1 OPERASI MATRIKS

Matriks adalah susunan bilangan yang disusun berdasarkan baris dan kolom membentuk persegi atau persegi panjang. Angka-angka di dalam matriks disebut sebagai elemen matriks. Di dalam matriks, dapat dilakukan berbagai operasi seperti penjumlahan, pengurangan, perkalian, dan lain-lain.

1.1 Penjumlahan (X+Y)

Operasi ini dilakukan untuk menjumlahkan elemen-elemen di dalam satu matriks dengan matriks lainnya.

\[ \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix} \]

Contoh operasi penjumlahan matriks adalah sebagai berikut:

X = matrix(c(6.5,8.2,7.9,
             5.4,7.0,6.7,
             8.1,6.9,9.2), nrow = 3, ncol = 3); X
##      [,1] [,2] [,3]
## [1,]  6.5  5.4  8.1
## [2,]  8.2  7.0  6.9
## [3,]  7.9  6.7  9.2
Y = matrix(c(7.3,6.8,8.5,
             8.9,7.6,6.1,
             9.4,8.0,7.2), nrow = 3, ncol = 3, byrow = TRUE); Y
##      [,1] [,2] [,3]
## [1,]  7.3  6.8  8.5
## [2,]  8.9  7.6  6.1
## [3,]  9.4  8.0  7.2
X + Y
##      [,1] [,2] [,3]
## [1,] 13.8 12.2 16.6
## [2,] 17.1 14.6 13.0
## [3,] 17.3 14.7 16.4

1.2 Pengurangan (X-Y)

Operasi ini dilakukan untuk mengurangkan elemen-elemen di dalam satu matriks dengan matriks lainnya.

\[ \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a-e & b-f \\ c-g & d-h \end{bmatrix} \]

Contoh operasi pengurangan matriks adalah sebagai berikut:

X-Y
##      [,1] [,2] [,3]
## [1,] -0.8 -1.4 -0.4
## [2,] -0.7 -0.6  0.8
## [3,] -1.5 -1.3  2.0
Y-X
##      [,1] [,2] [,3]
## [1,]  0.8  1.4  0.4
## [2,]  0.7  0.6 -0.8
## [3,]  1.5  1.3 -2.0

1.3 Perkalian Baris dan Kolom Matriks (X%*%Y)

Operasi ini dilakukan untuk mengalikan baris dan kolom di dalam satu matriks dengan matriks lainnya. Contoh operasi perkalian matriks adalah sebagai berikut:

\[ \begin{bmatrix} a & b \\ c & d \end{bmatrix} . \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a.e+b.g & a.f+b.h \\ c.e+d.g & c.f+d.h \end{bmatrix} \]

X %*% Y
##        [,1]   [,2]   [,3]
## [1,] 171.65 150.04 146.51
## [2,] 187.02 164.16 162.08
## [3,] 203.78 178.24 174.26
Y %*% X
##        [,1]   [,2]   [,3]
## [1,] 170.36 143.97 184.25
## [2,] 168.36 142.13 180.65
## [3,] 183.58 155.00 197.58

1.4 Perkalian Elemen Matriks (X*Y)

Operasi ini dilakukan untuk mengalikan elemen di dalam satu matriks dengan elemen di dalam matriks lainnya atau suatu skalar dengan elemen matriks.

\[ \begin{bmatrix} a & b \\ c & d \end{bmatrix} ∘ \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a.e & b.f \\ c.g & d.h \end{bmatrix} \]

\[ k \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} k.a & k.b \\ k.c & k.d \end{bmatrix} \]

Contoh operasi perkalian elemen matriks adalah sebagai berikut:

X*Y
##       [,1]  [,2]  [,3]
## [1,] 47.45 36.72 68.85
## [2,] 72.98 53.20 42.09
## [3,] 74.26 53.60 66.24
2*X
##      [,1] [,2] [,3]
## [1,] 13.0 10.8 16.2
## [2,] 16.4 14.0 13.8
## [3,] 15.8 13.4 18.4

1.5 Matriks Transpose

Matriks Transpose merupakan matriks yang diperoleh dari hasil penukaran baris menjadi kolom dan kolom menjadi baris.

\[ A= \begin{bmatrix} a & b \\ c & d \end{bmatrix} -> A^T= \begin{bmatrix} a & c \\ b & d \end{bmatrix} \]

Contoh matriks transpose adalah sebagai berikut:

transX = t(X); transX
##      [,1] [,2] [,3]
## [1,]  6.5  8.2  7.9
## [2,]  5.4  7.0  6.7
## [3,]  8.1  6.9  9.2
transY = t(Y); transY
##      [,1] [,2] [,3]
## [1,]  7.3  8.9  9.4
## [2,]  6.8  7.6  8.0
## [3,]  8.5  6.1  7.2

1.6 Invers Matriks

Invers matriks adalah kebalikan dari sebuah matriks yang apabila matriks tersebut dikalikan dengan inversnya maka akan menjadi matriks identitas.

\[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \]

Contoh invers matriks adalah sebagai berikut:

inv_X = solve(X); inv_X
##            [,1]      [,2]       [,3]
## [1,]  8.3848639  2.118136 -8.9709275
## [2,] -9.6585141 -1.933549  9.9538533
## [3,] -0.1661283 -0.410706  0.5629903
inv_Y = solve(Y); inv_Y
##             [,1]      [,2]      [,3]
## [1,] -1.27147766 -4.089347  4.965636
## [2,]  1.44759450  5.871993 -6.683849
## [3,]  0.05154639 -1.185567  1.082474

1.7 Determinan Matriks

Determinan matriks adalah didefinisikan sebagai selisih antara perkalian elemen-elemen pada diagonal utama dengan perkalian elemen-elemen pada diagonal sekunder.

