Intro

In this project, my goal is to generate a csv file with the chess player information:

I have placed the given text file in my github repo. Exploring it below:

data_src <- "https://raw.githubusercontent.com/cdube89128/DATA-607/refs/heads/main/project-01/tournamentinfo.txt"

# Read file lines
lines <- readLines(data_src)
## Warning in readLines(data_src): incomplete final line found on
## 'https://raw.githubusercontent.com/cdube89128/DATA-607/refs/heads/main/project-01/tournamentinfo.txt'

It looks like there was a warning from reading in the file, but my rudimentary Google suggests that this is due to the lack of a newline character at the end of my text file, so I’m continuing onward as normal.

head(lines, 10)
##  [1] "-----------------------------------------------------------------------------------------" 
##  [2] " Pair | Player Name                     |Total|Round|Round|Round|Round|Round|Round|Round| "
##  [3] " Num  | USCF ID / Rtg (Pre->Post)       | Pts |  1  |  2  |  3  |  4  |  5  |  6  |  7  | "
##  [4] "-----------------------------------------------------------------------------------------" 
##  [5] "    1 | GARY HUA                        |6.0  |W  39|W  21|W  18|W  14|W   7|D  12|D   4|" 
##  [6] "   ON | 15445895 / R: 1794   ->1817     |N:2  |W    |B    |W    |B    |W    |B    |W    |" 
##  [7] "-----------------------------------------------------------------------------------------" 
##  [8] "    2 | DAKSHESH DARURI                 |6.0  |W  63|W  58|L   4|W  17|W  16|W  20|W   7|" 
##  [9] "   MI | 14598900 / R: 1553   ->1663     |N:2  |B    |W    |B    |W    |B    |W    |B    |" 
## [10] "-----------------------------------------------------------------------------------------"

There are 4 lines of header/misc text. Each entry takes up two lines, and different pieces of information that are needed are distinguished in different ways within this text file. I.e. there is nothing perfectly standard like comma delimiters here.

I am going to clean up these lines to get the data for each entry consolidated together.

# Remove header lines in file
lines <- lines[-c(1:4)]

# Each entry is 2 lines, followed by a divider line (---)

# Remove those divider lines
lines <- lines[!grepl("^-", lines)]

# Checking in again
head(lines, 10)
##  [1] "    1 | GARY HUA                        |6.0  |W  39|W  21|W  18|W  14|W   7|D  12|D   4|"
##  [2] "   ON | 15445895 / R: 1794   ->1817     |N:2  |W    |B    |W    |B    |W    |B    |W    |"
##  [3] "    2 | DAKSHESH DARURI                 |6.0  |W  63|W  58|L   4|W  17|W  16|W  20|W   7|"
##  [4] "   MI | 14598900 / R: 1553   ->1663     |N:2  |B    |W    |B    |W    |B    |W    |B    |"
##  [5] "    3 | ADITYA BAJAJ                    |6.0  |L   8|W  61|W  25|W  21|W  11|W  13|W  12|"
##  [6] "   MI | 14959604 / R: 1384   ->1640     |N:2  |W    |B    |W    |B    |W    |B    |W    |"
##  [7] "    4 | PATRICK H SCHILLING             |5.5  |W  23|D  28|W   2|W  26|D   5|W  19|D   1|"
##  [8] "   MI | 12616049 / R: 1716   ->1744     |N:2  |W    |B    |W    |B    |W    |B    |B    |"
##  [9] "    5 | HANSHI ZUO                      |5.5  |W  45|W  37|D  12|D  13|D   4|W  14|W  17|"
## [10] "   MI | 14601533 / R: 1655   ->1690     |N:2  |B    |W    |B    |W    |B    |W    |B    |"
# Group into chunks of 2 lines per player
player_lines <- split(lines, ceiling(seq_along(lines)/2))

# Combine each pair into one string
combined <- sapply(player_lines, paste, collapse = "")

# The whitespace is messy, cleaning that up
combined <- gsub("\\s+", " ", combined)   
combined <- trimws(combined)

# Checking in again
head(combined, 5)
##                                                                                                                           1 
##           "1 | GARY HUA |6.0 |W 39|W 21|W 18|W 14|W 7|D 12|D 4| ON | 15445895 / R: 1794 ->1817 |N:2 |W |B |W |B |W |B |W |" 
##                                                                                                                           2 
##    "2 | DAKSHESH DARURI |6.0 |W 63|W 58|L 4|W 17|W 16|W 20|W 7| MI | 14598900 / R: 1553 ->1663 |N:2 |B |W |B |W |B |W |B |" 
##                                                                                                                           3 
##      "3 | ADITYA BAJAJ |6.0 |L 8|W 61|W 25|W 21|W 11|W 13|W 12| MI | 14959604 / R: 1384 ->1640 |N:2 |W |B |W |B |W |B |W |" 
##                                                                                                                           4 
## "4 | PATRICK H SCHILLING |5.5 |W 23|D 28|W 2|W 26|D 5|W 19|D 1| MI | 12616049 / R: 1716 ->1744 |N:2 |W |B |W |B |W |B |B |" 
##                                                                                                                           5 
##        "5 | HANSHI ZUO |5.5 |W 45|W 37|D 12|D 13|D 4|W 14|W 17| MI | 14601533 / R: 1655 ->1690 |N:2 |B |W |B |W |B |W |B |"

The data looks much more easily parsable now. Next I will focus on pulling out the individual pieces of data per entry (e.g. Player’s Number, Player Name, Player’s Rating etc.)

