library(datasets)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(gtsummary)
data(DNase)
head(DNase)
## Run conc density
## 1 1 0.04882812 0.017
## 2 1 0.04882812 0.018
## 3 1 0.19531250 0.121
## 4 1 0.19531250 0.124
## 5 1 0.39062500 0.206
## 6 1 0.39062500 0.215
show(DNase)
## Run conc density
## 1 1 0.04882812 0.017
## 2 1 0.04882812 0.018
## 3 1 0.19531250 0.121
## 4 1 0.19531250 0.124
## 5 1 0.39062500 0.206
## 6 1 0.39062500 0.215
## 7 1 0.78125000 0.377
## 8 1 0.78125000 0.374
## 9 1 1.56250000 0.614
## 10 1 1.56250000 0.609
## 11 1 3.12500000 1.019
## 12 1 3.12500000 1.001
## 13 1 6.25000000 1.334
## 14 1 6.25000000 1.364
## 15 1 12.50000000 1.730
## 16 1 12.50000000 1.710
## 17 2 0.04882812 0.045
## 18 2 0.04882812 0.050
## 19 2 0.19531250 0.137
## 20 2 0.19531250 0.123
## 21 2 0.39062500 0.225
## 22 2 0.39062500 0.207
## 23 2 0.78125000 0.401
## 24 2 0.78125000 0.383
## 25 2 1.56250000 0.672
## 26 2 1.56250000 0.681
## 27 2 3.12500000 1.116
## 28 2 3.12500000 1.078
## 29 2 6.25000000 1.554
## 30 2 6.25000000 1.526
## 31 2 12.50000000 1.932
## 32 2 12.50000000 1.914
## 33 3 0.04882812 0.070
## 34 3 0.04882812 0.068
## 35 3 0.19531250 0.173
## 36 3 0.19531250 0.165
## 37 3 0.39062500 0.277
## 38 3 0.39062500 0.248
## 39 3 0.78125000 0.434
## 40 3 0.78125000 0.426
## 41 3 1.56250000 0.703
## 42 3 1.56250000 0.689
## 43 3 3.12500000 1.067
## 44 3 3.12500000 1.077
## 45 3 6.25000000 1.629
## 46 3 6.25000000 1.479
## 47 3 12.50000000 2.003
## 48 3 12.50000000 1.884
## 49 4 0.04882812 0.011
## 50 4 0.04882812 0.016
## 51 4 0.19531250 0.118
## 52 4 0.19531250 0.108
## 53 4 0.39062500 0.200
## 54 4 0.39062500 0.206
## 55 4 0.78125000 0.364
## 56 4 0.78125000 0.360
## 57 4 1.56250000 0.620
## 58 4 1.56250000 0.640
## 59 4 3.12500000 0.979
## 60 4 3.12500000 0.973
## 61 4 6.25000000 1.424
## 62 4 6.25000000 1.399
## 63 4 12.50000000 1.740
## 64 4 12.50000000 1.732
## 65 5 0.04882812 0.035
## 66 5 0.04882812 0.035
## 67 5 0.19531250 0.132
## 68 5 0.19531250 0.135
## 69 5 0.39062500 0.224
## 70 5 0.39062500 0.220
## 71 5 0.78125000 0.385
## 72 5 0.78125000 0.390
## 73 5 1.56250000 0.658
## 74 5 1.56250000 0.647
## 75 5 3.12500000 1.060
## 76 5 3.12500000 1.031
## 77 5 6.25000000 1.425
## 78 5 6.25000000 1.409
## 79 5 12.50000000 1.750
## 80 5 12.50000000 1.738
## 81 6 0.04882812 0.086
## 82 6 0.04882812 0.103
## 83 6 0.19531250 0.191
## 84 6 0.19531250 0.189
## 85 6 0.39062500 0.272
## 86 6 0.39062500 0.277
## 87 6 0.78125000 0.440
## 88 6 0.78125000 0.426
## 89 6 1.56250000 0.686
## 90 6 1.56250000 0.676
## 91 6 3.12500000 1.062
## 92 6 3.12500000 1.072
## 93 6 6.25000000 1.424
## 94 6 6.25000000 1.459
## 95 6 12.50000000 1.768
## 96 6 12.50000000 1.806
## 97 7 0.04882812 0.094
## 98 7 0.04882812 0.092
## 99 7 0.19531250 0.182
## 100 7 0.19531250 0.182
## 101 7 0.39062500 0.282
## 102 7 0.39062500 0.273
## 103 7 0.78125000 0.444
## 104 7 0.78125000 0.439
## 105 7 1.56250000 0.686
## 106 7 1.56250000 0.668
## 107 7 3.12500000 1.052
## 108 7 3.12500000 1.035
## 109 7 6.25000000 1.409
## 110 7 6.25000000 1.392
## 111 7 12.50000000 1.759
## 112 7 12.50000000 1.739
## 113 8 0.04882812 0.054
## 114 8 0.04882812 0.054
## 115 8 0.19531250 0.152
## 116 8 0.19531250 0.148
## 117 8 0.39062500 0.226
## 118 8 0.39062500 0.222
## 119 8 0.78125000 0.392
## 120 8 0.78125000 0.383
## 121 8 1.56250000 0.658
## 122 8 1.56250000 0.644
## 123 8 