Matriks adalah susunan bilangan yang ditulis dalam bentuk persegi panjang berupa baris (rows) dan kolom (columns). Bilangan yang ada di dalam matriks disebut elemen matriks.
Di dalam perangkat lunak R, sebuah matriks bisa dibuat dengan dua metode, yaitu berdasarkan kolom atau berdasarkan baris. Berikut ini merupakan contoh cara membentuk matriks dengan menggunakan susunan kolom.
A = matrix(c(5,2,9,
5,7,6,
1,9,2), nrow = 3, ncol = 3); A
## [,1] [,2] [,3]
## [1,] 5 5 1
## [2,] 2 7 9
## [3,] 9 6 2
Selanjutnya, apabila ingin membuat matriks dengan susunan berdasarkan baris, maka perlu menambahkan argumen byrow = TRUE seperti pada contoh berikut.
B = matrix(c(3,8,5,
8,6,1,
4,8,7), nrow = 3, ncol = 3, byrow = TRUE); B
## [,1] [,2] [,3]
## [1,] 3 8 5
## [2,] 8 6 1
## [3,] 4 8 7
Penjumlahan matriks adalah operasi yang dilakukan dengan menjumlahkan elemen-elemen yang bersesuaian dari dua matriks yang memiliki ordo sama. Pengurangan matriks adalah operasi yang dilakukan dengan mengurangkan elemen-elemen yang seposisi dari dua matriks berordo sama.
# penjumlahan
A + B
## [,1] [,2] [,3]
## [1,] 8 13 6
## [2,] 10 13 10
## [3,] 13 14 9
# pengurangan
A - B
## [,1] [,2] [,3]
## [1,] 2 -3 -4
## [2,] -6 1 8
## [3,] 5 -2 -5
Perkalian matriks adalah operasi aljabar linear yang dilakukan dengan cara mengalikan elemen-elemen pada baris matriks pertama dengan elemen-elemen pada kolom matriks kedua, lalu menjumlahkan hasilnya.
# perkalian
A %*% B
## [,1] [,2] [,3]
## [1,] 59 78 37
## [2,] 98 130 80
## [3,] 83 124 65
Selain itu, jika ingin mengalikan sebuah matriks dengan suatu skalar, atau hanya ingin melakukan perkalian langsung pada setiap elemennya (bukan perkalian baris dengan kolom), maka cara penulisannya adalah sebagai berikut.
# perkalian dengan skalar
2*A
## [,1] [,2] [,3]
## [1,] 10 10 2
## [2,] 4 14 18
## [3,] 18 12 4
# perkalian elemen
A*B
## [,1] [,2] [,3]
## [1,] 15 40 5
## [2,] 16 42 9
## [3,] 36 48 14
Transpose dari sebuah matriks adalah matriks baru yang diperoleh dengan menukar baris menjadi kolom dan kolom menjadi baris.
# transpose
transA = t(A); transA
## [,1] [,2] [,3]
## [1,] 5 2 9
## [2,] 5 7 6
## [3,] 1 9 2
transB = t(B); transB
## [,1] [,2] [,3]
## [1,] 3 8 4
## [2,] 8 6 8
## [3,] 5 1 7
Invers suatu matriks X^-1 didefinisikan sehingga berlaku: \[ XX^-1 = X^-1X = I \] Sebuah matriks hanya memiliki invers apabila nilai determinannya tidak sama dengan nol. Berikut adalah fungsi di R untuk menghitung invers matriks.
# invers
inv_A = solve(A); inv_A
## [,1] [,2] [,3]
## [1,] -0.2985075 -0.029850746 0.2835821
## [2,] 0.5746269 0.007462687 -0.3208955
## [3,] -0.3805970 0.111940299 0.1865672
inv_B = solve(B); inv_B
## [,1] [,2] [,3]
## [1,] -0.2982456 0.14035088 0.1929825
## [2,] 0.4561404 -0.00877193 -0.3245614
## [3,] -0.3508772 -0.07017544 0.4035088
Determinan merupakan sebuah nilai skalar yang menggambarkan faktor skala dari suatu transformasi linear. Jika determinan bernilai 0, maka matriks tersebut disebut singular dan tidak memiliki invers. Untuk matriks X berordo 2x2 dengan elemen [a b;c d], nilai determinannya dapat dihitung dengan rumus: \[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \to det(A) =ad-bc \] Akan tetapi, untuk matriks dengan ordo lebih dari 2×2, perhitungan determinan menjadi lebih rumit, sehingga biasanya digunakan fungsi berikut.
det(A)
## [1] 134
det(B)
## [1] -114
Di dalam R, elemen-elemen dari sebuah matriks bisa diakses atau dipanggil dengan cara berikut.