# This looks more easily parsable. Almost all of the distinct values are separated by pipes (|).
split_data <- str_split(combined, "\\|")

# Checking in again
head(split_data, 2)
## [[1]]
##  [1] "1 "                          " GARY HUA "                 
##  [3] "6.0 "                        "W 39"                       
##  [5] "W 21"                        "W 18"                       
##  [7] "W 14"                        "W 7"                        
##  [9] "D 12"                        "D 4"                        
## [11] " ON "                        " 15445895 / R: 1794 ->1817 "
## [13] "N:2 "                        "W "                         
## [15] "B "                          "W "                         
## [17] "B "                          "W "                         
## [19] "B "                          "W "                         
## [21] ""                           
## 
## [[2]]
##  [1] "2 "                          " DAKSHESH DARURI "          
##  [3] "6.0 "                        "W 63"                       
##  [5] "W 58"                        "L 4"                        
##  [7] "W 17"                        "W 16"                       
##  [9] "W 20"                        "W 7"                        
## [11] " MI "                        " 14598900 / R: 1553 ->1663 "
## [13] "N:2 "                        "B "                         
## [15] "W "                          "B "                         
## [17] "W "                          "B "                         
## [19] "W "                          "B "                         
## [21] ""
class(split_data)
## [1] "list"
class(split_data[[1]])
## [1] "character"
# It looks like split_data is a list of character vectors
# Create a function to parse each entry
parse_player <- function(x) {
  x <- str_trim(x)   # trim whitespace because it was still slightly irregular

  tibble(
    Pair = as.numeric(x[1]),
    Name = x[2],
    Total = as.numeric(x[3]),
    Round_1 = as.numeric(str_extract(x[4], "\\d+")),
    Round_2 = as.numeric(str_extract(x[5], "\\d+")),
    Round_3 = as.numeric(str_extract(x[6], "\\d+")),
    Round_4 = as.numeric(str_extract(x[7], "\\d+")),
    Round_5 = as.numeric(str_extract(x[8], "\\d+")),
    Round_6 = as.numeric(str_extract(x[9], "\\d+")),
    Round_7 = as.numeric(str_extract(x[10], "\\d+")),
    State = x[11],
    #After this, more complicated parsing is needed
    ID = str_extract(x[12], "\\d+"),                          # get 1st group of digits
    Pre_Rating = as.numeric(str_extract(x[12], "(?<=R: )\\d+")),     # get group of digits after R:
    Post_Rating = as.numeric(str_extract(x[12], "(?<=->)\\d+"))      # get group of digits after ->
  )
}

# Apply my function to each element of split_data
# Bind the resulting rows together into a new dataframe
my_df <- bind_rows(lapply(split_data, parse_player))

# Checking in
head(my_df, 5)
## # A tibble: 5 × 14
##    Pair Name       Total Round_1 Round_2 Round_3 Round_4 Round_5 Round_6 Round_7
##   <dbl> <chr>      <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1     1 GARY HUA     6        39      21      18      14       7      12       4
## 2     2 DAKSHESH …   6        63      58       4      17      16      20       7
## 3     3 ADITYA BA…   6         8      61      25      21      11      13      12
## 4     4 PATRICK H…   5.5      23      28       2      26       5      19       1
## 5     5 HANSHI ZUO   5.5      45      37      12      13       4      14      17
## # ℹ 4 more variables: State <chr>, ID <chr>, Pre_Rating <dbl>,
## #   Post_Rating <dbl>

I have almost everything I wanted from this data now. Next I will calculate the average pre chess rating of opponents for each entry/player. (I was struggling to find a really clean way to do this, so I ultimately have opted to use another self-defined function to help the process.)

# Get the columns names for the rounds
round_cols <- paste0("Round_", 1:7) 

# Adding in the Average Pre Chess Rating of Opponents
my_df <- my_df %>%
  rowwise() %>%
  mutate(
    Avg_Opp_Rating = round(
      mean(
        sapply(c_across(all_of(round_cols)), function(opponent_pair) {
          if (!is.na(opponent_pair)) {
            my_df$Pre_Rating[my_df$Pair == opponent_pair]
          } else {
            NA_real_  # handling NAs from rounds without opponents
          }
        }),
        na.rm = TRUE  # ignore NAs in the mean calculation
      ),
      0  # round to 0 decimal places
    )
  ) %>%
  ungroup()

Lastly, I am selecting only the columns of information that I wanted from this data.

