#1 Variable The variable I’m using is Tree nuts. These are edible
seeds of specific trees. These nuts include almonds, cashews, walnuts,
pecans, and hazelnuts.
#2 Confidence Interval
url="https://pengdsci.github.io/STA321/ww02/w02-Protein_Supply_Quantity_Data.csv"
protein = read.csv(url, header = TRUE)
t.test(protein$Treenuts, conf.level = 0.95)
##
## One Sample t-test
##
## data: protein$Treenuts
## t = 11.228, df = 169, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.2008097 0.2864856
## sample estimates:
## mean of x
## 0.2436476
#3 Bootstrap Method
original.sample = na.omit(protein$Treenuts)
bt.sample.mean.vec = NULL
for(i in 1:1000){
ith.bt.sample = sample(x = original.sample,
size = length(original.sample),
replace = TRUE
)
bt.sample.mean.vec[i] = mean(ith.bt.sample)
}
quantile(bt.sample.mean.vec, c(0.025, 0.975))
## 2.5% 97.5%
## 0.2017903 0.2914604
#4 Bootstrap Sampling Distribution of Sample Mean
hist(bt.sample.mean.vec,
breaks = 20,
xlab = "Sample Means of Treenuts",
main = "Sampling Distribution of Treenut Means"
)

#5 Comparison between Confidence Intervals The t-test 95% confidence
interval for the treenut sample means was (.2008, .2865). The 95%
confidence interval for the boostrap method was (.2016, .2864). These
intervals are very similar to each other.
LS0tDQp0aXRsZTogJ1NUQTMyMTogV2VlayAjMDIgQXNzaWdubWVudCcNCmF1dGhvcjogJ0x1a2UgVm9sbScNCmRhdGU6ICIyMDI1LTA5LTA3Ig0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICB0b2NfZGVwdGg6IDQNCiAgICBmaWdfd2lkdGg6IDYNCiAgICBmaWdfaGVpZ2h0OiA0DQogICAgZmlnX2NhcHRpb246IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdG9jX2NvbGxhcHNlZDogeWVzDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgc21vb3RoX3Njcm9sbDogeWVzDQogICAgdGhlbWU6IGx1bWVuDQogIHBkZl9kb2N1bWVudDogDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZGVwdGg6IDQNCiAgICBmaWdfY2FwdGlvbjogeWVzDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgd29yZF9kb2N1bWVudDoNCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogJzQnDQotLS0NCg0KDQojMSBWYXJpYWJsZQ0KICBUaGUgdmFyaWFibGUgSSdtIHVzaW5nIGlzIFRyZWUgbnV0cy4gVGhlc2UgYXJlIGVkaWJsZSBzZWVkcyBvZiBzcGVjaWZpYyB0cmVlcy4gVGhlc2UgbnV0cyBpbmNsdWRlIGFsbW9uZHMsIGNhc2hld3MsIHdhbG51dHMsIHBlY2FucywgYW5kIGhhemVsbnV0cy4gDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCiMgY29kZSBjaHVuayBzcGVjaWZpZXMgd2hldGhlciB0aGUgUiBjb2RlLCB3YXJuaW5ncywgYW5kIG91dHB1dCANCiMgd2lsbCBiZSBpbmNsdWRlZCBpbiB0aGUgb3V0cHV0IGZpbGVzLg0KbGlicmFyeShrbml0cikNCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwgICAgICAgICAgICMgaW5jbHVkZSBjb2RlIGNodW5rIGluIHRoZSBvdXRwdXQgZmlsZQ0KICAgICAgICAgICAgICAgICAgICAgIHdhcm5pbmdzID0gRkFMU0UsICAgICAgICMgc29tZXRpbWVzLCB5b3UgY29kZSBtYXkgcHJvZHVjZSB3YXJuaW5nIG1lc3NhZ2VzLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgeW91IGNhbiBjaG9vc2UgdG8gaW5jbHVkZSB0aGUgd2FybmluZyBtZXNzYWdlcyBpbg0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgdGhlIG91dHB1dCBmaWxlLiANCiAgICAgICAgICAgICAgICAgICAgICByZXN1bHRzID0gVFJVRSAgICAgICAgICAjIHlvdSBjYW4gYWxzbyBkZWNpZGUgd2hldGhlciB0byBpbmNsdWRlIHRoZSBvdXRwdXQNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIGluIHRoZSBvdXRwdXQgZmlsZS4NCiAgICAgICAgICAgICAgICAgICAgICApICAgDQpgYGANCg0KIzIgQ29uZmlkZW5jZSBJbnRlcnZhbA0KYGBge3J9DQp1cmw9Imh0dHBzOi8vcGVuZ2RzY2kuZ2l0aHViLmlvL1NUQTMyMS93dzAyL3cwMi1Qcm90ZWluX1N1cHBseV9RdWFudGl0eV9EYXRhLmNzdiINCnByb3RlaW4gPSByZWFkLmNzdih1cmwsIGhlYWRlciA9IFRSVUUpDQp0LnRlc3QocHJvdGVpbiRUcmVlbnV0cywgY29uZi5sZXZlbCA9IDAuOTUpDQpgYGANCiANCiMzIEJvb3RzdHJhcCBNZXRob2QNCmBgYHtyfQ0KIG9yaWdpbmFsLnNhbXBsZSA9IG5hLm9taXQocHJvdGVpbiRUcmVlbnV0cykNCiANCiBidC5zYW1wbGUubWVhbi52ZWMgPSBOVUxMDQpmb3IoaSBpbiAxOjEwMDApew0KICBpdGguYnQuc2FtcGxlID0gc2FtcGxlKHggPSBvcmlnaW5hbC5zYW1wbGUsDQogICAgIHNpemUgPSBsZW5ndGgob3JpZ2luYWwuc2FtcGxlKSwNCiAgICAgIHJlcGxhY2UgPSBUUlVFDQogICkNCiAgICAgICBidC5zYW1wbGUubWVhbi52ZWNbaV0gPSBtZWFuKGl0aC5idC5zYW1wbGUpDQogIH0NCnF1YW50aWxlKGJ0LnNhbXBsZS5tZWFuLnZlYywgYygwLjAyNSwgMC45NzUpKQ0KYGBgDQoNCiM0IEJvb3RzdHJhcCBTYW1wbGluZyBEaXN0cmlidXRpb24gb2YgU2FtcGxlIE1lYW4NCmBgYHtyfQ0KaGlzdChidC5zYW1wbGUubWVhbi52ZWMsDQogICAgIGJyZWFrcyA9IDIwLA0KICAgICB4bGFiID0gIlNhbXBsZSBNZWFucyBvZiBUcmVlbnV0cyIsDQogICAgIG1haW4gPSAiU2FtcGxpbmcgRGlzdHJpYnV0aW9uIG9mIFRyZWVudXQgTWVhbnMiDQogICAgICkNCmBgYA0KDQojNSBDb21wYXJpc29uIGJldHdlZW4gQ29uZmlkZW5jZSBJbnRlcnZhbHMNCiAgVGhlIHQtdGVzdCA5NSUgY29uZmlkZW5jZSBpbnRlcnZhbCBmb3IgdGhlIHRyZWVudXQgc2FtcGxlIG1lYW5zIHdhcyAoLjIwMDgsIC4yODY1KS4gVGhlIDk1JSBjb25maWRlbmNlIGludGVydmFsIGZvciB0aGUgYm9vc3RyYXAgbWV0aG9kIHdhcyAoLjIwMTYsIC4yODY0KS4gVGhlc2UgaW50ZXJ2YWxzIGFyZSB2ZXJ5IHNpbWlsYXIgdG8gZWFjaCBvdGhlci4gIA0K