A # Memanggil keseluruhan matriks
## [,1] [,2] [,3]
## [1,] 5 5 1
## [2,] 2 7 9
## [3,] 9 6 2
A[,2] # Kolom 2
## [1] 5 7 6
A[3,] # Baris 3
## [1] 9 6 2
A[3,2] # Sel(3, 2)
## [1] 6
A[c(1,3),2] # Sel(1,2) dan sel(3,2)
## [1] 5 6
A[,1:3] # kolom(1,2,3)
## [,1] [,2] [,3]
## [1,] 5 5 1
## [2,] 2 7 9
## [3,] 9 6 2
Eigenvalue merepresentasikan besarnya variasi (informasi) yang dapat dijelaskan oleh suatu komponen. Nilai tersebut diperoleh melalui penyelesaian persamaan karakteristik berikut: \[ det(A-\lambda I) = 0 \]
Eigenvector menggambarkan arah atau komponen tertentu yang menjelaskan variasi (informasi) dalam data. Eigenvector ini diperoleh dari penyelesaian persamaan berikut: \[Av=\lambda I\]
eigA = eigen(A); eigA
## eigen() decomposition
## $values
## [1] 15.465486+0.000000i -0.732743+2.850884i -0.732743-2.850884i
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.3953558+0i 0.3890973+0.2405876i 0.3890973-0.2405876i
## [2,] 0.7112818+0i -0.6834458+0.0000000i -0.6834458+0.0000000i
## [3,] 0.5811816+0i 0.5007462-0.2699556i 0.5007462+0.2699556i
eigB = eigen(B); eigB
## eigen() decomposition
## $values
## [1] 16.245151 -2.774462 2.529311
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.5526815 0.6986991 0.1256700
## [2,] 0.4968718 -0.6666242 -0.5311036
## [3,] 0.6690751 0.2596764 0.8379355
eigvalA = eigA$values; eigvalA
## [1] 15.465486+0.000000i -0.732743+2.850884i -0.732743-2.850884i
eigvalB = eigB$values; eigvalB
## [1] 16.245151 -2.774462 2.529311
eigvecA = eigA$vectors; eigvecA
## [,1] [,2] [,3]
## [1,] 0.3953558+0i 0.3890973+0.2405876i 0.3890973-0.2405876i
## [2,] 0.7112818+0i -0.6834458+0.0000000i -0.6834458+0.0000000i
## [3,] 0.5811816+0i 0.5007462-0.2699556i 0.5007462+0.2699556i
eigvecB = eigB$vectors; eigvecB
## [,1] [,2] [,3]
## [1,] 0.5526815 0.6986991 0.1256700
## [2,] 0.4968718 -0.6666242 -0.5311036
## [3,] 0.6690751 0.2596764 0.8379355
SVD memecah sebuah matriks 𝐴m×n menjadi tiga matriks \[A=U\Sigma V^t\]
U = matriks ortogonal m x m, V = matriks orthogonal n x n, \(\Sigma\) = matriks berukuran m x n yang elemen-elemen diagonal utamanya adalah nilai-nilai singular dari matriks A dan elemen-elemen lainnya 0
library(MASS)
## Warning: package 'MASS' was built under R version 4.4.3
C <- matrix(c(5,-3,6,2,-4,8,-2,5,-1,7,3,9), 4, 3, byrow=TRUE)
C
## [,1] [,2] [,3]
## [1,] 5 -3 6
## [2,] 2 -4 8
## [3,] -2 5 -1
## [4,] 7 3 9
svd_result <- svd(C)
singular_value <- svd_result$d ; singular_value
## [1] 16.07076 7.41936 3.11187
U <- svd_result$u ; U
## [,1] [,2] [,3]
## [1,] -0.5046975 0.2278362 -0.3742460
## [2,] -0.5178195 0.4138180 0.7413297
## [3,] 0.1646416 -0.6063789 0.5337354
## [4,] -0.6708477 -0.6396483 -0.1596770
V <- svd_result$v ; V
## [,1] [,2] [,3]
## [1,] -0.5341591 -0.17494276 -0.8270847
## [2,] 0.1490928 -0.98251336 0.1115295
## [3,] -0.8321330 -0.06373793 0.5509011
Dalam konteks ini, jarak digunakan untuk menilai tingkat kemiripan atau perbedaan antara dua objek. Setiap jenis ukuran jarak memiliki makna dan interpretasi yang berbeda. Berikut adalah beberapa tahap persiapan yang diperlukan.
set.seed(321)
ss <- sample(1:50, 15)
df <- USArrests[ss, ]
df.scaled <- scale(df); df.scaled
## Murder Assault UrbanPop Rape
## Wyoming -0.3721741 -0.02296746 -0.3418930 -0.62039386
## Illinois 0.4221896 1.02244775 1.2520675 0.62633064
## Mississippi 1.6799322 1.14124493 -1.4507350 -0.39776448
## Kansas -0.5486994 -0.56943449 0.0739228 -0.26418686
## New York 0.5766492 1.08184634 1.4599754 0.93801176
## Kentucky 0.2677300 -0.64071280 -0.8963140 -0.51650015
## Oklahoma -0.4163054 -0.14176464 0.2125281 0.03265231
## Hawaii -0.7031590 -1.38913505 1.2520675 0.06233622
## Missouri 0.1132704 0.17898775 0.3511333 1.24969289
## New Mexico 0.6428462 1.45011760 0.3511333 1.82852926
## Louisiana 1.5254725 1.02244775 0.0739228 0.35917539
## South Dakota -1.0341439 -0.91394632 -1.3814324 -1.03596869
## Iowa -1.3871944 -1.27033787 -0.5498008 -1.25859806
## North Dakota -1.6961136 -1.40101477 -1.4507350 -1.85227639
## Texas 0.9296998 0.45222127 1.0441596 0.84896001
## attr(,"scaled:center")
## Murder Assault UrbanPop Rape
## 8.486667 162.933333 64.933333 19.780000
## attr(,"scaled:scale")
## Murder Assault UrbanPop Rape
## 4.531929 84.177081 14.429467 6.737655
Jarak Euclidean adalah ukuran jarak berupa garis terpendek (jarak lurus) yang menghubungkan dua titik dalam ruang berdimensi-\(p\). Ukuran ini sering disebut juga sebagai jarak lurus standar. Rumus perhitungannya dapat dituliskan sebagai berikut:
\[ d_{ij}=\sum_{i=1}^p|x_{ki}-x_{kj}| \] > Keterangan : > > \(x_{ki}\) = Vektor ke - k pada baris ke - i > > \(x_{kj}\)= Vektor ke - k pada baris ke - j
Berikut fungsinya pada R
dist.eucl <- dist(df.scaled, method = "euclidean"); dist.eucl
## Wyoming Illinois Mississippi Kansas New York Kentucky
## Illinois 2.4122476
## Mississippi 2.6164146 3.1543527
## Kansas 0.7934567 2.3786048 3.1993198
## New York 2.7921742 0.4095812 3.3878156 2.7128511
## Kentucky 1.0532156 2.9515362 2.3433244 1.2948587 3.2757206
## Oklahoma 0.8659748 1.8685718 2.9986711 0.5547563 2.2043102 1.4993175
## Hawaii 2.2322175 2.7203365 4.4270510 1.4800030 2.9246694 2.5403456
## Missouri 2.0625111 1.4167282 3.0563398 1.8349434 1.5351057 2.3176129
## New Mexico 3.1109091 1.5775154 3.0617092 3.1551035 1.4705638 3.4011133
## Louisiana 2.4137967 1.6360410 1.7133330 2.6879097 1.7776353 2.4609320
## South Dakota 1.5765126 3.9457686 3.4644086 1.7515852 4.3067435 1.5082173
## Iowa 1.7426214 3.9154083 4.0958166 1.6038155 4.2724405 1.9508929
## North Dakota 2.5296038 4.8794481 4.4694938 2.6181473 5.2524274 2.5546862
## Texas 2.4496576 0.8218968 2.9692463 2.3259192 0.8377979 2.6949264
## Oklahoma Hawaii Missouri New Mexico Louisiana South Dakota
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii 1.6491638
## Missouri 1.3724911 2.3123720
## New Mexico 2.6268378 3.7154012 1.4937447
## Louisiana 2.2916633 3.5012381 1.8909275 1.7882330
## South Dakota 2.1588538 2.9115203 3.2767510 4.4281177 3.7902169
## Iowa 2.1130016 2.3395756 3.3845451 4.6758935 4.0922753 0.9964108
## North Dakota 3.0891779 3.4578871 4.3173165 5.5131433 4.8442635 1.1604313
## Texas 1.8768374 2.5920693 1.1756214 1.5867966 1.3643137 3.8935265
## Iowa North Dakota
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii
## Missouri
## New Mexico
## Louisiana
## South Dakota
## Iowa
## North Dakota 1.1298867
## Texas 3.9137858 4.8837032
dist.eucl
## Wyoming Illinois Mississippi Kansas New York Kentucky
## Illinois 2.4122476
## Mississippi 2.6164146 3.1543527
## Kansas 0.7934567 2.3786048 3.1993198
## New York 2.7921742 0.4095812 3.3878156 2.7128511
## Kentucky 1.0532156 2.9515362 2.3433244 1.2948587 3.2757206
## Oklahoma 0.8659748 1.8685718 2.9986711 0.5547563 2.2043102 1.4993175
## Hawaii 2.2322175 2.7203365 4.4270510 1.4800030 2.9246694 2.5403456
## Missouri 2.0625111 1.4167282 3.0563398 1.8349434 1.5351057 2.3176129
## New Mexico 3.1109091 1.5775154 3.0617092 3.1551035 1.4705638 3.4011133
## Louisiana 2.4137967 1.6360410 1.7133330 2.6879097 1.7776353 2.4609320
## South Dakota 1.5765126 3.9457686 3.4644086 1.7515852 4.3067435 1.5082173
## Iowa 1.7426214 3.9154083 4.0958166 1.6038155 4.2724405 1.9508929
## North Dakota 2.5296038 4.8794481 4.4694938 2.6181473 5.2524274 2.5546862
## Texas 2.4496576 0.8218968 2.9692463 2.3259192 0.8377979 2.6949264
## Oklahoma Hawaii Missouri New Mexico Louisiana South Dakota
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii 1.6491638
## Missouri 1.3724911 2.3123720
## New Mexico 2.6268378 3.7154012 1.4937447
## Louisiana 2.2916633 3.5012381 1.8909275 1.7882330
## South Dakota 2.1588538 2.9115203 3.2767510 4.4281177 3.7902169
## Iowa 2.1130016 2.3395756 3.3845451 4.6758935 4.0922753 0.9964108
## North Dakota 3.0891779 3.4578871 4.3173165 5.5131433 4.8442635 1.1604313
## Texas 1.8768374 2.5920693 1.1756214 1.5867966 1.3643137 3.8935265
## Iowa North Dakota
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii
## Missouri
## New Mexico
## Louisiana
## South Dakota
## Iowa
## North Dakota 1.1298867
## Texas 3.9137858 4.8837032
Jarak Chebyshev adalah ukuran jarak yang ditentukan oleh selisih terbesar di antara koordinat dua titik. Dengan kata lain, ukuran ini menekankan dimensi dengan perbedaan paling besar. Rumusnya dapat dituliskan sebagai berikut:
\[ d_{ij}=\max_i \, |x_{ki} - x_{kj}| \]
Keterangan :
\(x_{ki}\) = Vektor ke - k pada baris ke - i
\(x_{kj}\)= Vektor ke - k pada baris ke - j
Berikut fungsinya pada R.