Determinan Matriks 2x2 \[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \det(A) = ad - bc \]

Determinan Matriks 3x3 \[ A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, \quad \det(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \]

Contoh determinan matriks adalah sebagai berikut:

det(X)
## [1] 2.167
det(Y)
## [1] -4.656

2 SYNTAX LAIN UNTUK MEMBUAT SUATU MATRIKS DI SOFTWARE R

A <- matrix(21:40, nrow=4, ncol=5) ; A
##      [,1] [,2] [,3] [,4] [,5]
## [1,]   21   25   29   33   37
## [2,]   22   26   30   34   38
## [3,]   23   27   31   35   39
## [4,]   24   28   32   36   40
b <- c(4,7,2,8,5,9,6,3,1,10,12,11);b
##  [1]  4  7  2  8  5  9  6  3  1 10 12 11
B <- matrix(b, nrow=3, ncol=4, byrow=TRUE) ; B
##      [,1] [,2] [,3] [,4]
## [1,]    4    7    2    8
## [2,]    5    9    6    3
## [3,]    1   10   12   11
sel <- c(15,9,27,18)
nama_kolom <- c("C1", "C2")
nama_baris <- c("R1", "R2")
C <- matrix(sel, nrow=2, ncol=2,
            byrow=TRUE, dimnames=list(nama_baris,
                                      nama_kolom)) ; C
##    C1 C2
## R1 15  9
## R2 27 18

3 CARA MEMANGGIL KOMPONEN MATRIKS

3.1 Memanggil Semua Elemen Matriks

Untuk menampilkan suatu matriks secara utuh (semua elemen), cukup dengan memanggil nama dari matriks tersebut. Contohnya adalah sebagai berikut:

A
##      [,1] [,2] [,3] [,4] [,5]
## [1,]   21   25   29   33   37
## [2,]   22   26   30   34   38
## [3,]   23   27   31   35   39
## [4,]   24   28   32   36   40

3.2 Memanggil Salah Satu Kolom

Untuk menampilkan kolom tertentu dari suatu matriks, dapat dilakukan dengan memanggil matriks[,kolom]. Contoh apabila ingin memanggil kolom ke-2:

A[,2]
## [1] 25 26 27 28

3.3 Memanggil Salah Satu Baris

Untuk menampilkan baris tertentu dari suatu matriks, dapat dilakukan dengan memanggil matriks[baris,]. Contoh apabila ingin memanggil baris ke-3:

A[3,]
## [1] 23 27 31 35 39

3.4 Memanggil Salah Satu Elemen

Untuk menampilkan salah satu elemen tertentu dari suatu matriks, dapat dilakukan dengan memanggil matriks[baris,kolom]. Contoh apabila ingin menampilkan elemen di baris ke-3 dan kolom ke-2:

A[3,2]        # Sel(3, 2)
## [1] 27

3.5 Memanggil Beberapa Elemen di Dalam Satu Baris/Kolom

Untuk menampilkan beberapa elemen tertentu dari suatu matriks yang berada pada satu baris/kolom yang sama, dapat dilakukan dengan memanggil matriks[baris,c(kolom1,kolom2,…,kolomn)] atau matriks[c(baris1,baris2,…,barisn),kolom].

Contoh apabila ingin memanggil elemen (1,3),(1,2),(1,1):

A[1,c(3,2,1)] 
## [1] 29 25 21

Contoh apabila ingin memanggil elemen (1,2) dan (3,2):

A[c(1,3),2]
## [1] 25 27

3.6 Memanggil Rentang Baris Tertentu

Untuk memanggil rentang baris tertentu dari suatu matriks, dapat dilakukan dengan memanggil matriks[baris_awal:baris_akhir,]. Contoh apabila ingin memanggil seluruh kolom dari baris ke-2 sampai ke-4:

A[2:4,]
##      [,1] [,2] [,3] [,4] [,5]
## [1,]   22   26   30   34   38
## [2,]   23   27   31   35   39
## [3,]   24   28   32   36   40

3.7 Memanggil Rentang Kolom Tertentu

Untuk memanggil rentang kolom tertentu dari suatu matriks, dapat dilakukan dengan memanggil matriks[,kolom_awal:kolom_akhir]. Contoh apabila ingin memanggil seluruh baris dari kolom ke-1 sampai ke-3:

A[,1:3]
##      [,1] [,2] [,3]
## [1,]   21   25   29
## [2,]   22   26   30
## [3,]   23   27   31
## [4,]   24   28   32

4 EIGEN VALUE DAN EIGEN VECTOR

Vektor eigen adalah vektor tak nol yang mengalami perubahan skalar ketika dikalikan dengan matriks. Nilai skalar tersebut disebut eigen value. Eigen Value menunjukkan jumlah variasi (informasi) yang dapat dijelaskan oleh satu komponen, sedangkan Eigen Vector menunjukkan jumlah variasi (informasi) yang dijelaskan suatu komponen lainnya. Eigen Value dan eigen vector ini sangat berguna dalam analisis data multivariat misalnya Principal Komponen Analysis, Factor Analysis, dll.

