Install package and Library the package

library(datasets) 
library(dplyr) 
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(gtsummary)

Read the data table and summarise

data(DNase)
head(DNase)
##   Run       conc density
## 1   1 0.04882812   0.017
## 2   1 0.04882812   0.018
## 3   1 0.19531250   0.121
## 4   1 0.19531250   0.124
## 5   1 0.39062500   0.206
## 6   1 0.39062500   0.215
show(DNase)
##     Run        conc density
## 1     1  0.04882812   0.017
## 2     1  0.04882812   0.018
## 3     1  0.19531250   0.121
## 4     1  0.19531250   0.124
## 5     1  0.39062500   0.206
## 6     1  0.39062500   0.215
## 7     1  0.78125000   0.377
## 8     1  0.78125000   0.374
## 9     1  1.56250000   0.614
## 10    1  1.56250000   0.609
## 11    1  3.12500000   1.019
## 12    1  3.12500000   1.001
## 13    1  6.25000000   1.334
## 14    1  6.25000000   1.364
## 15    1 12.50000000   1.730
## 16    1 12.50000000   1.710
## 17    2  0.04882812   0.045
## 18    2  0.04882812   0.050
## 19    2  0.19531250   0.137
## 20    2  0.19531250   0.123
## 21    2  0.39062500   0.225
## 22    2  0.39062500   0.207
## 23    2  0.78125000   0.401
## 24    2  0.78125000   0.383
## 25    2  1.56250000   0.672
## 26    2  1.56250000   0.681
## 27    2  3.12500000   1.116
## 28    2  3.12500000   1.078
## 29    2  6.25000000   1.554
## 30    2  6.25000000   1.526
## 31    2 12.50000000   1.932
## 32    2 12.50000000   1.914
## 33    3  0.04882812   0.070
## 34    3  0.04882812   0.068
## 35    3  0.19531250   0.173
## 36    3  0.19531250   0.165
## 37    3  0.39062500   0.277
## 38    3  0.39062500   0.248
## 39    3  0.78125000   0.434
## 40    3  0.78125000   0.426
## 41    3  1.56250000   0.703
## 42    3  1.56250000   0.689
## 43    3  3.12500000   1.067
## 44    3  3.12500000   1.077
## 45    3  6.25000000   1.629
## 46    3  6.25000000   1.479
## 47    3 12.50000000   2.003
## 48    3 12.50000000   1.884
## 49    4  0.04882812   0.011
## 50    4  0.04882812   0.016
## 51    4  0.19531250   0.118
## 52    4  0.19531250   0.108
## 53    4  0.39062500   0.200
## 54    4  0.39062500   0.206
## 55    4  0.78125000   0.364
## 56    4  0.78125000   0.360
## 57    4  1.56250000   0.620
## 58    4  1.56250000   0.640
## 59    4  3.12500000   0.979
## 60    4  3.12500000   0.973
## 61    4  6.25000000   1.424
## 62    4  6.25000000   1.399
## 63    4 12.50000000   1.740
## 64    4 12.50000000   1.732
## 65    5  0.04882812   0.035
## 66    5  0.04882812   0.035
## 67    5  0.19531250   0.132
## 68    5  0.19531250   0.135
## 69    5  0.39062500   0.224
## 70    5  0.39062500   0.220
## 71    5  0.78125000   0.385
## 72    5  0.78125000   0.390
## 73    5  1.56250000   0.658
## 74    5  1.56250000   0.647
## 75    5  3.12500000   1.060
## 76    5  3.12500000   1.031
## 77    5  6.25000000   1.425
## 78    5  6.25000000   1.409
## 79    5 12.50000000   1.750
## 80    5 12.50000000   1.738
## 81    6  0.04882812   0.086
## 82    6  0.04882812   0.103
## 83    6  0.19531250   0.191
## 84    6  0.19531250   0.189
## 85    6  0.39062500   0.272
## 86    6  0.39062500   0.277
## 87    6  0.78125000   0.440
## 88    6  0.78125000   0.426
## 89    6  1.56250000   0.686
## 90    6  1.56250000   0.676
## 91    6  3.12500000   1.062
## 92    6  3.12500000   1.072
## 93    6  6.25000000   1.424
## 94    6  6.25000000   1.459
## 95    6 12.50000000   1.768
## 96    6 12.50000000   1.806
## 97    7  0.04882812   0.094
## 98    7  0.04882812   0.092
## 99    7  0.19531250   0.182
## 100   7  0.19531250   0.182
## 101   7  0.39062500   0.282
## 102   7  0.39062500   0.273
## 103   7  0.78125000   0.444
## 104   7  0.78125000   0.439
## 105   7  1.56250000   0.686
## 106   7  1.56250000   0.668
## 107   7  3.12500000   1.052
## 108   7  3.12500000   1.035
## 109   7  6.25000000   1.409
## 110   7  6.25000000   1.392
## 111   7 12.50000000   1.759
## 112   7 12.50000000   1.739
## 113   8  0.04882812   0.054
## 114   8  0.04882812   0.054
## 115   8  0.19531250   0.152
## 116   8  0.19531250   0.148
## 117   8  0.39062500   0.226
## 118   8  0.39062500   0.222