dist.cheb <- dist(df.scaled, method = "maximum"); dist.cheb
## Wyoming Illinois Mississippi Kansas New York Kentucky
## Illinois 1.5939604
## Mississippi 2.0521063 2.7028025
## Kansas 0.5464670 1.5918822 2.2286315
## New York 1.8018683 0.3116811 2.9107104 1.6512808
## Kentucky 0.6399041 2.1483815 1.7819577 0.9702368 2.3562894
## Oklahoma 0.6530462 1.1642124 2.0962376 0.4276699 1.2474473 1.1088421
## Hawaii 1.5939604 2.4115828 2.7028025 1.1781447 2.4709814 2.1483815
## Missouri 1.8700867 0.9009342 1.8018683 1.5138797 1.1088421 1.7661930
## New Mexico 2.4489231 1.2021986 2.2262937 2.0927161 1.1088421 2.3450294
## Louisiana 1.8976467 1.1781447 1.5246578 2.0741719 1.3860526 1.6631605
## South Dakota 1.0395394 2.6334999 2.7140760 1.4553552 2.8414078 1.3018739
## Iowa 1.2473704 2.2927856 3.0671266 0.9944112 2.3521842 1.6549244
## North Dakota 1.3780473 2.7028025 3.3760458 1.5880895 2.9107104 1.9638436
## Texas 1.4693539 0.5702265 2.4948946 1.4783991 0.6296251 1.9404736
## Oklahoma Hawaii Missouri New Mexico Louisiana South Dakota
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii 1.2473704
## Missouri 1.2170406 1.5681228
## New Mexico 1.7958770 2.8392526 1.2711298
## Louisiana 1.9417780 2.4115828 1.4122022 1.4693539
## South Dakota 1.5939604 2.6334999 2.2856616 2.8644979 2.5596164
## Iowa 1.2912504 1.8018683 2.5082909 3.0871273 2.9126670 0.8316315
## North Dakota 1.8849287 2.7028025 3.1019693 3.6808057 3.2215862 0.8163077
## Texas 1.3460052 1.8413563 0.8164294 0.9978963 0.9702368 2.4255920
## Iowa North Dakota
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii
## Missouri
## New Mexico
## Louisiana
## South Dakota
## Iowa
## North Dakota 0.9009342
## Texas 2.3168942 2.7012364
dist.cheb
## Wyoming Illinois Mississippi Kansas New York Kentucky
## Illinois 1.5939604
## Mississippi 2.0521063 2.7028025
## Kansas 0.5464670 1.5918822 2.2286315
## New York 1.8018683 0.3116811 2.9107104 1.6512808
## Kentucky 0.6399041 2.1483815 1.7819577 0.9702368 2.3562894
## Oklahoma 0.6530462 1.1642124 2.0962376 0.4276699 1.2474473 1.1088421
## Hawaii 1.5939604 2.4115828 2.7028025 1.1781447 2.4709814 2.1483815
## Missouri 1.8700867 0.9009342 1.8018683 1.5138797 1.1088421 1.7661930
## New Mexico 2.4489231 1.2021986 2.2262937 2.0927161 1.1088421 2.3450294
## Louisiana 1.8976467 1.1781447 1.5246578 2.0741719 1.3860526 1.6631605
## South Dakota 1.0395394 2.6334999 2.7140760 1.4553552 2.8414078 1.3018739
## Iowa 1.2473704 2.2927856 3.0671266 0.9944112 2.3521842 1.6549244
## North Dakota 1.3780473 2.7028025 3.3760458 1.5880895 2.9107104 1.9638436
## Texas 1.4693539 0.5702265 2.4948946 1.4783991 0.6296251 1.9404736
## Oklahoma Hawaii Missouri New Mexico Louisiana South Dakota
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii 1.2473704
## Missouri 1.2170406 1.5681228
## New Mexico 1.7958770 2.8392526 1.2711298
## Louisiana 1.9417780 2.4115828 1.4122022 1.4693539
## South Dakota 1.5939604 2.6334999 2.2856616 2.8644979 2.5596164
## Iowa 1.2912504 1.8018683 2.5082909 3.0871273 2.9126670 0.8316315
## North Dakota 1.8849287 2.7028025 3.1019693 3.6808057 3.2215862 0.8163077
## Texas 1.3460052 1.8413563 0.8164294 0.9978963 0.9702368 2.4255920
## Iowa North Dakota
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii
## Missouri
## New Mexico
## Louisiana
## South Dakota
## Iowa
## North Dakota 0.9009342
## Texas 2.3168942 2.7012364
Jarak Manhattan adalah ukuran jarak yang dihitung sebagai jumlah dari selisih absolut antar koordinat dua titik. Konsepnya mirip dengan pergerakan di jalan kota berbentuk grid, di mana pergerakan hanya bisa dilakukan secara horizontal dan vertikal. Rumusnya dituliskan sebagai berikut:
\[ d_{ij}=\sum_{i=1}^p|x_{ki}-x_{kj}| \]
Keterangan :
\(x_{ki}\) = Vektor ke - k pada baris ke - i
\(x_{kj}\)= Vektor ke - k pada baris ke - j
Berikut perhitungannya pada R.
