Work for questions below

Which of the following code would be correct to extract the bike sharing datasets in R?
bike1 <- read.delim("bike_sharing_data.txt")

bike2 <- read.csv("bike_sharing_data.csv")

bike3 <- read.table("bike_sharing_data.txt", sep="\t", header=TRUE)

bike4 <- read.table("bike_sharing_data.csv", sep=",", header=TRUE)

# all work
If you import the bike sharing dataset in R using the above selected coding approaches in Q4, what is data type of humidity perceived by R?
str(bike1)
## 'data.frame':    17379 obs. of  13 variables:
##  $ datetime  : chr  "1/1/2011 0:00" "1/1/2011 1:00" "1/1/2011 2:00" "1/1/2011 3:00" ...
##  $ season    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ holiday   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ workingday: int  0 0 0 0 0 0 0 0 0 0 ...
##  $ weather   : int  1 1 1 1 1 2 1 1 1 1 ...
##  $ temp      : num  9.84 9.02 9.02 9.84 9.84 ...
##  $ atemp     : num  14.4 13.6 13.6 14.4 14.4 ...
##  $ humidity  : chr  "81" "80" "80" "75" ...
##  $ windspeed : num  0 0 0 0 0 ...
##  $ casual    : int  3 8 5 3 0 0 2 1 1 8 ...
##  $ registered: int  13 32 27 10 1 1 0 2 7 6 ...
##  $ count     : int  16 40 32 13 1 1 2 3 8 14 ...
##  $ sources   : chr  "ad campaign" "www.yahoo.com" "www.google.fi" "AD campaign" ...
class(bike1$humidity)
## [1] "character"
What is the value of season in row 6251?
bike <- read.csv("bike_sharing_data.csv") 


bike$season[6251]
## [1] 4
How many observations have the season as winter?
table(bike$season)    # look at the count for "4" = "winter"
## 
##    1    2    3    4 
## 4242 4409 4496 4232
How many observations having “High” wind thread condition or above during winter or spring?
subset1 <- subset(bike, (windspeed >= 40) & (season %in% c(1,4)))

count(subset1)
##    n
## 1 46