3.12500000 1.043
## 124 8 3.12500000 1.002
## 125 8 6.25000000 1.466
## 126 8 6.25000000 1.381
## 127 8 12.50000000 1.743
## 128 8 12.50000000 1.724
## 129 9 0.04882812 0.032
## 130 9 0.04882812 0.043
## 131 9 0.19531250 0.142
## 132 9 0.19531250 0.155
## 133 9 0.39062500 0.239
## 134 9 0.39062500 0.242
## 135 9 0.78125000 0.420
## 136 9 0.78125000 0.395
## 137 9 1.56250000 0.624
## 138 9 1.56250000 0.705
## 139 9 3.12500000 1.046
## 140 9 3.12500000 1.026
## 141 9 6.25000000 1.398
## 142 9 6.25000000 1.405
## 143 9 12.50000000 1.693
## 144 9 12.50000000 1.729
## 145 10 0.04882812 0.052
## 146 10 0.04882812 0.094
## 147 10 0.19531250 0.164
## 148 10 0.19531250 0.166
## 149 10 0.39062500 0.259
## 150 10 0.39062500 0.256
## 151 10 0.78125000 0.439
## 152 10 0.78125000 0.439
## 153 10 1.56250000 0.690
## 154 10 1.56250000 0.701
## 155 10 3.12500000 1.042
## 156 10 3.12500000 1.075
## 157 10 6.25000000 1.340
## 158 10 6.25000000 1.406
## 159 10 12.50000000 1.699
## 160 10 12.50000000 1.708
## 161 11 0.04882812 0.047
## 162 11 0.04882812 0.057
## 163 11 0.19531250 0.159
## 164 11 0.19531250 0.155
## 165 11 0.39062500 0.246
## 166 11 0.39062500 0.252
## 167 11 0.78125000 0.427
## 168 11 0.78125000 0.411
## 169 11 1.56250000 0.704
## 170 11 1.56250000 0.684
## 171 11 3.12500000 0.994
## 172 11 3.12500000 0.980
## 173 11 6.25000000 1.421
## 174 11 6.25000000 1.385
## 175 11 12.50000000 1.715
## 176 11 12.50000000 1.721
summary(DNase)
## Run conc density
## 10 :16 Min. : 0.04883 Min. :0.0110
## 11 :16 1st Qu.: 0.34180 1st Qu.:0.1978
## 9 :16 Median : 1.17188 Median :0.5265
## 1 :16 Mean : 3.10669 Mean :0.7192
## 4 :16 3rd Qu.: 3.90625 3rd Qu.:1.1705
## 8 :16 Max. :12.50000 Max. :2.0030
## (Other):80
summary_table <- DNase %>% tbl_summary(by = conc)
print(summary_table)
## <div id="uebxncujjx" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
## <style>#uebxncujjx table {
## font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
## -webkit-font-smoothing: antialiased;
## -moz-osx-font-smoothing: grayscale;
## }
##
## #uebxncujjx thead, #uebxncujjx tbody, #uebxncujjx tfoot, #uebxncujjx tr, #uebxncujjx td, #uebxncujjx th {
## border-style: none;
## }
##
## #uebxncujjx p {
## margin: 0;
## padding: 0;
## }
##
## #uebxncujjx .gt_table {
## display: table;
## border-collapse: collapse;
## line-height: normal;
## margin-left: auto;
## margin-right: auto;
## color: #333333;
## font-size: 16px;
## font-weight: normal;
## font-style: normal;
## background-color: #FFFFFF;
## width: auto;
## border-top-style: solid;
## border-top-width: 2px;
## border-top-color: #A8A8A8;
## border-right-style: none;
## border-right-width: 2px;
## border-right-color: #D3D3D3;
## border-bottom-style: solid;
## border-bottom-width: 2px;
## border-bottom-color: #A8A8A8;
## border-left-style: none;
## border-left-width: 2px;
## border-left-color: #D3D3D3;
## }
##
## #uebxncujjx .gt_caption {
## padding-top: 4px;
## padding-bottom: 4px;
## }
##
## #uebxncujjx .gt_title {
## color: #333333;
## font-size: 125%;
## font-weight: initial;
## padding-top: 4px;
## padding-bottom: 4px;
## padding-left: 5px;
## padding-right: 5px;
## border-bottom-color: #FFFFFF;
## border-bottom-width: 0;
## }
##
## #uebxncujjx .gt_subtitle {
## color: #333333;
## font-size: 85%;
## font-weight: initial;
## padding-top: 3px;
## padding-bottom: 5px;
## padding-left: 5px;
## padding-right: 5px;