dist.man <- dist(df.scaled, method = "manhattan"); dist.man
## Wyoming Illinois Mississippi Kansas New York Kentucky
## Illinois 4.6804639
## Mississippi 4.5477901 5.1034373
## Kansas 1.4950151 4.6314334 5.5975464
## New York 5.4139111 0.7334472 5.4091682 5.3648806
## Kentucky 1.9159642 5.1088324 3.8673166 2.1102578 5.8422796
## Oklahoma 1.3703957 3.6359252 5.4729270 0.9955082 4.3693724 2.8409781
## Hawaii 3.9738430 4.1009258 8.0763743 2.4788279 4.8343730 4.4465291
## Missouri 3.2505127 2.6766756 5.9782446 3.2014823 2.7867606 3.9878005
## New Mexico 5.6300548 2.7514592 5.3741207 5.5810243 2.4338278 6.0584233
## Louisiana 4.3384469 2.5485829 2.5548545 4.2894164 2.9731109 4.7668154
## South Dakota 3.0080629 7.6885267 5.4767741 3.0570933 8.4219740 2.5796943
## Iowa 3.1085028 7.7889667 7.2404771 3.1575333 8.5224139 3.3731605
## North Dakota 5.0427114 9.7231753 7.3728174 5.0917419 10.4566225 4.6143429
## Texas 4.6324690 1.5082739 5.1808752 4.5834386 1.4875431 5.0608376
## Oklahoma Hawaii Missouri New Mexico Louisiana
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii 2.6034473
## Missouri 2.2059740 4.4728430
## New Mexico 4.5855161 6.8523850 2.3795420
## Louisiana 3.5711187 6.1151982 3.4233902 3.0568606
## South Dakota 4.0526016 4.5379784 6.2585756 8.6381176 7.3465098
## Iowa 4.1530415 3.9256352 6.3590155 8.7385576 7.4469497
## North Dakota 6.0872501 5.6222495 8.2932241 10.6727662 9.3811583
## Texas 3.5879303 4.4687467 2.1834220 2.9573454 2.6260207
## South Dakota Iowa North Dakota
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii
## Missouri
## New Mexico
## Louisiana
## South Dakota
## Iowa 1.7637030
## North Dakota 2.0346485 1.9342086
## Texas 7.6405319 7.7409718 9.6751804
dist.man
## Wyoming Illinois Mississippi Kansas New York Kentucky
## Illinois 4.6804639
## Mississippi 4.5477901 5.1034373
## Kansas 1.4950151 4.6314334 5.5975464
## New York 5.4139111 0.7334472 5.4091682 5.3648806
## Kentucky 1.9159642 5.1088324 3.8673166 2.1102578 5.8422796
## Oklahoma 1.3703957 3.6359252 5.4729270 0.9955082 4.3693724 2.8409781
## Hawaii 3.9738430 4.1009258 8.0763743 2.4788279 4.8343730 4.4465291
## Missouri 3.2505127 2.6766756 5.9782446 3.2014823 2.7867606 3.9878005
## New Mexico 5.6300548 2.7514592 5.3741207 5.5810243 2.4338278 6.0584233
## Louisiana 4.3384469 2.5485829 2.5548545 4.2894164 2.9731109 4.7668154
## South Dakota 3.0080629 7.6885267 5.4767741 3.0570933 8.4219740 2.5796943
## Iowa 3.1085028 7.7889667 7.2404771 3.1575333 8.5224139 3.3731605
## North Dakota 5.0427114 9.7231753 7.3728174 5.0917419 10.4566225 4.6143429
## Texas 4.6324690 1.5082739 5.1808752 4.5834386 1.4875431 5.0608376
## Oklahoma Hawaii Missouri New Mexico Louisiana
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii 2.6034473
## Missouri 2.2059740 4.4728430
## New Mexico 4.5855161 6.8523850 2.3795420
## Louisiana 3.5711187 6.1151982 3.4233902 3.0568606
## South Dakota 4.0526016 4.5379784 6.2585756 8.6381176 7.3465098
## Iowa 4.1530415 3.9256352 6.3590155 8.7385576 7.4469497
## North Dakota 6.0872501 5.6222495 8.2932241 10.6727662 9.3811583
## Texas 3.5879303 4.4687467 2.1834220 2.9573454 2.6260207
## South Dakota Iowa North Dakota
## Illinois
## Mississippi
## Kansas
## New York
## Kentucky
## Oklahoma
## Hawaii
## Missouri
## New Mexico
## Louisiana
## South Dakota
## Iowa 1.7637030
## North Dakota 2.0346485 1.9342086
## Texas 7.6405319 7.7409718 9.6751804
Jarak Mahalanobis adalah ukuran jarak antara dua titik yang memperhitungkan skala (varians) serta korelasi antarvariabel. Dengan demikian, jarak ini lebih tepat digunakan pada data multivariat. Rumus perhitungannya adalah sebagai berikut:
\[ d_{ij}=\sum_{i=1}^p|x_{ki}-x_{kj}| \]
Keterangan :
\(x_{ki}\) = Vektor ke - k pada baris ke - i
\(x_{kj}\)= Vektor ke - k pada baris ke - j
Berikut perhitungannya.