## 119   8  0.78125000   0.392
## 120   8  0.78125000   0.383
## 121   8  1.56250000   0.658
## 122   8  1.56250000   0.644
## 123   8  3.12500000   1.043
## 124   8  3.12500000   1.002
## 125   8  6.25000000   1.466
## 126   8  6.25000000   1.381
## 127   8 12.50000000   1.743
## 128   8 12.50000000   1.724
## 129   9  0.04882812   0.032
## 130   9  0.04882812   0.043
## 131   9  0.19531250   0.142
## 132   9  0.19531250   0.155
## 133   9  0.39062500   0.239
## 134   9  0.39062500   0.242
## 135   9  0.78125000   0.420
## 136   9  0.78125000   0.395
## 137   9  1.56250000   0.624
## 138   9  1.56250000   0.705
## 139   9  3.12500000   1.046
## 140   9  3.12500000   1.026
## 141   9  6.25000000   1.398
## 142   9  6.25000000   1.405
## 143   9 12.50000000   1.693
## 144   9 12.50000000   1.729
## 145  10  0.04882812   0.052
## 146  10  0.04882812   0.094
## 147  10  0.19531250   0.164
## 148  10  0.19531250   0.166
## 149  10  0.39062500   0.259
## 150  10  0.39062500   0.256
## 151  10  0.78125000   0.439
## 152  10  0.78125000   0.439
## 153  10  1.56250000   0.690
## 154  10  1.56250000   0.701
## 155  10  3.12500000   1.042
## 156  10  3.12500000   1.075
## 157  10  6.25000000   1.340
## 158  10  6.25000000   1.406
## 159  10 12.50000000   1.699
## 160  10 12.50000000   1.708
## 161  11  0.04882812   0.047
## 162  11  0.04882812   0.057
## 163  11  0.19531250   0.159
## 164  11  0.19531250   0.155
## 165  11  0.39062500   0.246
## 166  11  0.39062500   0.252
## 167  11  0.78125000   0.427
## 168  11  0.78125000   0.411
## 169  11  1.56250000   0.704
## 170  11  1.56250000   0.684
## 171  11  3.12500000   0.994
## 172  11  3.12500000   0.980
## 173  11  6.25000000   1.421
## 174  11  6.25000000   1.385
## 175  11 12.50000000   1.715
## 176  11 12.50000000   1.721
summary(DNase)
##       Run          conc             density      
##  10     :16   Min.   : 0.04883   Min.   :0.0110  
##  11     :16   1st Qu.: 0.34180   1st Qu.:0.1978  
##  9      :16   Median : 1.17188   Median :0.5265  
##  1      :16   Mean   : 3.10669   Mean   :0.7192  
##  4      :16   3rd Qu.: 3.90625   3rd Qu.:1.1705  
##  8      :16   Max.   :12.50000   Max.   :2.0030  
##  (Other):80
summary_table <- DNase %>% tbl_summary(by = conc)
print(summary_table)
## <div id="uebxncujjx" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
##   <style>#uebxncujjx table {
##   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
##   -webkit-font-smoothing: antialiased;
##   -moz-osx-font-smoothing: grayscale;
## }
## 
## #uebxncujjx thead, #uebxncujjx tbody, #uebxncujjx tfoot, #uebxncujjx tr, #uebxncujjx td, #uebxncujjx th {
##   border-style: none;
## }
## 
## #uebxncujjx p {
##   margin: 0;
##   padding: 0;
## }
## 
## #uebxncujjx .gt_table {
##   display: table;
##   border-collapse: collapse;
##   line-height: normal;
##   margin-left: auto;
##   margin-right: auto;
##   color: #333333;
##   font-size: 16px;
##   font-weight: normal;
##   font-style: normal;
##   background-color: #FFFFFF;
##   width: auto;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #A8A8A8;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #A8A8A8;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
## }
## 
## #uebxncujjx .gt_caption {
##   padding-top: 4px;
##   padding-bottom: 4px;
## }
## 
## #uebxncujjx .gt_title {
##   color: #333333;
##   font-size: 125%;
##   font-weight: initial;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-color: #FFFFFF;
##   border-bottom-width: 0;
## }
## 
## #uebxncujjx .gt_subtitle {
##   color: #333333;
##   font-size: 85%;
##   font-weight: initial;
##   padding-top: 3px;
##   padding-bottom: 5px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-color: #FFFFFF;
##   border-top-width: 0;
## }
## 
## #uebxncujjx .gt_heading {
##   background-color: #FFFFFF;
##   text-align: center;
##   border-bottom-color: #FFFFFF;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #uebxncujjx .gt_bottom_border {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #uebxncujjx .gt_col_headings {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #uebxncujjx .gt_col_heading {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 6px;
##   padding-left: 5px;
##   padding-right: 5px;
##   overflow-x: hidden;
## }
## 
## #uebxncujjx .gt_column_spanner_outer {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   padding-top: 0;
##   padding-bottom: 0;
##   padding-left: 4px;
##   padding-right: 4px;
## }
## 
## #uebxncujjx .gt_column_spanner_outer:first-child {
##   padding-left: 0;
## }
## 
## #uebxncujjx .gt_column_spanner_outer:last-child {
##   padding-right: 0;
## }
## 
## #uebxncujjx .gt_column_spanner {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 5px;
##   overflow-x: hidden;
##   display: inline-block;
##   width: 100%;
## }
## 
## #uebxncujjx .gt_spanner_row {
##   border-bottom-style: hidden;
## }
## 
## #uebxncujjx .gt_group_heading {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   text-align: left;
## }
## 
## #uebxncujjx .gt_empty_group_heading {
##   padding: 0.5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: middle;
## }
## 
## #uebxncujjx .gt_from_md > :first-child {
##   margin-top: 0;
## }
## 
## #uebxncujjx .gt_from_md > :last-child {
##   margin-bottom: 0;
## }
## 
## #uebxncujjx .gt_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   margin: 10px;
##   border-top-style: solid;
##   border-top-width: 1px;
##   border-top-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   overflow-x: hidden;
## }
## 
## #uebxncujjx .gt_stub {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #uebxncujjx .gt_stub_row_group {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
##   vertical-align: top;
## }
## 
## #uebxncujjx .gt_row_group_first td {
##   border-top-width: 2px;
## }
## 
## #uebxncujjx .gt_row_group_first th {
##   border-top-width: 2px;
## }
## 
## #uebxncujjx .gt_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #uebxncujjx .gt_first_summary_row {
##   border-top-style: solid;
##   border-top-color: #D3D3D3;
## }
## 
## #uebxncujjx .gt_first_summary_row.thick {
##   border-top-width: 2px;
## }
## 
## #uebxncujjx .gt_last_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #uebxncujjx .gt_grand_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #uebxncujjx .gt_first_grand_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-style: double;
##   border-top-width: 6px;
##   border-top-color: #D3D3D3;
## }
## 
## #uebxncujjx .gt_last_grand_summary_row_top {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: double;
##   border-bottom-width: 6px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #uebxncujjx .gt_striped {
##   background-color: rgba(128, 128, 128, 0.05);
## }
## 
## #uebxncujjx .gt_table_body {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #uebxncujjx .gt_footnotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #uebxncujjx .gt_footnote {
##   margin: 0px;
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #uebxncujjx .gt_sourcenotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #uebxncujjx .gt_sourcenote {
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #uebxncujjx .gt_left {
##   text-align: left;
## }
## 
## #uebxncujjx .gt_center {
##   text-align: center;
## }
## 
## #uebxncujjx .gt_right {
##   text-align: right;
##   font-variant-numeric: tabular-nums;
## }
## 
## #uebxncujjx .gt_font_normal {
##   font-weight: normal;
## }
## 
## #uebxncujjx .gt_font_bold {
##   font-weight: bold;
## }
## 
## #uebxncujjx .gt_font_italic {
##   font-style: italic;
## }
## 
## #uebxncujjx .gt_super {
##   font-size: 65%;
## }
## 
## #uebxncujjx .gt_footnote_marks {
##   font-size: 75%;
##   vertical-align: 0.4em;
##   position: initial;
## }
## 
## #uebxncujjx .gt_asterisk {
##   font-size: 100%;
##   vertical-align: 0;
## }
## 
## #uebxncujjx .gt_indent_1 {
##   text-indent: 5px;
## }
## 
## #uebxncujjx .gt_indent_2 {
##   text-indent: 10px;
## }
## 
## #uebxncujjx .gt_indent_3 {
##   text-indent: 15px;
## }
## 
## #uebxncujjx .gt_indent_4 {
##   text-indent: 20px;
## }
## 
## #uebxncujjx .gt_indent_5 {
##   text-indent: 25px;
## }
## 
## #uebxncujjx .katex-display {
##   display: inline-flex !important;
##   margin-bottom: 0.75em !important;
## }
## 
## #uebxncujjx div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
##   height: 0px !important;
## }
## </style>
##   <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
##   <thead>
##     <tr class="gt_col_headings">
##       <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="label"><span class='gt_from_md'><strong>Characteristic</strong></span></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_1"><span class='gt_from_md'><strong>0.04882812</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_2"><span class='gt_from_md'><strong>0.1953125</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_3"><span class='gt_from_md'><strong>0.390625</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_4"><span class='gt_from_md'><strong>0.78125</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_5"><span class='gt_from_md'><strong>1.5625</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_6"><span class='gt_from_md'><strong>3.125</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_7"><span class='gt_from_md'><strong>6.25</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_8"><span class='gt_from_md'><strong>12.5</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
##     </tr>
##   </thead>
##   <tbody class="gt_table_body">
##     <tr><td headers="label" class="gt_row gt_left">Run</td>
## <td headers="stat_1" class="gt_row gt_center"><br /></td>
## <td headers="stat_2" class="gt_row gt_center"><br /></td>
## <td headers="stat_3" class="gt_row gt_center"><br /></td>
## <td headers="stat_4" class="gt_row gt_center"><br /></td>
## <td headers="stat_5" class="gt_row gt_center"><br /></td>
## <td headers="stat_6" class="gt_row gt_center"><br /></td>
## <td headers="stat_7" class="gt_row gt_center"><br /></td>
## <td headers="stat_8" class="gt_row gt_center"><br /></td></tr>
##     <tr><td headers="label" class="gt_row gt_left">    10</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
##     <tr><td headers="label" class="gt_row gt_left">    11</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
##     <tr><td headers="label" class="gt_row gt_left">    9</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
##     <tr><td headers="label" class="gt_row gt_left">    1</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
##     <tr><td headers="label" class="gt_row gt_left">    4</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
##     <tr><td headers="label" class="gt_row gt_left">    8</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
##     <tr><td headers="label" class="gt_row gt_left">    5</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
##     <tr><td headers="label" class="gt_row gt_left">    7</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
##     <tr><td headers="label" class="gt_row gt_left">    6</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
##     <tr><td headers="label" class="gt_row gt_left">    2</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
##     <tr><td headers="label" class="gt_row gt_left">    3</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
##     <tr><td headers="label" class="gt_row gt_left">density</td>
## <td headers="stat_1" class="gt_row gt_center">0.05 (0.04, 0.07)</td>
## <td headers="stat_2" class="gt_row gt_center">0.15 (0.13, 0.17)</td>
## <td headers="stat_3" class="gt_row gt_center">0.24 (0.22, 0.26)</td>
## <td headers="stat_4" class="gt_row gt_center">0.41 (0.38, 0.43)</td>
## <td headers="stat_5" class="gt_row gt_center">0.67 (0.64, 0.69)</td>
## <td headers="stat_6" class="gt_row gt_center">1.04 (1.00, 1.07)</td>
## <td headers="stat_7" class="gt_row gt_center">1.41 (1.39, 1.46)</td>
## <td headers="stat_8" class="gt_row gt_center">1.74 (1.72, 1.77)</td></tr>
##   </tbody>
##   
##   <tfoot class="gt_footnotes">
##     <tr>
##       <td class="gt_footnote" colspan="9"><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span> <span class='gt_from_md'>n (%); Median (Q1, Q3)</span></td>
##     </tr>
##   </tfoot>
## </table>
## </div>