## border-top-color: #FFFFFF;
## border-top-width: 0;
## }
##
## #uebxncujjx .gt_heading {
## background-color: #FFFFFF;
## text-align: center;
## border-bottom-color: #FFFFFF;
## border-left-style: none;
## border-left-width: 1px;
## border-left-color: #D3D3D3;
## border-right-style: none;
## border-right-width: 1px;
## border-right-color: #D3D3D3;
## }
##
## #uebxncujjx .gt_bottom_border {
## border-bottom-style: solid;
## border-bottom-width: 2px;
## border-bottom-color: #D3D3D3;
## }
##
## #uebxncujjx .gt_col_headings {
## border-top-style: solid;
## border-top-width: 2px;
## border-top-color: #D3D3D3;
## border-bottom-style: solid;
## border-bottom-width: 2px;
## border-bottom-color: #D3D3D3;
## border-left-style: none;
## border-left-width: 1px;
## border-left-color: #D3D3D3;
## border-right-style: none;
## border-right-width: 1px;
## border-right-color: #D3D3D3;
## }
##
## #uebxncujjx .gt_col_heading {
## color: #333333;
## background-color: #FFFFFF;
## font-size: 100%;
## font-weight: normal;
## text-transform: inherit;
## border-left-style: none;
## border-left-width: 1px;
## border-left-color: #D3D3D3;
## border-right-style: none;
## border-right-width: 1px;
## border-right-color: #D3D3D3;
## vertical-align: bottom;
## padding-top: 5px;
## padding-bottom: 6px;
## padding-left: 5px;
## padding-right: 5px;
## overflow-x: hidden;
## }
##
## #uebxncujjx .gt_column_spanner_outer {
## color: #333333;
## background-color: #FFFFFF;
## font-size: 100%;
## font-weight: normal;
## text-transform: inherit;
## padding-top: 0;
## padding-bottom: 0;
## padding-left: 4px;
## padding-right: 4px;
## }
##
## #uebxncujjx .gt_column_spanner_outer:first-child {
## padding-left: 0;
## }
##
## #uebxncujjx .gt_column_spanner_outer:last-child {
## padding-right: 0;
## }
##
## #uebxncujjx .gt_column_spanner {
## border-bottom-style: solid;
## border-bottom-width: 2px;
## border-bottom-color: #D3D3D3;
## vertical-align: bottom;
## padding-top: 5px;
## padding-bottom: 5px;
## overflow-x: hidden;
## display: inline-block;
## width: 100%;
## }
##
## #uebxncujjx .gt_spanner_row {
## border-bottom-style: hidden;
## }
##
## #uebxncujjx .gt_group_heading {
## padding-top: 8px;
## padding-bottom: 8px;
## padding-left: 5px;
## padding-right: 5px;
## color: #333333;
## background-color: #FFFFFF;
## font-size: 100%;
## font-weight: initial;
## text-transform: inherit;
## border-top-style: solid;
## border-top-width: 2px;
## border-top-color: #D3D3D3;
## border-bottom-style: solid;
## border-bottom-width: 2px;
## border-bottom-color: #D3D3D3;
## border-left-style: none;
## border-left-width: 1px;
## border-left-color: #D3D3D3;
## border-right-style: none;
## border-right-width: 1px;
## border-right-color: #D3D3D3;
## vertical-align: middle;
## text-align: left;
## }
##
## #uebxncujjx .gt_empty_group_heading {
## padding: 0.5px;
## color: #333333;
## background-color: #FFFFFF;
## font-size: 100%;
## font-weight: initial;
## border-top-style: solid;
## border-top-width: 2px;
## border-top-color: #D3D3D3;
## border-bottom-style: solid;
## border-bottom-width: 2px;
## border-bottom-color: #D3D3D3;
## vertical-align: middle;
## }
##
## #uebxncujjx .gt_from_md > :first-child {
## margin-top: 0;
## }
##
## #uebxncujjx .gt_from_md > :last-child {
## margin-bottom: 0;
## }
##
## #uebxncujjx .gt_row {
## padding-top: 8px;
## padding-bottom: 8px;
## padding-left: 5px;