library(StatMatch)
## Warning: package 'StatMatch' was built under R version 4.4.3
## Loading required package: proxy
## Warning: package 'proxy' was built under R version 4.4.3
##
## Attaching package: 'proxy'
## The following objects are masked from 'package:stats':
##
## as.dist, dist
## The following object is masked from 'package:base':
##
## as.matrix
## Loading required package: survey
## Warning: package 'survey' was built under R version 4.4.3
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
## Loading required package: lpSolve
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.4.3
## Loading required package: dplyr
## Warning: package 'dplyr' was built under R version 4.4.3
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
dist.mah <- mahalanobis.dist(df.scaled); dist.mah
## Wyoming Illinois Mississippi Kansas New York Kentucky
## Wyoming 0.000000 1.7186109 2.820779 1.4195095 1.8695558 2.867847
## Illinois 1.718611 0.0000000 3.658323 2.2905255 0.4722069 3.878642
## Mississippi 2.820779 3.6583235 0.000000 3.2139075 3.6566922 2.544477
## Kansas 1.419510 2.2905255 3.213907 0.0000000 2.1522535 2.048031
## New York 1.869556 0.4722069 3.656692 2.1522535 0.0000000 3.698342
## Kentucky 2.867847 3.8786421 2.544477 2.0480310 3.6983422 0.000000
## Oklahoma 1.146496 1.8980286 3.237573 0.6499978 1.7772007 2.505941
## Hawaii 3.466671 3.6449604 4.722203 2.2108491 3.3748818 2.753554
## Missouri 3.198071 3.6796400 3.956918 2.2592572 3.3618939 2.642756
## New Mexico 3.281318 3.5101406 4.057258 3.1016653 3.2869855 3.870023
## Louisiana 2.284940 2.5550539 1.688058 2.2700723 2.4136664 2.119635
## South Dakota 1.826205 3.3564158 3.087365 1.6274307 3.3404110 2.261154
## Iowa 1.327907 2.6329606 3.559587 1.1128197 2.6839965 2.621704
## North Dakota 1.582582 3.1919907 3.553572 1.9466491 3.3317039 3.040465
## Texas 2.540604 2.4769381 3.093919 1.7462066 2.1399545 2.108949
## Oklahoma Hawaii Missouri New Mexico Louisiana South Dakota
## Wyoming 1.1464956 3.466671 3.198071 3.281318 2.284940 1.826205
## Illinois 1.8980286 3.644960 3.679640 3.510141 2.555054 3.356416
## Mississippi 3.2375727 4.722203 3.956918 4.057258 1.688058 3.087365
## Kansas 0.6499978 2.210849 2.259257 3.101665 2.270072 1.627431
## New York 1.7772007 3.374882 3.361894 3.286985 2.413666 3.340411
## Kentucky 2.5059414 2.753554 2.642756 3.870023 2.119635 2.261154
## Oklahoma 0.0000000 2.705865 2.203038 2.660216 2.350208 1.672866
## Hawaii 2.7058650 0.000000 3.193764 4.645567 3.383255 3.551072
## Missouri 2.2030382 3.193764 0.000000 1.836797 3.256319 2.505784
## New Mexico 2.6602159 4.645567 1.836797 0.000000 3.676879 3.026024
## Louisiana 2.3502077 3.383255 3.256319 3.676879 0.000000 3.021642
## South Dakota 1.6728664 3.551072 2.505784 3.026024 3.021642 0.000000
## Iowa 1.3299426 2.790197 3.145245 3.792086 2.954252 1.518854
## North Dakota 1.9813596 3.780966 3.590548 3.950259 3.434074 1.304743
## Texas 1.9635201 2.082005 2.576037 3.501666 1.527269 3.090805
## Iowa North Dakota Texas
## Wyoming 1.327907 1.582582 2.540604
## Illinois 2.632961 3.191991 2.476938
## Mississippi 3.559587 3.553572 3.093919
## Kansas 1.112820 1.946649 1.746207
## New York 2.683996 3.331704 2.139954
## Kentucky 2.621704 3.040465 2.108949
## Oklahoma 1.329943 1.981360 1.963520
## Hawaii 2.790197 3.780966 2.082005
## Missouri 3.145245 3.590548 2.576037
## New Mexico 3.792086 3.950259 3.501666
## Louisiana 2.954252 3.434074 1.527269
## South Dakota 1.518854 1.304743 3.090805
## Iowa 0.000000 1.045923 2.734770
## North Dakota 1.045923 0.000000 3.563193
## Texas 2.734770 3.563193 0.000000
dist.mah_matrix <- as.matrix(dist.mah);dist.mah_matrix