Untuk mencari dekomposisi nilai eigen dan vektor eigen, dapat dilakukan dengan fungsi eigen(). Contoh penggunaanya adalah sebagai berikut:

eigX = eigen(X); eigX
## eigen() decomposition
## $values
## [1] 22.0140019  0.4816027  0.2043953
## 
## $vectors
##           [,1]       [,2]        [,3]
## [1,] 0.5268942  0.5218595  0.61121520
## [2,] 0.5752916 -0.8360039 -0.78978922
## [3,] 0.6256373  0.1695881  0.05146821
eigY = eigen(Y); eigY
## eigen() decomposition
## $values
## [1] 23.230397 -1.286223  0.155826
## 
## $vectors
##            [,1]       [,2]       [,3]
## [1,] -0.5633011 -0.7710948  0.5522886
## [2,] -0.5584126  0.5270180 -0.8126545
## [3,] -0.6089887  0.3573023  0.1859299

Apabila hanya ingin melihat nilai eigen, dapat dilakukan dengan $values. Contoh penggunaannya adalah sebagai berikut:

eigvalX = eigX$values; eigvalX
## [1] 22.0140019  0.4816027  0.2043953
eigvalY = eigY$values; eigvalY
## [1] 23.230397 -1.286223  0.155826

Apabila hanya ingin melihat vektor eigen, dapat dilakukan dengan $vectors. Contoh penggunaannya adalah sebagai berikut:

eigvecX = eigX$vectors; eigvecX
##           [,1]       [,2]        [,3]
## [1,] 0.5268942  0.5218595  0.61121520
## [2,] 0.5752916 -0.8360039 -0.78978922
## [3,] 0.6256373  0.1695881  0.05146821
eigvecY = eigY$vectors; eigvecY
##            [,1]       [,2]       [,3]
## [1,] -0.5633011 -0.7710948  0.5522886
## [2,] -0.5584126  0.5270180 -0.8126545
## [3,] -0.6089887  0.3573023  0.1859299

5 DEKOMPOSISI SINGULAR VALUE (SVD)

Dekomposisi Singular Value (SVD) merupakan cara memecah sebuah matriks 𝐴m×n menjadi tiga matriks. Dekomposisi Eigen hanya dapat digunakan di kasus tertentu (matriks persegi dengan syarat lainnya), sedangkan SVD selalu dapat digunakan untuk semua matriks. Contoh penggunaannya adalah sebagai berikut:

library(MASS)
A <- matrix(c(5,-3,6,2,-4,8,-2,5,-1,7,3,9), 4, 3, byrow=TRUE)
A
##      [,1] [,2] [,3]
## [1,]    5   -3    6
## [2,]    2   -4    8
## [3,]   -2    5   -1
## [4,]    7    3    9
svd_result <- svd(A)
singular_value <- svd_result$d ; singular_value
## [1] 16.07076  7.41936  3.11187
U <- svd_result$u ; U
##            [,1]       [,2]       [,3]
## [1,] -0.5046975  0.2278362 -0.3742460
## [2,] -0.5178195  0.4138180  0.7413297
## [3,]  0.1646416 -0.6063789  0.5337354
## [4,] -0.6708477 -0.6396483 -0.1596770
V <- svd_result$v ; V
##            [,1]        [,2]       [,3]
## [1,] -0.5341591 -0.17494276 -0.8270847
## [2,]  0.1490928 -0.98251336  0.1115295
## [3,] -0.8321330 -0.06373793  0.5509011
dengan:
d: Singular values, nilai yang menentukan kekuatan transformasi A di arah tertentu.
U: Eigenvector dari AAT yang menunjukkan arah di ruang baris
V: Eigenvector dari ATA yang menunjukkan arah di ruang kolom

6 MATRIKS JARAK

Matriks Jarak menunjukkan jarak antarpasangan objek yang ada. Nilai di setiap sel menunjukkan seberapa “jauh” dua objek tersebut antara satu sama lain. Contoh penggunaan matriks jarak adalah sebagai berikut:

set.seed(321)
ss <- sample(1:50, 15)
df <- USArrests[ss, ]
df.scaled <- scale(df); df.scaled
##                  Murder     Assault   UrbanPop        Rape
## Wyoming      -0.3721741 -0.02296746 -0.3418930 -0.62039386
## Illinois      0.4221896  1.02244775  1.2520675  0.62633064
## Mississippi   1.6799322  1.14124493 -1.4507350 -0.39776448
## Kansas       -0.5486994 -0.56943449  0.0739228 -0.26418686
## New York      0.5766492  1.08184634  1.4599754  0.93801176
## Kentucky      0.2677300 -0.64071280 -0.8963140 -0.51650015
## Oklahoma     -0.4163054 -0.14176464  0.2125281  0.03265231
## Hawaii       -0.7031590 -1.38913505  1.2520675  0.06233622
## Missouri      0.1132704  0.17898775  0.3511333  1.24969289
## New Mexico    0.6428462  1.45011760  0.3511333  1.82852926
## Louisiana     1.5254725  1.02244775  0.0739228  0.35917539
## South Dakota -1.0341439 -0.91394632 -1.3814324 -1.03596869
## Iowa         -1.3871944 -1.27033787 -0.5498008 -1.25859806
## North Dakota -1.6961136 -1.40101477 -1.4507350 -1.85227639
## Texas         0.9296998  0.45222127  1.0441596  0.84896001
## attr(,"scaled:center")
##     Murder    Assault   UrbanPop       Rape 
##   8.486667 162.933333  64.933333  19.780000 
## attr(,"scaled:scale")
##    Murder   Assault  UrbanPop      Rape 
##  4.531929 84.177081 14.429467  6.737655

6.1 Jarak Euclidean

Jarak lurus (garis terpendek) antara dua titik di ruang𝑝-dimensi (jarak lurus standar).