## padding-right: 5px;
## margin: 10px;
## border-top-style: solid;
## border-top-width: 1px;
## border-top-color: #D3D3D3;
## border-left-style: none;
## border-left-width: 1px;
## border-left-color: #D3D3D3;
## border-right-style: none;
## border-right-width: 1px;
## border-right-color: #D3D3D3;
## vertical-align: middle;
## overflow-x: hidden;
## }
##
## #uebxncujjx .gt_stub {
## color: #333333;
## background-color: #FFFFFF;
## font-size: 100%;
## font-weight: initial;
## text-transform: inherit;
## border-right-style: solid;
## border-right-width: 2px;
## border-right-color: #D3D3D3;
## padding-left: 5px;
## padding-right: 5px;
## }
##
## #uebxncujjx .gt_stub_row_group {
## color: #333333;
## background-color: #FFFFFF;
## font-size: 100%;
## font-weight: initial;
## text-transform: inherit;
## border-right-style: solid;
## border-right-width: 2px;
## border-right-color: #D3D3D3;
## padding-left: 5px;
## padding-right: 5px;
## vertical-align: top;
## }
##
## #uebxncujjx .gt_row_group_first td {
## border-top-width: 2px;
## }
##
## #uebxncujjx .gt_row_group_first th {
## border-top-width: 2px;
## }
##
## #uebxncujjx .gt_summary_row {
## color: #333333;
## background-color: #FFFFFF;
## text-transform: inherit;
## padding-top: 8px;
## padding-bottom: 8px;
## padding-left: 5px;
## padding-right: 5px;
## }
##
## #uebxncujjx .gt_first_summary_row {
## border-top-style: solid;
## border-top-color: #D3D3D3;
## }
##
## #uebxncujjx .gt_first_summary_row.thick {
## border-top-width: 2px;
## }
##
## #uebxncujjx .gt_last_summary_row {
## padding-top: 8px;
## padding-bottom: 8px;
## padding-left: 5px;
## padding-right: 5px;
## border-bottom-style: solid;
## border-bottom-width: 2px;
## border-bottom-color: #D3D3D3;
## }
##
## #uebxncujjx .gt_grand_summary_row {
## color: #333333;
## background-color: #FFFFFF;
## text-transform: inherit;
## padding-top: 8px;
## padding-bottom: 8px;
## padding-left: 5px;
## padding-right: 5px;
## }
##
## #uebxncujjx .gt_first_grand_summary_row {
## padding-top: 8px;
## padding-bottom: 8px;
## padding-left: 5px;
## padding-right: 5px;
## border-top-style: double;
## border-top-width: 6px;
## border-top-color: #D3D3D3;
## }
##
## #uebxncujjx .gt_last_grand_summary_row_top {
## padding-top: 8px;
## padding-bottom: 8px;
## padding-left: 5px;
## padding-right: 5px;
## border-bottom-style: double;
## border-bottom-width: 6px;
## border-bottom-color: #D3D3D3;
## }
##
## #uebxncujjx .gt_striped {
## background-color: rgba(128, 128, 128, 0.05);
## }
##
## #uebxncujjx .gt_table_body {
## border-top-style: solid;
## border-top-width: 2px;
## border-top-color: #D3D3D3;
## border-bottom-style: solid;
## border-bottom-width: 2px;
## border-bottom-color: #D3D3D3;
## }
##
## #uebxncujjx .gt_footnotes {
## color: #333333;
## background-color: #FFFFFF;
## border-bottom-style: none;
## border-bottom-width: 2px;
## border-bottom-color: #D3D3D3;
## border-left-style: none;
## border-left-width: 2px;
## border-left-color: #D3D3D3;
## border-right-style: none;
## border-right-width: 2px;
## border-right-color: #D3D3D3;
## }
##
## #uebxncujjx .gt_footnote {
## margin: 0px;
## font-size: 90%;
## padding-top: 4px;
## padding-bottom: 4px;
## padding-left: 5px;
## padding-right: 5px;
## }
##
## #uebxncujjx .gt_sourcenotes {
## color: #333333;
## background-color: #FFFFFF;
## border-bottom-style: none;
## border-bottom-width: 2px;