## Wyoming Illinois Mississippi Kansas New York Kentucky
## Wyoming 0.000000 1.7186109 2.820779 1.4195095 1.8695558 2.867847
## Illinois 1.718611 0.0000000 3.658323 2.2905255 0.4722069 3.878642
## Mississippi 2.820779 3.6583235 0.000000 3.2139075 3.6566922 2.544477
## Kansas 1.419510 2.2905255 3.213907 0.0000000 2.1522535 2.048031
## New York 1.869556 0.4722069 3.656692 2.1522535 0.0000000 3.698342
## Kentucky 2.867847 3.8786421 2.544477 2.0480310 3.6983422 0.000000
## Oklahoma 1.146496 1.8980286 3.237573 0.6499978 1.7772007 2.505941
## Hawaii 3.466671 3.6449604 4.722203 2.2108491 3.3748818 2.753554
## Missouri 3.198071 3.6796400 3.956918 2.2592572 3.3618939 2.642756
## New Mexico 3.281318 3.5101406 4.057258 3.1016653 3.2869855 3.870023
## Louisiana 2.284940 2.5550539 1.688058 2.2700723 2.4136664 2.119635
## South Dakota 1.826205 3.3564158 3.087365 1.6274307 3.3404110 2.261154
## Iowa 1.327907 2.6329606 3.559587 1.1128197 2.6839965 2.621704
## North Dakota 1.582582 3.1919907 3.553572 1.9466491 3.3317039 3.040465
## Texas 2.540604 2.4769381 3.093919 1.7462066 2.1399545 2.108949
## Oklahoma Hawaii Missouri New Mexico Louisiana South Dakota
## Wyoming 1.1464956 3.466671 3.198071 3.281318 2.284940 1.826205
## Illinois 1.8980286 3.644960 3.679640 3.510141 2.555054 3.356416
## Mississippi 3.2375727 4.722203 3.956918 4.057258 1.688058 3.087365
## Kansas 0.6499978 2.210849 2.259257 3.101665 2.270072 1.627431
## New York 1.7772007 3.374882 3.361894 3.286985 2.413666 3.340411
## Kentucky 2.5059414 2.753554 2.642756 3.870023 2.119635 2.261154
## Oklahoma 0.0000000 2.705865 2.203038 2.660216 2.350208 1.672866
## Hawaii 2.7058650 0.000000 3.193764 4.645567 3.383255 3.551072
## Missouri 2.2030382 3.193764 0.000000 1.836797 3.256319 2.505784
## New Mexico 2.6602159 4.645567 1.836797 0.000000 3.676879 3.026024
## Louisiana 2.3502077 3.383255 3.256319 3.676879 0.000000 3.021642
## South Dakota 1.6728664 3.551072 2.505784 3.026024 3.021642 0.000000
## Iowa 1.3299426 2.790197 3.145245 3.792086 2.954252 1.518854
## North Dakota 1.9813596 3.780966 3.590548 3.950259 3.434074 1.304743
## Texas 1.9635201 2.082005 2.576037 3.501666 1.527269 3.090805
## Iowa North Dakota Texas
## Wyoming 1.327907 1.582582 2.540604
## Illinois 2.632961 3.191991 2.476938
## Mississippi 3.559587 3.553572 3.093919
## Kansas 1.112820 1.946649 1.746207
## New York 2.683996 3.331704 2.139954
## Kentucky 2.621704 3.040465 2.108949
## Oklahoma 1.329943 1.981360 1.963520
## Hawaii 2.790197 3.780966 2.082005
## Missouri 3.145245 3.590548 2.576037
## New Mexico 3.792086 3.950259 3.501666
## Louisiana 2.954252 3.434074 1.527269
## South Dakota 1.518854 1.304743 3.090805
## Iowa 0.000000 1.045923 2.734770
## North Dakota 1.045923 0.000000 3.563193
## Texas 2.734770 3.563193 0.000000
Jarak Minkowski merupakan ukuran jarak antara dua titik dalam ruang vektor yang ditentukan oleh suatu parameter \(p\). Ukuran ini bersifat umum karena menjadi bentuk dasar yang dapat mencakup beberapa jenis jarak lain (misalnya Euclidean dan Manhattan).
Jika terdapat dua titik \(x\) dan \(y\), maka rumusnya adalah sebagai berikut:
\[X = (x_{1},x_{2},...,x_{n}) \] \[ Dan \]
\[ Y = (y_{1},y_{2},...,y_{n}) \]
maka jarak minkowski didefinisikan sebagai berikut :
\[ D(X,Y) =(\sum_{i=1}^n|x_{i}-y_{i}|^p)^\frac{1}{p} \]
Catatan :
\(p=1\) artinya Jarak Manhattan
\(p=2\) artinya Jarak Euclidean
\(p =\infty\) artinya Jarak Chebyshev
Berikut perhitungannya pada R.
set.seed(123)
#Data random (5 observasi dengan 3 variabel)
data <- matrix(runif(15, min = 1, max = 10), nrow = 5, ncol = 3)
colnames(data) <- c("X1", "X2", "X3")
print("Data random:")
## [1] "Data random:"
print(data)
## X1 X2 X3
## [1,] 3.588198 1.410008 9.611500
## [2,] 8.094746 5.752949 5.080007
## [3,] 4.680792 9.031771 7.098136
## [4,] 8.947157 5.962915 6.153701
## [5,] 9.464206 5.109533 1.926322
#Tentukan dua titik yang akan dihitung jaraknya
p1 <- data[1, ];p1
## X1 X2 X3
## 3.588198 1.410008 9.611500
p2 <- data[2, ];p2
## X1 X2 X3
## 8.094746 5.752949 5.080007
#Fungsi jarak Minkowski
minkowski_distance <- function(x, y, p) {
sum(abs(x - y)^p)^(1/p)
}
# Contoh penggunaan dengan p = 1 (Manhattan), p = 2 (Euclidean), p = 3 (Minkowski umum)
dist_p1 <- minkowski_distance(p1, p2, p = 1);dist_p1
## [1] 13.38098
dist_p2 <- minkowski_distance(p1, p2, p = 2);dist_p2
## [1] 7.726871
dist_p3 <- minkowski_distance(p1, p2, p = 3);dist_p3
## [1] 6.435156
dist_inf <- max(abs(p1 - p2));dist_inf
## [1] 4.531493
Misalkan ada m buah vektor berdimensi n :
\[ X = (x_{1},x_{2},...,x_{n}) \]
Maka, vektor rata - rata didefinisikan sebagai :
\[ \bar{X}=\frac{1}{m}\sum_{j=1}^mx_{j} \] Berikut contoh perhitungan pada R.
