knitr::opts_chunk$set(echo = FALSE, message = FALSE, warning = FALSE)
## 'data.frame':    12628 obs. of  6 variables:
##  $ date         : Date, format: "2017-12-03" "2017-12-03" ...
##  $ average_price: num  1.39 1.44 1.07 1.62 1.43 1.58 1.14 1.77 1.4 1.88 ...
##  $ total_volume : int  139970 3577 504933 10609 658939 38754 86646 1829 488588 21338 ...
##  $ type         : chr  "conventional" "organic" "conventional" "organic" ...
##  $ year         : int  2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 ...
##  $ geography    : chr  "Albany" "Albany" "Atlanta" "Atlanta" ...
##       date            average_price    total_volume         type          
##  Min.   :2017-12-03   Min.   :0.500   Min.   :    253   Length:12628      
##  1st Qu.:2018-08-19   1st Qu.:1.100   1st Qu.:  15733   Class :character  
##  Median :2019-06-12   Median :1.320   Median :  94806   Mode  :character  
##  Mean   :2019-06-02   Mean   :1.359   Mean   : 325259                     
##  3rd Qu.:2020-03-08   3rd Qu.:1.570   3rd Qu.: 430222                     
##  Max.   :2020-11-29   Max.   :2.780   Max.   :5660216                     
##       year       geography        
##  Min.   :2017   Length:12628      
##  1st Qu.:2018   Class :character  
##  Median :2019   Mode  :character  
##  Mean   :2019                     
##  3rd Qu.:2020                     
##  Max.   :2020
## # A tibble: 5 × 2
##   variable      n_missing
##   <chr>             <int>
## 1 average_price         0
## 2 total_volume          0
## 3 type                  0
## 4 geography             0
## 5 year                  0

## # A tibble: 10 × 2
##    geography            total_volume_2017
##    <chr>                            <int>
##  1 Los Angeles                   14107347
##  2 New York                       7593728
##  3 Houston                        6179920
##  4 Dallas/Ft. Worth               5850153
##  5 Phoenix/Tucson                 5454510
##  6 San Francisco                  4593061
##  7 Chicago                        4362418
##  8 Denver                         4127719
##  9 Baltimore                      3893551
## 10 Miami/Ft. Lauderdale           3194484

Customized Figure A — Average Price over Time

Customized Figure B — Price vs. Volume