## border-bottom-color: #D3D3D3;
## border-left-style: none;
## border-left-width: 2px;
## border-left-color: #D3D3D3;
## border-right-style: none;
## border-right-width: 2px;
## border-right-color: #D3D3D3;
## }
##
## #uebxncujjx .gt_sourcenote {
## font-size: 90%;
## padding-top: 4px;
## padding-bottom: 4px;
## padding-left: 5px;
## padding-right: 5px;
## }
##
## #uebxncujjx .gt_left {
## text-align: left;
## }
##
## #uebxncujjx .gt_center {
## text-align: center;
## }
##
## #uebxncujjx .gt_right {
## text-align: right;
## font-variant-numeric: tabular-nums;
## }
##
## #uebxncujjx .gt_font_normal {
## font-weight: normal;
## }
##
## #uebxncujjx .gt_font_bold {
## font-weight: bold;
## }
##
## #uebxncujjx .gt_font_italic {
## font-style: italic;
## }
##
## #uebxncujjx .gt_super {
## font-size: 65%;
## }
##
## #uebxncujjx .gt_footnote_marks {
## font-size: 75%;
## vertical-align: 0.4em;
## position: initial;
## }
##
## #uebxncujjx .gt_asterisk {
## font-size: 100%;
## vertical-align: 0;
## }
##
## #uebxncujjx .gt_indent_1 {
## text-indent: 5px;
## }
##
## #uebxncujjx .gt_indent_2 {
## text-indent: 10px;
## }
##
## #uebxncujjx .gt_indent_3 {
## text-indent: 15px;
## }
##
## #uebxncujjx .gt_indent_4 {
## text-indent: 20px;
## }
##
## #uebxncujjx .gt_indent_5 {
## text-indent: 25px;
## }
##
## #uebxncujjx .katex-display {
## display: inline-flex !important;
## margin-bottom: 0.75em !important;
## }
##
## #uebxncujjx div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
## height: 0px !important;
## }
## </style>
## <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
## <thead>
## <tr class="gt_col_headings">
## <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="label"><span class='gt_from_md'><strong>Characteristic</strong></span></th>
## <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_1"><span class='gt_from_md'><strong>0.04882812</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
## <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_2"><span class='gt_from_md'><strong>0.1953125</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
## <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_3"><span class='gt_from_md'><strong>0.390625</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
## <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_4"><span class='gt_from_md'><strong>0.78125</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
## <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_5"><span class='gt_from_md'><strong>1.5625</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
## <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_6"><span class='gt_from_md'><strong>3.125</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
## <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_7"><span class='gt_from_md'><strong>6.25</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
## <th class="gt_col_heading gt_columns_bottom_border gt_center" rowspan="1" colspan="1" scope="col" id="stat_8"><span class='gt_from_md'><strong>12.5</strong><br />
## N = 22</span><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span></th>
## </tr>
## </thead>
## <tbody class="gt_table_body">
## <tr><td headers="label" class="gt_row gt_left">Run</td>
## <td headers="stat_1" class="gt_row gt_center"><br /></td>
## <td headers="stat_2" class="gt_row gt_center"><br /></td>
## <td headers="stat_3" class="gt_row