#input data kadal
BB = c(6.2,11.5,8.7,10.1,7.8,6.9,12.0,3.1,14.8,9.4)
PM = c(61,73,68,70,64,60,76,49,84,71)
RTB = c(115,138,127,123,131,120,143,95,160,128)
lizard = as.matrix(cbind(BB,PM,RTB)); lizard
## BB PM RTB
## [1,] 6.2 61 115
## [2,] 11.5 73 138
## [3,] 8.7 68 127
## [4,] 10.1 70 123
## [5,] 7.8 64 131
## [6,] 6.9 60 120
## [7,] 12.0 76 143
## [8,] 3.1 49 95
## [9,] 14.8 84 160
## [10,] 9.4 71 128
#Matriks Rata-Rata Matriks rata-rata merupakan representasi dari nilai rata-rata setiap variabel dalam suatu dataset yang dituliskan dalam bentuk matriks. Umumnya, matriks rata-rata berbentuk vektor kolom yang berisi rata-rata masing-masing variabel.
Berikut contoh fungsinya di R:
vecMeans = as.matrix(colMeans(lizard)); vecMeans
## [,1]
## BB 9.05
## PM 67.60
## RTB 128.00
vecRata = matrix(c(mean(BB), mean(PM), mean(RTB)), nrow=3, ncol=1); vecRata
## [,1]
## [1,] 9.05
## [2,] 67.60
## [3,] 128.00
Matriks kovarians menunjukkan sejauh mana pasangan variabel berubah secara bersamaan. Jika kovarians bernilai positif, kedua variabel cenderung meningkat atau menurun bersama; sedangkan jika bernilai negatif, ketika satu variabel meningkat, variabel lainnya cenderung menurun. Rumus umumnya dapat dituliskan sebagai berikut: \[ \Sigma = \begin{bmatrix} \text{cov}(X, X) & \text{cov}(X, Y) & \text{cov}(X, Z) \\ \text{cov}(Y, X) & \text{cov}(Y, Y) & \text{cov}(Y, Z) \\ \text{cov}(Z, X) & \text{cov}(Z, Y) & \text{cov}(Z, Z) \end{bmatrix} = \begin{bmatrix} \sigma^2_X & \sigma_{XY} & \sigma_{XZ} \\ \sigma_{YX} & \sigma^2_Y & \sigma_{YZ} \\ \sigma_{ZX} & \sigma_{ZY} & \sigma^2_Z \end{bmatrix} \]
Berikut fungsinya pada R.
varkov = cov(lizard); varkov
## BB PM RTB
## BB 10.98056 31.80000 54.96667
## PM 31.80000 94.04444 160.22222
## RTB 54.96667 160.22222 300.66667
Matriks korelasi merupakan matriks berbentuk persegi yang menampilkan kekuatan dan arah hubungan linear antar variabel dalam suatu dataset. Nilai korelasi berkisar antara \(-1\) hingga \(+1\).
Rumus umumnya adalah sebagai berikut:
\[ R = \begin{bmatrix} 1 & r_{12} & r_{13} \\ r_{21} & 1 & r_{23} \\ r_{31} & r_{32} & 1 \end{bmatrix} \] Berikut fungsinya pada R.
korel = cor(lizard); korel
## BB PM RTB
## BB 1.0000000 0.9895743 0.9566313
## PM 0.9895743 1.0000000 0.9528259
## RTB 0.9566313 0.9528259 1.0000000
Matriks standardisasi pada dasarnya berisi nilai akar dari variansi masing-masing variabel, yang digunakan untuk menyesuaikan skala variabel sehingga memiliki standar deviasi yang sama. Berikut contoh penerapannya di R:
n = nrow(lizard);n
## [1] 10
u = matrix(1,n,1); u
## [,1]
## [1,] 1
## [2,] 1
## [3,] 1
## [4,] 1
## [5,] 1
## [6,] 1
## [7,] 1
## [8,] 1
## [9,] 1
## [10,] 1
xbar = cbind((1/n)*t(u)%*%lizard); xbar
## BB PM RTB
## [1,] 9.05 67.6 128
D = lizard - u %*% xbar; D
## BB PM RTB
## [1,] -2.85 -6.6 -13
## [2,] 2.45 5.4 10
## [3,] -0.35 0.4 -1
## [4,] 1.05 2.4 -5
## [5,] -1.25 -3.6 3
## [6,] -2.15 -7.6 -8
## [7,] 2.95 8.4 15
## [8,] -5.95 -18.6 -33
## [9,] 5.75 16.4 32
## [10,] 0.35 3.4 0
S = (1/(n-1))*t(D)%*%D; S
## BB PM RTB
## BB 10.98056 31.80000 54.96667
## PM 31.80000 94.04444 160.22222
## RTB 54.96667 160.22222 300.66667
Ds = diag(sqrt(diag(S))); Ds
## [,1] [,2] [,3]
## [1,] 3.313692 0.000000 0.00000
## [2,] 0.000000 9.697651 0.00000
## [3,] 0.000000 0.000000 17.33974
R = solve(Ds) %*% S %*% solve(Ds); R
## [,1] [,2] [,3]
## [1,] 1.0000000 0.9895743 0.9566313
## [2,] 0.9895743 1.0000000 0.9528259
## [3,] 0.9566313 0.9528259 1.0000000