Contoh pengaplikasian:

  • Menghitung jarak garis lurus antar dua koordinat (GPS)

  • Clustering (K-Means, Hierarchical) → objek yang jaraknya dekat digabungkan

Untuk melihat jarak euclidean, dapat dilakukan sebagai berikut:

library(factoextra)
## Warning: package 'factoextra' was built under R version 4.4.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.4.3
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
dist.eucl <- dist(df.scaled, method = "euclidean"); dist.eucl
##                Wyoming  Illinois Mississippi    Kansas  New York  Kentucky
## Illinois     2.4122476                                                    
## Mississippi  2.6164146 3.1543527                                          
## Kansas       0.7934567 2.3786048   3.1993198                              
## New York     2.7921742 0.4095812   3.3878156 2.7128511                    
## Kentucky     1.0532156 2.9515362   2.3433244 1.2948587 3.2757206          
## Oklahoma     0.8659748 1.8685718   2.9986711 0.5547563 2.2043102 1.4993175
## Hawaii       2.2322175 2.7203365   4.4270510 1.4800030 2.9246694 2.5403456
## Missouri     2.0625111 1.4167282   3.0563398 1.8349434 1.5351057 2.3176129
## New Mexico   3.1109091 1.5775154   3.0617092 3.1551035 1.4705638 3.4011133
## Louisiana    2.4137967 1.6360410   1.7133330 2.6879097 1.7776353 2.4609320
## South Dakota 1.5765126 3.9457686   3.4644086 1.7515852 4.3067435 1.5082173
## Iowa         1.7426214 3.9154083   4.0958166 1.6038155 4.2724405 1.9508929
## North Dakota 2.5296038 4.8794481   4.4694938 2.6181473 5.2524274 2.5546862
## Texas        2.4496576 0.8218968   2.9692463 2.3259192 0.8377979 2.6949264
##               Oklahoma    Hawaii  Missouri New Mexico Louisiana South Dakota
## Illinois                                                                    
## Mississippi                                                                 
## Kansas                                                                      
## New York                                                                    
## Kentucky                                                                    
## Oklahoma                                                                    
## Hawaii       1.6491638                                                      
## Missouri     1.3724911 2.3123720                                            
## New Mexico   2.6268378 3.7154012 1.4937447                                  
## Louisiana    2.2916633 3.5012381 1.8909275  1.7882330                       
## South Dakota 2.1588538 2.9115203 3.2767510  4.4281177 3.7902169             
## Iowa         2.1130016 2.3395756 3.3845451  4.6758935 4.0922753    0.9964108
## North Dakota 3.0891779 3.4578871 4.3173165  5.5131433 4.8442635    1.1604313
## Texas        1.8768374 2.5920693 1.1756214  1.5867966 1.3643137    3.8935265
##                   Iowa North Dakota
## Illinois                           
## Mississippi                        
## Kansas                             
## New York                           
## Kentucky                           
## Oklahoma                           
## Hawaii                             
## Missouri                           
## New Mexico                         
## Louisiana                          
## South Dakota                       
## Iowa                               
## North Dakota 1.1298867             
## Texas        3.9137858    4.8837032
fviz_dist(dist.eucl)

6.2 Jarak Chebyshev

Jarak Chebyshev merupakan jarak ditentukan oleh selisih terbesar. Jarak ini merupakan maksimum di antara perbedaan koordinat karena fokus pada dimensi dengan selisih terbesar.

Contoh Pengaplikasian:

  • Jarak langkah raja antara dua posisi

  • Berguna di quality control multivariat, misalnya mengecek dimensi produk (lebar, panjang, tinggi) yang fokus pada dimensi terburuk.

Untuk melihat jarak chebyshev, dapat dilakukan sebagai berikut:

library(factoextra)
dist.cheb <- dist(df.scaled, method = "maximum"); dist.cheb
##                Wyoming  Illinois Mississippi    Kansas  New York  Kentucky
## Illinois     1.5939604                                                    
## Mississippi  2.0521063 2.7028025                                          
## Kansas       0.5464670 1.5918822   2.2286315                              
## New York     1.8018683 0.3116811   2.9107104 1.6512808                    
## Kentucky     0.6399041 2.1483815   1.7819577 0.9702368 2.3562894          
## Oklahoma     0.6530462 1.1642124   2.0962376 0.4276699 1.2474473 1.1088421
## Hawaii       1.5939604 2.4115828   2.7028025 1.1781447 2.4709814 2.1483815
## Missouri     1.8700867 0.9009342   1.8018683 1.5138797 1.1088421 1.7661930
## New Mexico   2.4489231 1.2021986   2.2262937 2.0927161 1.1088421 2.3450294
## Louisiana    1.8976467 1.1781447   1.5246578 2.0741719 1.3860526 1.6631605
## South Dakota 1.0395394 2.6334999   2.7140760 1.4553552 2.8414078 1.3018739
## Iowa         1.2473704 2.2927856   3.0671266 0.9944112 2.3521842 1.6549244
## North Dakota 1.3780473 2.7028025   3.3760458 1.5880895 2.9107104 1.9638436
## Texas        1.4693539 0.5702265   2.4948946 1.4783991 0.6296251 1.9404736
##               Oklahoma    Hawaii  Missouri New Mexico Louisiana South Dakota
## Illinois                                                                    
## Mississippi                                                                 
## Kansas                                                                      
## New York                                                                    
## Kentucky                                                                    
## Oklahoma                                                                    
## Hawaii       1.2473704                                                      
## Missouri     1.2170406 1.5681228                                            
## New Mexico   1.7958770 2.8392526 1.2711298                                  
## Louisiana    1.9417780 2.4115828 1.4122022  1.4693539                       
## South Dakota 1.5939604 2.6334999 2.2856616  2.8644979 2.5596164             
## Iowa         1.2912504 1.8018683 2.5082909  3.0871273 2.9126670    0.8316315
## North Dakota 1.8849287 2.7028025 3.1019693  3.6808057 3.2215862    0.8163077
## Texas        1.3460052 1.8413563 0.8164294  0.9978963 0.9702368    2.4255920
##                   Iowa North Dakota
## Illinois                           
## Mississippi                        
## Kansas                             
## New York                           
## Kentucky                           
## Oklahoma                           
## Hawaii                             
## Missouri                           
## New Mexico                         
## Louisiana                          
## South Dakota                       
## Iowa                               
## North Dakota 0.9009342             
## Texas        2.3168942    2.7012364
fviz_dist(dist.cheb)

6.3 Jarak Manhattan

Jarak Manhattan merupakan jumlah perbedaan absolut antar koordinat, seperti berjalan di jalan kota berbentuk grid (jarak berbasis grid (jumlah selisih)).

Contoh Pengaplikasian:

  • Menghitung jarak dalam gudang/grid jalan yang tidak memungkinkan jalur diagonal.

  • Menghitung jarak antar dokumen berdasarkan frekuensi kata (NLP).

Untuk melihat jarak manhattan, dapat dilakukan sebagai berikut:

library(factoextra)
dist.man <- dist(df.scaled, method = "manhattan"); dist.man
##                 Wyoming   Illinois Mississippi     Kansas   New York   Kentucky
## Illinois      4.6804639                                                        
## Mississippi   4.5477901  5.1034373                                             
## Kansas        1.4950151  4.6314334   5.5975464                                 
## New York      5.4139111  0.7334472   5.4091682  5.3648806                      
## Kentucky      1.9159642  5.1088324   3.8673166  2.1102578  5.8422796           
## Oklahoma      1.3703957  3.6359252   5.4729270  0.9955082  4.3693724  2.8409781
## Hawaii        3.9738430  4.1009258   8.0763743  2.4788279  4.8343730  4.4465291
## Missouri      3.2505127  2.6766756   5.9782446  3.2014823  2.7867606  3.9878005
## New Mexico    5.6300548  2.7514592   5.3741207  5.5810243  2.4338278  6.0584233
## Louisiana     4.3384469  2.5485829   2.5548545  4.2894164  2.9731109  4.7668154
## South Dakota  3.0080629  7.6885267   5.4767741  3.0570933  8.4219740  2.5796943
## Iowa          3.1085028  7.7889667   7.2404771  3.1575333  8.5224139  3.3731605
## North Dakota  5.0427114  9.7231753   7.3728174  5.0917419 10.4566225  4.6143429
## Texas         4.6324690  1.5082739   5.1808752  4.5834386  1.4875431  5.0608376
##                Oklahoma     Hawaii   Missouri New Mexico  Louisiana
## Illinois                                                           
## Mississippi                                                        
## Kansas                                                             
## New York                                                           
## Kentucky                                                           
## Oklahoma                                                           
## Hawaii        2.6034473                                            
## Missouri      2.2059740  4.4728430                                 
## New Mexico    4.5855161  6.8523850  2.3795420                      
## Louisiana     3.5711187  6.1151982  3.4233902  3.0568606           
## South Dakota  4.0526016  4.5379784  6.2585756  8.6381176  7.3465098
## Iowa          4.1530415  3.9256352  6.3590155  8.7385576  7.4469497
## North Dakota  6.0872501  5.6222495  8.2932241 10.6727662  9.3811583
## Texas         3.5879303  4.4687467  2.1834220  2.9573454  2.6260207
##              South Dakota       Iowa North Dakota
## Illinois                                         
## Mississippi                                      
## Kansas                                           
## New York                                         
## Kentucky                                         
## Oklahoma                                         
## Hawaii                                           
## Missouri                                         
## New Mexico                                       
## Louisiana                                        
## South Dakota                                     
## Iowa            1.7637030                        
## North Dakota    2.0346485  1.9342086             
## Texas           7.6405319  7.7409718    9.6751804
fviz_dist(dist.man)

6.4 Jarak Mahalanobis

Jarak Mahalanobis merupakan jarak antar titik yang mempertimbangkan skala (varians) dan korelasi antar variabel.