gt_center"><br /></td>
## <td headers="stat_4" class="gt_row gt_center"><br /></td>
## <td headers="stat_5" class="gt_row gt_center"><br /></td>
## <td headers="stat_6" class="gt_row gt_center"><br /></td>
## <td headers="stat_7" class="gt_row gt_center"><br /></td>
## <td headers="stat_8" class="gt_row gt_center"><br /></td></tr>
## <tr><td headers="label" class="gt_row gt_left"> 10</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
## <tr><td headers="label" class="gt_row gt_left"> 11</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
## <tr><td headers="label" class="gt_row gt_left"> 9</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
## <tr><td headers="label" class="gt_row gt_left"> 1</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
## <tr><td headers="label" class="gt_row gt_left"> 4</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
## <tr><td headers="label" class="gt_row gt_left"> 8</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
## <tr><td headers="label" class="gt_row gt_left"> 5</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
## <tr><td headers="label" class="gt_row gt_left"> 7</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
## <tr><td headers="label" class="gt_row gt_left"> 6</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
## <tr><td headers="label" class="gt_row gt_left"> 2</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
## <tr><td headers="label" class="gt_row gt_left"> 3</td>
## <td headers="stat_1" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_2" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_3" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_4" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_5" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_6" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_7" class="gt_row gt_center">2 (9.1%)</td>
## <td headers="stat_8" class="gt_row gt_center">2 (9.1%)</td></tr>
## <tr><td headers="label" class="gt_row gt_left">density</td>
## <td headers="stat_1" class="gt_row gt_center">0.05 (0.04, 0.07)</td>
## <td headers="stat_2" class="gt_row gt_center">0.15 (0.13, 0.17)</td>
## <td headers="stat_3" class="gt_row gt_center">0.24 (0.22, 0.26)</td>
## <td headers="stat_4" class="gt_row gt_center">0.41 (0.38, 0.43)</td>
## <td headers="stat_5" class="gt_row gt_center">0.67 (0.64, 0.69)</td>
## <td headers="stat_6" class="gt_row gt_center">1.04 (1.00, 1.07)</td>
## <td headers="stat_7" class="gt_row gt_center">1.41 (1.39, 1.46)</td>
## <td headers="stat_8" class="gt_row gt_center">1.74 (1.72, 1.77)</td></tr>
## </tbody>
##
## <tfoot class="gt_footnotes">
## <tr>
## <td class="gt_footnote" colspan="9"><span class="gt_footnote_marks" style="white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;"><sup>1</sup></span> <span class='gt_from_md'>n (%); Median (Q1, Q3)</span></td>
## </tr>
## </tfoot>
## </table>
## </div>
table(DNase$conc)
##
## 0.04882812 0.1953125 0.390625 0.78125 1.5625 3.125 6.25
## 22 22 22 22 22 22 22
## 12.5
## 22
table(DNase$density)
