Work for questions below
If you import the bike sharing dataset in R using the above selected
coding approaches in Q4, what is data type of humidity perceived by
R?
str(bike1)
## 'data.frame': 17379 obs. of 13 variables:
## $ datetime : chr "1/1/2011 0:00" "1/1/2011 1:00" "1/1/2011 2:00" "1/1/2011 3:00" ...
## $ season : int 1 1 1 1 1 1 1 1 1 1 ...
## $ holiday : int 0 0 0 0 0 0 0 0 0 0 ...
## $ workingday: int 0 0 0 0 0 0 0 0 0 0 ...
## $ weather : int 1 1 1 1 1 2 1 1 1 1 ...
## $ temp : num 9.84 9.02 9.02 9.84 9.84 ...
## $ atemp : num 14.4 13.6 13.6 14.4 14.4 ...
## $ humidity : chr "81" "80" "80" "75" ...
## $ windspeed : num 0 0 0 0 0 ...
## $ casual : int 3 8 5 3 0 0 2 1 1 8 ...
## $ registered: int 13 32 27 10 1 1 0 2 7 6 ...
## $ count : int 16 40 32 13 1 1 2 3 8 14 ...
## $ sources : chr "ad campaign" "www.yahoo.com" "www.google.fi" "AD campaign" ...
class(bike1$humidity)
## [1] "character"
What is the value of season in row 6251?
bike <- read.csv("bike_sharing_data.csv")
bike$season[6251]
## [1] 4
How many observations have the season as winter?
table(bike$season) # look at the count for "4" = "winter"
##
## 1 2 3 4
## 4242 4409 4496 4232
How many observations having “High” wind thread condition or above
during winter or spring?
subset1 <- subset(bike, (windspeed >= 40) & (season %in% c(1,4)))
count(subset1)
## n
## 1 46