Contoh Pengaplikasian:

  • Mendeteksi transaksi keuangan yang tidak wajar

  • Memisahkan kelompok dengan varians dan korelasi berbeda (Analisis Diskriminan)

Untuk melihat jarak mahalanobis, dapat dilakukan sebagai berikut:

library(StatMatch)
## Warning: package 'StatMatch' was built under R version 4.4.3
## Loading required package: proxy
## Warning: package 'proxy' was built under R version 4.4.3
## 
## Attaching package: 'proxy'
## The following objects are masked from 'package:stats':
## 
##     as.dist, dist
## The following object is masked from 'package:base':
## 
##     as.matrix
## Loading required package: survey
## Warning: package 'survey' was built under R version 4.4.3
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
## Loading required package: lpSolve
## Warning: package 'lpSolve' was built under R version 4.4.2
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
## 
##     select
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
dist.mah <- mahalanobis.dist(df.scaled); dist.mah
##               Wyoming  Illinois Mississippi    Kansas  New York Kentucky
## Wyoming      0.000000 1.7186109    2.820779 1.4195095 1.8695558 2.867847
## Illinois     1.718611 0.0000000    3.658323 2.2905255 0.4722069 3.878642
## Mississippi  2.820779 3.6583235    0.000000 3.2139075 3.6566922 2.544477
## Kansas       1.419510 2.2905255    3.213907 0.0000000 2.1522535 2.048031
## New York     1.869556 0.4722069    3.656692 2.1522535 0.0000000 3.698342
## Kentucky     2.867847 3.8786421    2.544477 2.0480310 3.6983422 0.000000
## Oklahoma     1.146496 1.8980286    3.237573 0.6499978 1.7772007 2.505941
## Hawaii       3.466671 3.6449604    4.722203 2.2108491 3.3748818 2.753554
## Missouri     3.198071 3.6796400    3.956918 2.2592572 3.3618939 2.642756
## New Mexico   3.281318 3.5101406    4.057258 3.1016653 3.2869855 3.870023
## Louisiana    2.284940 2.5550539    1.688058 2.2700723 2.4136664 2.119635
## South Dakota 1.826205 3.3564158    3.087365 1.6274307 3.3404110 2.261154
## Iowa         1.327907 2.6329606    3.559587 1.1128197 2.6839965 2.621704
## North Dakota 1.582582 3.1919907    3.553572 1.9466491 3.3317039 3.040465
## Texas        2.540604 2.4769381    3.093919 1.7462066 2.1399545 2.108949
##               Oklahoma   Hawaii Missouri New Mexico Louisiana South Dakota
## Wyoming      1.1464956 3.466671 3.198071   3.281318  2.284940     1.826205
## Illinois     1.8980286 3.644960 3.679640   3.510141  2.555054     3.356416
## Mississippi  3.2375727 4.722203 3.956918   4.057258  1.688058     3.087365
## Kansas       0.6499978 2.210849 2.259257   3.101665  2.270072     1.627431
## New York     1.7772007 3.374882 3.361894   3.286985  2.413666     3.340411
## Kentucky     2.5059414 2.753554 2.642756   3.870023  2.119635     2.261154
## Oklahoma     0.0000000 2.705865 2.203038   2.660216  2.350208     1.672866
## Hawaii       2.7058650 0.000000 3.193764   4.645567  3.383255     3.551072
## Missouri     2.2030382 3.193764 0.000000   1.836797  3.256319     2.505784
## New Mexico   2.6602159 4.645567 1.836797   0.000000  3.676879     3.026024
## Louisiana    2.3502077 3.383255 3.256319   3.676879  0.000000     3.021642
## South Dakota 1.6728664 3.551072 2.505784   3.026024  3.021642     0.000000
## Iowa         1.3299426 2.790197 3.145245   3.792086  2.954252     1.518854
## North Dakota 1.9813596 3.780966 3.590548   3.950259  3.434074     1.304743
## Texas        1.9635201 2.082005 2.576037   3.501666  1.527269     3.090805
##                  Iowa North Dakota    Texas
## Wyoming      1.327907     1.582582 2.540604
## Illinois     2.632961     3.191991 2.476938
## Mississippi  3.559587     3.553572 3.093919
## Kansas       1.112820     1.946649 1.746207
## New York     2.683996     3.331704 2.139954
## Kentucky     2.621704     3.040465 2.108949
## Oklahoma     1.329943     1.981360 1.963520
## Hawaii       2.790197     3.780966 2.082005
## Missouri     3.145245     3.590548 2.576037
## New Mexico   3.792086     3.950259 3.501666
## Louisiana    2.954252     3.434074 1.527269
## South Dakota 1.518854     1.304743 3.090805
## Iowa         0.000000     1.045923 2.734770
## North Dakota 1.045923     0.000000 3.563193
## Texas        2.734770     3.563193 0.000000
dist.mah_matrix <- as.matrix(dist.mah);dist.mah_matrix
##               Wyoming  Illinois Mississippi    Kansas  New York Kentucky
## Wyoming      0.000000 1.7186109    2.820779 1.4195095 1.8695558 2.867847
## Illinois     1.718611 0.0000000    3.658323 2.2905255 0.4722069 3.878642
## Mississippi  2.820779 3.6583235    0.000000 3.2139075 3.6566922 2.544477
## Kansas       1.419510 2.2905255    3.213907 0.0000000 2.1522535 2.048031
## New York     1.869556 0.4722069    3.656692 2.1522535 0.0000000 3.698342
## Kentucky     2.867847 3.8786421    2.544477 2.0480310 3.6983422 0.000000
## Oklahoma     1.146496 1.8980286    3.237573 0.6499978 1.7772007 2.505941
## Hawaii       3.466671 3.6449604    4.722203 2.2108491 3.3748818 2.753554
## Missouri     3.198071 3.6796400    3.956918 2.2592572 3.3618939 2.642756
## New Mexico   3.281318 3.5101406    4.057258 3.1016653 3.2869855 3.870023
## Louisiana    2.284940 2.5550539    1.688058 2.2700723 2.4136664 2.119635
## South Dakota 1.826205 3.3564158    3.087365 1.6274307 3.3404110 2.261154
## Iowa         1.327907 2.6329606    3.559587 1.1128197 2.6839965 2.621704
## North Dakota 1.582582 3.1919907    3.553572 1.9466491 3.3317039 3.040465
## Texas        2.540604 2.4769381    3.093919 1.7462066 2.1399545 2.108949
##               Oklahoma   Hawaii Missouri New Mexico Louisiana South Dakota
## Wyoming      1.1464956 3.466671 3.198071   3.281318  2.284940     1.826205
## Illinois     1.8980286 3.644960 3.679640   3.510141  2.555054     3.356416
## Mississippi  3.2375727 4.722203 3.956918   4.057258  1.688058     3.087365
## Kansas       0.6499978 2.210849 2.259257   3.101665  2.270072     1.627431
## New York     1.7772007 3.374882 3.361894   3.286985  2.413666     3.340411
## Kentucky     2.5059414 2.753554 2.642756   3.870023  2.119635     2.261154
## Oklahoma     0.0000000 2.705865 2.203038   2.660216  2.350208     1.672866
## Hawaii       2.7058650 0.000000 3.193764   4.645567  3.383255     3.551072
## Missouri     2.2030382 3.193764 0.000000   1.836797  3.256319     2.505784
## New Mexico   2.6602159 4.645567 1.836797   0.000000  3.676879     3.026024
## Louisiana    2.3502077 3.383255 3.256319   3.676879  0.000000     3.021642
## South Dakota 1.6728664 3.551072 2.505784   3.026024  3.021642     0.000000
## Iowa         1.3299426 2.790197 3.145245   3.792086  2.954252     1.518854
## North Dakota 1.9813596 3.780966 3.590548   3.950259  3.434074     1.304743
## Texas        1.9635201 2.082005 2.576037   3.501666  1.527269     3.090805
##                  Iowa North Dakota    Texas
## Wyoming      1.327907     1.582582 2.540604
## Illinois     2.632961     3.191991 2.476938
## Mississippi  3.559587     3.553572 3.093919
## Kansas       1.112820     1.946649 1.746207
## New York     2.683996     3.331704 2.139954
## Kentucky     2.621704     3.040465 2.108949
## Oklahoma     1.329943     1.981360 1.963520
## Hawaii       2.790197     3.780966 2.082005
## Missouri     3.145245     3.590548 2.576037
## New Mexico   3.792086     3.950259 3.501666
## Louisiana    2.954252     3.434074 1.527269
## South Dakota 1.518854     1.304743 3.090805
## Iowa         0.000000     1.045923 2.734770
## North Dakota 1.045923     0.000000 3.563193
## Texas        2.734770     3.563193 0.000000