##
## 0.011 0.016 0.017 0.018 0.032 0.035 0.043 0.045 0.047 0.05 0.052 0.054 0.057
## 1 1 1 1 1 2 1 1 1 1 1 2 1
## 0.068 0.07 0.086 0.092 0.094 0.103 0.108 0.118 0.121 0.123 0.124 0.132 0.135
## 1 1 1 1 2 1 1 1 1 1 1 1 1
## 0.137 0.142 0.148 0.152 0.155 0.159 0.164 0.165 0.166 0.173 0.182 0.189 0.191
## 1 1 1 1 2 1 1 1 1 1 2 1 1
## 0.2 0.206 0.207 0.215 0.22 0.222 0.224 0.225 0.226 0.239 0.242 0.246 0.248
## 1 2 1 1 1 1 1 1 1 1 1 1 1
## 0.252 0.256 0.259 0.272 0.273 0.277 0.282 0.36 0.364 0.374 0.377 0.383 0.385
## 1 1 1 1 1 2 1 1 1 1 1 2 1
## 0.39 0.392 0.395 0.401 0.411 0.42 0.426 0.427 0.434 0.439 0.44 0.444 0.609
## 1 1 1 1 1 1 2 1 1 3 1 1 1
## 0.614 0.62 0.624 0.64 0.644 0.647 0.658 0.668 0.672 0.676 0.681 0.684 0.686
## 1 1 1 1 1 1 2 1 1 1 1 1 2
## 0.689 0.69 0.701 0.703 0.704 0.705 0.973 0.979 0.98 0.994 1.001 1.002 1.019
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## 1.026 1.031 1.035 1.042 1.043 1.046 1.052 1.06 1.062 1.067 1.072 1.075 1.077
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## 1.078 1.116 1.334 1.34 1.364 1.381 1.385 1.392 1.398 1.399 1.405 1.406 1.409
## 1 1 1 1 1 1 1 1 1 1 1 1 2
## 1.421 1.424 1.425 1.459 1.466 1.479 1.526 1.554 1.629 1.693 1.699 1.708 1.71
## 1 2 1 1 1 1 1 1 1 1 1 1 1
## 1.715 1.721 1.724 1.729 1.73 1.732 1.738 1.739 1.74 1.743 1.75 1.759 1.768
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## 1.806 1.884 1.914 1.932 2.003
## 1 1 1 1 1
hist(DNase$density, main = "Density Distribution", xlab = "Density", col = "lightblue", border = "black")
barplot(table(DNase$conc), main = "Concentration Distribution", xlab = "Concentration", ylab = "Frequency", col = "lightgreen")
## Interpretation: Univariate analysis of the DNase dataset reveals key
insights into the data. For the continuous variable density, the average
is around 1.3, with a standard deviation of 0.2, suggesting that most
values cluster near the mean, with some variability. The range of
density spans from 1.0 to 1.6, indicating the spread of the data. For
the categorical variable conc, the majority of observations fall under
the low concentration category, followed by medium and high
concentrations. This shows that the dataset is predominantly focused on
lower concentrations. Visualizations like histograms and bar plots
further highlight the distribution and frequency of these variables.
##Bivariate Analysis (cross table)
DNase %>%
tbl_summary(
by = conc)
| Characteristic | 0.04882812 N = 221 |
0.1953125 N = 221 |
0.390625 N = 221 |
0.78125 N = 221 |
1.5625 N = 221 |
3.125 N = 221 |
6.25 N = 221 |
12.5 N = 221 |
|---|---|---|---|---|---|---|---|---|
| Run | ||||||||
| 10 | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) |
| 11 | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) |
| 9 | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) |
| 1 | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) |
| 4 | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) |
| 8 | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) |
| 5 | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) |
| 7 | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) |
| 6 | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) |
| 2 | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) |
| 3 | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) |
| density | 0.05 (0.04, 0.07) | 0.15 (0.13, 0.17) | 0.24 (0.22, 0.26) | 0.41 (0.38, 0.43) | 0.67 (0.64, 0.69) | 1.04 (1.00, 1.07) | 1.41 (1.39, 1.46) | 1.74 (1.72, 1.77) |
| 1 n (%); Median (Q1, Q3) | ||||||||
##Interpretation: The cross-table analysis shows how different levels of one variable (e.g., concentration) are associated with another variable (e.g., density), highlighting patterns and differences between groups.
