant_height ~ Trt, data=cr) #create a linear model for the data
5. What are the treatments? Answer: The treatments are the fertilizers: Fert1, Fert2, and Fert3.
6. How many factors are being studied? Answer: Only one, fertilizer type.
7. ANOVA table for the experiment.
summary(mod) #Print the summary of the anova table from the model abve
## Df Sum Sq Mean Sq F value Pr(>F)
## Trt 2 3141.8 1570.9 231.4 5.33e-12 ***
## Residuals 15 101.8 6.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
8. Is the normalilty of residuals assumption true
(qqplot)? Answer:
True. The Q-Q plot shows points following the diagonal line with some
minor spots not on the line.
par(mfrow=c(2,2)) #set the plot
plot(mod) #use the plot funciton to make the qq plot
9. Do we reject or fail to reject the null
hypothesis? Answer:
We reject the null hypothesis because p-value (5.33e-12) < 0.05. This
means the fertilizers have significantly different effects on plant
height.
10. Construct a contrast between two treatments and interpret the result. Answer: The contrast between Fert1 and Fert2 shows that Fert1 produces plants that are 32.33 cm taller on average(p < 0.05), this means Fert1 is significantly better than Fert2 for plant growth.
mod # look at linear model
## Call:
## aov(formula = Plant_height ~ Trt, data = cr)
##
## Terms:
## Trt Residuals
## Sum of Squares 3141.7778 101.8333
## Deg. of Freedom 2 15
##
## Residual standard error: 2.60555
## Estimated effects may be unbalanced
summary(mod) # look at the summary of the model
## Df Sum Sq Mean Sq F value Pr(>F)
## Trt 2 3141.8 1570.9 231.4 5.33e-12 ***
## Residuals 15 101.8 6.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.contrast(mod,"Trt", c(1,-1,0)) # create the contrast between two treatments
## Estimate Std. Error t value Pr(>|t|)
## Trt c=( 1 -1 0 ) 32.33333 1.504315 21.49373 1.108421e-12
fit.contrast(mod,"Trt", c(1,0,-1))
## Estimate Std. Error t value Pr(>|t|)
## Trt c=( 1 0 -1 ) 17.33333 1.504315 11.52241 7.515129e-09
fit.contrast(mod,"Trt", c(0,1,-1))
## Estimate Std. Error t value Pr(>|t|)
## Trt c=( 0 1 -1 ) -15 1.504315 -9.971317 5.189285e-08
Answer:
Construct all pairwise comparisons using an HSD or LSD, create a plot, and interpret the results
# Tukey's HSD (Honest Significant Difference) - more conservative
tukey_results <- TukeyHSD(mod)
print(tukey_results)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Plant_height ~ Trt, data = cr)
##
## $Trt
## diff lwr upr p adj
## Fert2-Fert1 -32.33333 -36.24075 -28.42592 0e+00
## Fert3-Fert1 -17.33333 -21.24075 -13.42592 0e+00
## Fert3-Fert2 15.00000 11.09259 18.90741 1e-07
# Fisher's LSD (Least Significant Difference) - less conservative
library(agricolae)
lsd_results <- LSD.test(mod, "Trt", p.adj = "none")
print(lsd_results)
## $statistics
## MSerror Df Mean CV t.value LSD
## 6.788889 15 28.27778 9.214124 2.13145 3.206371
##
## $parameters
## test p.ajusted name.t ntr alpha
## Fisher-LSD none Trt 3 0.05
##
## $means
## Plant_height std r se LCL UCL Min Max Q25 Q50
## Fert1 44.83333 2.483277 6 1.063711 42.56609 47.10058 42 49 43.25 44.5
## Fert2 12.50000 2.880972 6 1.063711 10.23275 14.76725 9 16 10.25 12.5
## Fert3 27.50000 2.428992 6 1.063711 25.23275 29.76725 24 31 26.25 27.5
## Q75
## Fert1 45.75
## Fert2 14.75
## Fert3 28.75
##
## $comparison
## NULL
##
## $groups
## Plant_height groups
## Fert1 44.83333 a
## Fert3 27.50000 b
## Fert2 12.50000 c
##
## attr(,"class")
## [1] "group"
plot(tukey_results)
plot(lsd_results)
Answer: All three fertilizers are significantly
different. Fert1 gave the tallest plants (44.83 cm), Fert3 was middle
(27.50 cm), and Fert2 gave the shortest plants (12.50 cm). All
comparisons had p < 0.001, so each fertilizer works differently.
Fert1 is clearly the best choice.
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.