6.5 Jarak Minkowski

Jarak Minkowski adalah ukuran jarak antara dua titik dalam ruang vektor yang ditentukan oleh sebuah parameter p untuk mencari jarak umum karena menjadi bentuk dasar yang mencakup berbagai jenis jarak lain (p=1 jarak Manhattan, p=2 jarak Euclidean, p->tak hingga jarak chebyshev).

Untuk melihat jarak minkowski, dapat dilakukan sebagai berikut:

set.seed(123)

# Data random (5 observasi dengan 3 variabel)
data <- matrix(runif(15, min = 1, max = 10), nrow = 5, ncol = 3)
colnames(data) <- c("X1", "X2", "X3")
print("Data random:")
## [1] "Data random:"
print(data)
##            X1       X2       X3
## [1,] 3.588198 1.410008 9.611500
## [2,] 8.094746 5.752949 5.080007
## [3,] 4.680792 9.031771 7.098136
## [4,] 8.947157 5.962915 6.153701
## [5,] 9.464206 5.109533 1.926322
# Tentukan dua titik yang akan dihitung jaraknya
p1 <- data[1, ];p1
##       X1       X2       X3 
## 3.588198 1.410008 9.611500
p2 <- data[2, ];p2
##       X1       X2       X3 
## 8.094746 5.752949 5.080007
# Fungsi jarak Minkowski
minkowski_distance <- function(x, y, p) {
  sum(abs(x - y)^p)^(1/p)
}

Sedangkan, contoh penggunaan dengan p = 1 (Manhattan), p = 2 (Euclidean), p = 3 (Minkowski umum) adalah sebagai berikut:

dist_p1 <- minkowski_distance(p1, p2, p = 1);dist_p1
## [1] 13.38098
dist_p2 <- minkowski_distance(p1, p2, p = 2);dist_p2
## [1] 7.726871
dist_p3 <- minkowski_distance(p1, p2, p = 3);dist_p3
## [1] 6.435156
dist_inf <- max(abs(p1 - p2));dist_inf
## [1] 4.531493

7 VEKTOR DAN MATRIKS RATA-RATA

Vektor rata-rata adalah vektor yang tiap elemennya berisi nilai rata-rata dari variabel-variabel (kolom) dalam sebuah data. Matriks rata-rata adalah matriks yang berisi nilai rata-rata dari setiap variabel (kolom).