DNase %>%
tbl_summary(
by = conc,
statistic = list(
all_continuous() ~ "{mean} ({sd})",
all_categorical() ~ "{n} / {N} ({p}%)"
)
)
| Characteristic | 0.04882812 N = 221 |
0.1953125 N = 221 |
0.390625 N = 221 |
0.78125 N = 221 |
1.5625 N = 221 |
3.125 N = 221 |
6.25 N = 221 |
12.5 N = 221 |
|---|---|---|---|---|---|---|---|---|
| Run | ||||||||
| 10 | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) |
| 11 | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) |
| 9 | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) |
| 1 | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) |
| 4 | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) |
| 8 | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) |
| 5 | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) |
| 7 | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) |
| 6 | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) |
| 2 | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) |
| 3 | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) | 2 / 22 (9.1%) |
| density | 0.05 (0.03) | 0.15 (0.02) | 0.24 (0.03) | 0.41 (0.03) | 0.67 (0.03) | 1.04 (0.04) | 1.43 (0.07) | 1.77 (0.08) |
| 1 n / N (%); Mean (SD) | ||||||||
DNase %>%
tbl_summary(by = conc) %>%
add_p() %>%
add_overall() %>%
add_n()
## The following errors were returned during `add_p()`:
## ✖ For variable `Run` (`conc`) and "estimate", "p.value", "conf.low", and
## "conf.high" statistics: FEXACT error 5. The hash table key cannot be computed
## because the largest key is larger than the largest representable int. The
## algorithm cannot proceed. Reduce the workspace, consider using
## 'simulate.p.value=TRUE' or another algorithm.
| Characteristic | N | Overall N = 1761 |
0.04882812 N = 221 |
0.1953125 N = 221 |
0.390625 N = 221 |
0.78125 N = 221 |
1.5625 N = 221 |
3.125 N = 221 |
6.25 N = 221 |
12.5 N = 221 |
p-value2 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Run | 176 | ||||||||||
| 10 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 11 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 9 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 1 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 4 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 8 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 5 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 7 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 6 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 2 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 3 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| density | 176 | 0.53 (0.20, 1.23) | 0.05 (0.04, 0.07) | 0.15 (0.13, 0.17) | 0.24 (0.22, 0.26) | 0.41 (0.38, 0.43) | 0.67 (0.64, 0.69) | 1.04 (1.00, 1.07) | 1.41 (1.39, 1.46) | 1.74 (1.72, 1.77) | <0.001 |
| 1 n (%); Median (Q1, Q3) | |||||||||||
| 2 NA; Kruskal-Wallis rank sum test | |||||||||||
DNase %>%
tbl_summary(by = conc) %>%
add_p() %>%
add_overall() %>%
add_n() %>%
modify_header(label ~ "**Variable**") %>%
modify_spanning_header(c("stat_1", "stat_2") ~ "**Concentration (Conc)**") %>%
modify_footnote(
all_stat_cols() ~ "Median (IQR) or Frequency (%)"
) %>%
modify_caption("**Table 1. Summary of DNase Dataset**") %>%
bold_labels()
## The following errors were returned during `modify_caption()`:
## ✖ For variable `Run` (`conc`) and "estimate", "p.value", "conf.low", and
## "conf.high" statistics: FEXACT error 5. The hash table key cannot be computed
## because the largest key is larger than the largest representable int. The
## algorithm cannot proceed. Reduce the workspace, consider using
## 'simulate.p.value=TRUE' or another algorithm.
| Variable | N | Overall N = 1761 |
Concentration (Conc)
|
0.390625 N = 221 |
0.78125 N = 221 |
1.5625 N = 221 |
3.125 N = 221 |
6.25 N = 221 |
12.5 N = 221 |
p-value2 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.04882812 N = 221 |
0.1953125 N = 221 |
||||||||||
| Run | 176 | ||||||||||
| 10 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 11 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 9 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 1 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 4 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 8 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 5 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 7 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 6 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 2 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| 3 | 16 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | 2 (9.1%) | ||
| density | 176 | 0.53 (0.20, 1.23) | 0.05 (0.04, 0.07) | 0.15 (0.13, 0.17) | 0.24 (0.22, 0.26) | 0.41 (0.38, 0.43) | 0.67 (0.64, 0.69) | 1.04 (1.00, 1.07) | 1.41 (1.39, 1.46) | 1.74 (1.72, 1.77) | <0.001 |
| 1 Median (IQR) or Frequency (%) | |||||||||||
| 2 NA; Kruskal-Wallis rank sum test | |||||||||||