# Reduce this to only get the columns on interest
my_df <- my_df %>%
  select(Name, State, Total, Pre_Rating, Avg_Opp_Rating)

# Checking in
head(my_df, 5)
## # A tibble: 5 × 5
##   Name                State Total Pre_Rating Avg_Opp_Rating
##   <chr>               <chr> <dbl>      <dbl>          <dbl>
## 1 GARY HUA            ON      6         1794           1605
## 2 DAKSHESH DARURI     MI      6         1553           1469
## 3 ADITYA BAJAJ        MI      6         1384           1564
## 4 PATRICK H SCHILLING MI      5.5       1716           1574
## 5 HANSHI ZUO          MI      5.5       1655           1501

The cleaned data (that will go into the csv file) is prepared.

kable(my_df)
Name State Total Pre_Rating Avg_Opp_Rating
GARY HUA ON 6.0 1794 1605
DAKSHESH DARURI MI 6.0 1553 1469
ADITYA BAJAJ MI 6.0 1384 1564
PATRICK H SCHILLING MI 5.5 1716 1574
HANSHI ZUO MI 5.5 1655 1501
HANSEN SONG OH 5.0 1686 1519
GARY DEE SWATHELL MI 5.0 1649 1372
EZEKIEL HOUGHTON MI 5.0 1641 1468
STEFANO LEE ON 5.0 1411 1523
ANVIT RAO MI 5.0 1365 1554
CAMERON WILLIAM MC LEMAN MI 4.5 1712 1468
KENNETH J TACK MI 4.5 1663 1506
TORRANCE HENRY JR MI 4.5 1666 1498
BRADLEY SHAW MI 4.5 1610 1515
ZACHARY JAMES HOUGHTON MI 4.5 1220 1484
MIKE NIKITIN MI 4.0 1604 1386
RONALD GRZEGORCZYK MI 4.0 1629 1499
DAVID SUNDEEN MI 4.0 1600 1480
DIPANKAR ROY MI 4.0 1564 1426
JASON ZHENG MI 4.0 1595 1411
DINH DANG BUI ON 4.0 1563 1470
EUGENE L MCCLURE MI 4.0 1555 1300
ALAN BUI ON 4.0 1363 1214
MICHAEL R ALDRICH MI 4.0 1229 1357
LOREN SCHWIEBERT MI 3.5 1745 1363
MAX ZHU ON 3.5 1579 1507
GAURAV GIDWANI MI 3.5 1552 1222
SOFIA ADINA STANESCU-BELLU MI 3.5 1507 1522
CHIEDOZIE OKORIE MI 3.5 1602 1314
GEORGE AVERY JONES ON 3.5 1522 1144
RISHI SHETTY MI 3.5 1494 1260
JOSHUA PHILIP MATHEWS ON 3.5 1441 1379
JADE GE MI 3.5 1449 1277
MICHAEL JEFFERY THOMAS MI 3.5 1399 1375
JOSHUA DAVID LEE MI 3.5 1438 1150
SIDDHARTH JHA MI 3.5 1355 1388
AMIYATOSH PWNANANDAM MI 3.5 980 1385
BRIAN LIU MI 3.0 1423 1539
JOEL R HENDON MI 3.0 1436 1430
FOREST ZHANG MI 3.0 1348 1391
KYLE WILLIAM MURPHY MI 3.0 1403 1248
JARED GE MI 3.0 1332 1150
ROBERT GLEN VASEY MI 3.0 1283 1107
JUSTIN D SCHILLING MI 3.0 1199 1327
DEREK YAN MI 3.0 1242 1152
JACOB ALEXANDER LAVALLEY MI 3.0 377 1358
ERIC WRIGHT MI 2.5 1362 1392
DANIEL KHAIN MI 2.5 1382 1356
MICHAEL J MARTIN MI 2.5 1291 1286
SHIVAM JHA MI 2.5 1056 1296
TEJAS AYYAGARI MI 2.5 1011 1356
ETHAN GUO MI 2.5 935 1495
JOSE C YBARRA MI 2.0 1393 1345
LARRY HODGE MI 2.0 1270 1206
ALEX KONG MI 2.0 1186 1406
MARISA RICCI MI 2.0 1153 1414
MICHAEL LU MI 2.0 1092 1363
VIRAJ MOHILE MI 2.0 917 1391
SEAN M MC CORMICK MI 2.0 853 1319
JULIA SHEN MI 1.5 967 1330
JEZZEL FARKAS ON 1.5 955 1327
ASHWIN BALAJI MI 1.0 1530 1186
THOMAS JOSEPH HOSMER MI 1.0 1175 1350
BEN LI MI 1.0 1163 1263

It is time to create a csv of this information.

write.csv(my_df, "chess_tournament_player_info.csv", row.names = TRUE)

Conclusion

From the given text file, we now have a csv with each Player’s Name, Player’s State, Total Number of Points, Player’s Pre-Rating, and Average Pre Chess Rating of Opponents from this tournament