Untuk melihat vektor dan matriks rata-rata, dapat dilakukan sebagai berikut:

# input data kadal
BB = c(6.2,11.5,8.7,10.1,7.8,6.9,12.0,3.1,14.8,9.4)
PM = c(61,73,68,70,64,60,76,49,84,71)
RTB = c(115,138,127,123,131,120,143,95,160,128)
lizard = as.matrix(cbind(BB,PM,RTB)); lizard
##         BB PM RTB
##  [1,]  6.2 61 115
##  [2,] 11.5 73 138
##  [3,]  8.7 68 127
##  [4,] 10.1 70 123
##  [5,]  7.8 64 131
##  [6,]  6.9 60 120
##  [7,] 12.0 76 143
##  [8,]  3.1 49  95
##  [9,] 14.8 84 160
## [10,]  9.4 71 128
# Vektor Rata-Rata
vecMeans = as.matrix(colMeans(lizard)); vecMeans
##       [,1]
## BB    9.05
## PM   67.60
## RTB 128.00
vecRata = matrix(c(mean(BB), mean(PM), mean(RTB)), nrow=3, ncol=1); vecRata
##        [,1]
## [1,]   9.05
## [2,]  67.60
## [3,] 128.00
# Matriks Rata-Rata
n = nrow(lizard)
means = colMeans(lizard)
matRata = matrix(rep(means, each = n), nrow = n, ncol = 3)
matRata
##       [,1] [,2] [,3]
##  [1,] 9.05 67.6  128
##  [2,] 9.05 67.6  128
##  [3,] 9.05 67.6  128
##  [4,] 9.05 67.6  128
##  [5,] 9.05 67.6  128
##  [6,] 9.05 67.6  128
##  [7,] 9.05 67.6  128
##  [8,] 9.05 67.6  128
##  [9,] 9.05 67.6  128
## [10,] 9.05 67.6  128

8 MATRIKS KOVARIANS

Kovarians merupakan ukuran hubungan linier antar 2 variabel. Matriks kovarians adalah matriks yang elemen-elemennya yang berisi kovarians semua pasangan variabel.

Apabila ingin melihat matriks kovarians, dapat dengan menggunakan fungsi cov(nama_matriks). Contohnya jika diterapkan pada matriks lizard adalah sebagai berikut:

varkov = cov(lizard); varkov
##           BB        PM       RTB
## BB  10.98056  31.80000  54.96667
## PM  31.80000  94.04444 160.22222
## RTB 54.96667 160.22222 300.66667

9 MATRIKS KORELASI

Korelasi adalah ukuran hubungan antar variabel. Matriks korelasi merupakan matriks yang elemen-elemennya adalah korelasi antar pasangan variabel.

Apabila ingin melihat matriks korelasi, dapat dengan menggunakan fungsi cor(nama_matriks). Contohnya jika diterapkan pada matriks lizard adalah sebagai berikut:

korel = cor(lizard); korel
##            BB        PM       RTB
## BB  1.0000000 0.9895743 0.9566313
## PM  0.9895743 1.0000000 0.9528259
## RTB 0.9566313 0.9528259 1.0000000

10 MATRIKS STANDARDISASI

Matriks Standardisasi merupakan akar dari variansi masing-masing variabel. Apabila ingin melihat matriks standardisasi pada contoh sebelumnya yaitu matriks lizard, dapat dilakukan hal sebagai berikut:

n = nrow(lizard);n
## [1] 10
u = matrix(1,n,1); u
##       [,1]
##  [1,]    1
##  [2,]    1
##  [3,]    1
##  [4,]    1
##  [5,]    1
##  [6,]    1
##  [7,]    1
##  [8,]    1
##  [9,]    1
## [10,]    1
xbar = cbind((1/n)*t(u)%*%lizard); xbar
##        BB   PM RTB
## [1,] 9.05 67.6 128
D = lizard - u %*% xbar; D
##          BB    PM RTB
##  [1,] -2.85  -6.6 -13
##  [2,]  2.45   5.4  10
##  [3,] -0.35   0.4  -1
##  [4,]  1.05   2.4  -5
##  [5,] -1.25  -3.6   3
##  [6,] -2.15  -7.6  -8
##  [7,]  2.95   8.4  15
##  [8,] -5.95 -18.6 -33
##  [9,]  5.75  16.4  32
## [10,]  0.35   3.4   0
S = (1/(n-1))*t(D)%*%D; S
##           BB        PM       RTB
## BB  10.98056  31.80000  54.96667
## PM  31.80000  94.04444 160.22222
## RTB 54.96667 160.22222 300.66667
Ds = diag(sqrt(diag(S))); Ds
##          [,1]     [,2]     [,3]
## [1,] 3.313692 0.000000  0.00000
## [2,] 0.000000 9.697651  0.00000
## [3,] 0.000000 0.000000 17.33974
R = solve(Ds) %*% S %*% solve(Ds); R
##           [,1]      [,2]      [,3]
## [1,] 1.0000000 0.9895743 0.9566313
## [2,] 0.9895743 1.0000000 0.9528259
## [3,] 0.9566313 0.9528259 1.0000000