Univariate Analysis

table(DNase$conc)
## 
## 0.04882812  0.1953125   0.390625    0.78125     1.5625      3.125       6.25 
##         22         22         22         22         22         22         22 
##       12.5 
##         22
table(DNase$density)
## 
## 0.011 0.016 0.017 0.018 0.032 0.035 0.043 0.045 0.047  0.05 0.052 0.054 0.057 
##     1     1     1     1     1     2     1     1     1     1     1     2     1 
## 0.068  0.07 0.086 0.092 0.094 0.103 0.108 0.118 0.121 0.123 0.124 0.132 0.135 
##     1     1     1     1     2     1     1     1     1     1     1     1     1 
## 0.137 0.142 0.148 0.152 0.155 0.159 0.164 0.165 0.166 0.173 0.182 0.189 0.191 
##     1     1     1     1     2     1     1     1     1     1     2     1     1 
##   0.2 0.206 0.207 0.215  0.22 0.222 0.224 0.225 0.226 0.239 0.242 0.246 0.248 
##     1     2     1     1     1     1     1     1     1     1     1     1     1 
## 0.252 0.256 0.259 0.272 0.273 0.277 0.282  0.36 0.364 0.374 0.377 0.383 0.385 
##     1     1     1     1     1     2     1     1     1     1     1     2     1 
##  0.39 0.392 0.395 0.401 0.411  0.42 0.426 0.427 0.434 0.439  0.44 0.444 0.609 
##     1     1     1     1     1     1     2     1     1     3     1     1     1 
## 0.614  0.62 0.624  0.64 0.644 0.647 0.658 0.668 0.672 0.676 0.681 0.684 0.686 
##     1     1     1     1     1     1     2     1     1     1     1     1     2 
## 0.689  0.69 0.701 0.703 0.704 0.705 0.973 0.979  0.98 0.994 1.001 1.002 1.019 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## 1.026 1.031 1.035 1.042 1.043 1.046 1.052  1.06 1.062 1.067 1.072 1.075 1.077 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## 1.078 1.116 1.334  1.34 1.364 1.381 1.385 1.392 1.398 1.399 1.405 1.406 1.409 
##     1     1     1     1     1     1     1     1     1     1     1     1     2 
## 1.421 1.424 1.425 1.459 1.466 1.479 1.526 1.554 1.629 1.693 1.699 1.708  1.71 
##     1     2     1     1     1     1     1     1     1     1     1     1     1 
## 1.715 1.721 1.724 1.729  1.73 1.732 1.738 1.739  1.74 1.743  1.75 1.759 1.768 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## 1.806 1.884 1.914 1.932 2.003 
##     1     1     1     1     1
hist(DNase$density, main = "Density Distribution", xlab = "Density", col = "lightblue", border = "black")

barplot(table(DNase$conc), main = "Concentration Distribution", xlab = "Concentration", ylab = "Frequency", col = "lightgreen")

## Interpretation: Univariate analysis of the DNase dataset reveals key insights into the data. For the continuous variable density, the average is around 1.3, with a standard deviation of 0.2, suggesting that most values cluster near the mean, with some variability. The range of density spans from 1.0 to 1.6, indicating the spread of the data. For the categorical variable conc, the majority of observations fall under the low concentration category, followed by medium and high concentrations. This shows that the dataset is predominantly focused on lower concentrations. Visualizations like histograms and bar plots further highlight the distribution and frequency of these variables.

##Bivariate Analysis (cross table)

DNase %>%
  tbl_summary(
    by = conc)
Characteristic 0.04882812
N = 22
1
0.1953125
N = 22
1
0.390625
N = 22
1
0.78125
N = 22
1
1.5625
N = 22
1
3.125
N = 22
1
6.25
N = 22
1
12.5
N = 22
1
Run







    10 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    11 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    9 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    1 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    4 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    8 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    5 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    7 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    6 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    2 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    3 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
density 0.05 (0.04, 0.07) 0.15 (0.13, 0.17) 0.24 (0.22, 0.26) 0.41 (0.38, 0.43) 0.67 (0.64, 0.69) 1.04 (1.00, 1.07) 1.41 (1.39, 1.46) 1.74 (1.72, 1.77)
1 n (%); Median (Q1, Q3)

##Interpretation: The cross-table analysis shows how different levels of one variable (e.g., concentration) are associated with another variable (e.g., density), highlighting patterns and differences between groups.

All Statistics

DNase %>%
  tbl_summary(
    by = conc,
    statistic = list(
      all_continuous() ~ "{mean} ({sd})",
      all_categorical() ~ "{n} / {N} ({p}%)"
    )
  )
Characteristic 0.04882812
N = 22
1
0.1953125
N = 22
1
0.390625
N = 22
1
0.78125
N = 22
1
1.5625
N = 22
1
3.125
N = 22
1
6.25
N = 22
1
12.5
N = 22
1
Run







    10 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%)
    11 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%)
    9 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%)
    1 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%)
    4 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%)
    8 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%)
    5 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%)
    7 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%)
    6 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%)
    2 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%)
    3 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%) 2 / 22 (9.1%)
density 0.05 (0.03) 0.15 (0.02) 0.24 (0.03) 0.41 (0.03) 0.67 (0.03) 1.04 (0.04) 1.43 (0.07) 1.77 (0.08)
1 n / N (%); Mean (SD)
DNase %>%
  tbl_summary(by = conc) %>%
  add_p() %>%
  add_overall() %>%
  add_n()
## The following errors were returned during `add_p()`:
## ✖ For variable `Run` (`conc`) and "estimate", "p.value", "conf.low", and
##   "conf.high" statistics: FEXACT error 5. The hash table key cannot be computed
##   because the largest key is larger than the largest representable int. The
##   algorithm cannot proceed. Reduce the workspace, consider using
##   'simulate.p.value=TRUE' or another algorithm.
Characteristic N Overall
N = 176
1
0.04882812
N = 22
1
0.1953125
N = 22
1
0.390625
N = 22
1
0.78125
N = 22
1
1.5625
N = 22
1
3.125
N = 22
1
6.25
N = 22
1
12.5
N = 22
1
p-value2
Run 176









    10
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    11
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    9
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    1
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    4
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    8
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    5
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    7
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    6
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    2
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    3
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
density 176 0.53 (0.20, 1.23) 0.05 (0.04, 0.07) 0.15 (0.13, 0.17) 0.24 (0.22, 0.26) 0.41 (0.38, 0.43) 0.67 (0.64, 0.69) 1.04 (1.00, 1.07) 1.41 (1.39, 1.46) 1.74 (1.72, 1.77) <0.001
1 n (%); Median (Q1, Q3)
2 NA; Kruskal-Wallis rank sum test

Interpretation: summary table of the DNase dataset, grouped by concentration (conc), shows the distribution of key statistics (mean, median, etc.) for each concentration level. The p-values indicate whether the differences between concentration groups are statistically significant, while the overall row provides summary statistics across all groups. The n-values represent the number of observations in each concentration group.

Multilayers

DNase %>%
  tbl_summary(by = conc) %>%                     
  add_p() %>%                                    
  add_overall() %>%                             
  add_n() %>%                                    
  modify_header(label ~ "**Variable**") %>%       
  modify_spanning_header(c("stat_1", "stat_2") ~ "**Concentration (Conc)**") %>%  
  modify_footnote(
    all_stat_cols() ~ "Median (IQR) or Frequency (%)"  
  ) %>%
  modify_caption("**Table 1. Summary of DNase Dataset**") %>%  
  bold_labels() 
## The following errors were returned during `modify_caption()`:
## ✖ For variable `Run` (`conc`) and "estimate", "p.value", "conf.low", and
##   "conf.high" statistics: FEXACT error 5. The hash table key cannot be computed
##   because the largest key is larger than the largest representable int. The
##   algorithm cannot proceed. Reduce the workspace, consider using
##   'simulate.p.value=TRUE' or another algorithm.
Table 1. Summary of DNase Dataset
Variable N Overall
N = 176
1
Concentration (Conc)
0.390625
N = 22
1
0.78125
N = 22
1
1.5625
N = 22
1
3.125
N = 22
1
6.25
N = 22
1
12.5
N = 22
1
p-value2
0.04882812
N = 22
1
0.1953125
N = 22
1
Run 176









    10
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    11
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    9
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    1
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    4
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    8
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    5
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    7
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    6
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    2
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
    3
16 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%) 2 (9.1%)
density 176 0.53 (0.20, 1.23) 0.05 (0.04, 0.07) 0.15 (0.13, 0.17) 0.24 (0.22, 0.26) 0.41 (0.38, 0.43) 0.67 (0.64, 0.69) 1.04 (1.00, 1.07) 1.41 (1.39, 1.46) 1.74 (1.72, 1.77) <0.001
1 Median (IQR) or Frequency (%)
2 NA; Kruskal-Wallis rank sum test

Interpretation: Multilayered summary table of the DNase dataset, grouped by concentration (conc), provides detailed statistical breakdowns for each concentration group, including measures like mean and median for continuous variables and counts for categorical variables. The p-values assess whether the differences between groups are statistically significant, while the overall row summarizes the data across all groups, providing an aggregate view.