##Generando los números Pseudoalaeatorios
set.seed(3009)
num_aleat <- runif(100)
num_aleat
## [1] 0.2693463224 0.4057150499 0.4789595187 0.2005149745 0.4679950266
## [6] 0.9924790736 0.1712180756 0.3937174589 0.7092818038 0.5609353920
## [11] 0.8682629522 0.9212334319 0.8751491096 0.3152880401 0.5748982185
## [16] 0.9325285542 0.2493617632 0.5899179131 0.0457652817 0.0786426552
## [21] 0.6905312026 0.3372408927 0.9690482512 0.6124100294 0.9852369330
## [26] 0.8383921152 0.2948202908 0.9483264750 0.2560473441 0.3852935357
## [31] 0.9416435095 0.9971495299 0.6427476760 0.4381843274 0.9889746860
## [36] 0.5680761652 0.1697438646 0.7689988425 0.2154922828 0.1471966370
## [41] 0.1664867220 0.8153620965 0.7942233777 0.3674672716 0.2535557465
## [46] 0.5501284762 0.3520138548 0.4544020810 0.1670556171 0.1603428181
## [51] 0.2262774182 0.8016169057 0.6030836308 0.9050466034 0.3624372736
## [56] 0.1908530786 0.8342494743 0.2882433748 0.2389226626 0.2539414112
## [61] 0.8878831652 0.9302236815 0.0001397894 0.6366907707 0.4309501559
## [66] 0.5130254738 0.9552188928 0.9721634332 0.0455631623 0.6700149551
## [71] 0.7631773711 0.7592177724 0.4990691915 0.3085287502 0.7839094084
## [76] 0.9558199723 0.5680055534 0.9943322751 0.3677756281 0.9702452854
## [81] 0.4848087020 0.0408915011 0.9666668135 0.6162433978 0.2438061498
## [86] 0.7746479886 0.8804058437 0.5321420769 0.6400519614 0.2938680288
## [91] 0.6650891975 0.2839593720 0.9162857858 0.0581468043 0.9064241699
## [96] 0.9197621278 0.0245081070 0.4192247139 0.5373052941 0.0382239423
histo <- hist(num_aleat, breaks=6)
diff(num_aleat)
## [1] 0.136368728 0.073244469 -0.278444544 0.267480052 0.524484047
## [6] -0.821260998 0.222499383 0.315564345 -0.148346412 0.307327560
## [11] 0.052970480 -0.046084322 -0.559861070 0.259610178 0.357630336
## [16] -0.683166791 0.340556150 -0.544152631 0.032877374 0.611888547
## [21] -0.353290310 0.631807358 -0.356638222 0.372826904 -0.146844818
## [26] -0.543571824 0.653506184 -0.692279131 0.129246192 0.556349974
## [31] 0.055506020 -0.354401854 -0.204563349 0.550790359 -0.420898521
## [36] -0.398332301 0.599254978 -0.553506560 -0.068295646 0.019290085
## [41] 0.648875375 -0.021138719 -0.426756106 -0.113911525 0.296572730
## [46] -0.198114621 0.102388226 -0.287346464 -0.006712799 0.065934600
## [51] 0.575339488 -0.198533275 0.301962973 -0.542609330 -0.171584195
## [56] 0.643396396 -0.546006100 -0.049320712 0.015018749 0.633941754
## [61] 0.042340516 -0.930083892 0.636550981 -0.205740615 0.082075318
## [66] 0.442193419 0.016944540 -0.926600271 0.624451793 0.093162416
## [71] -0.003959599 -0.260148581 -0.190540441 0.475380658 0.171910564
## [76] -0.387814419 0.426326722 -0.626556647 0.602469657 -0.485436583
## [81] -0.443917201 0.925775312 -0.350423416 -0.372437248 0.530841839
## [86] 0.105757855 -0.348263767 0.107909885 -0.346183933 0.371221169
## [91] -0.381129825 0.632326414 -0.858138982 0.848277366 0.013337958
## [96] -0.895254021 0.394716607 0.118080580 -0.499081352
S<-ifelse(diff(num_aleat) > 0, 1, 0) # secuencia de ceros y unos
S<-ifelse(diff(num_aleat) > 0, 1, 0) # secuencia de ceros y unos
cambios <- abs(diff(S))
corridas <- sum(cambios) + 1
corridas
## [1] 66
mu = (2*length(num_aleat)-1)/3 # media esperada de corrida
mu
## [1] 66.33333
varianza <- (16*length(num_aleat)-29)/90
Z <- (corridas-mu)/sqrt(varianza) # valor de la estadística z
Z
## [1] -0.07978328
ifelse(Z<1.96,"Los u_i son independientes","Los u_i son dependeientes")
## [1] "Los u_i son independientes"
library(DescTools)
RunsTest(S)
##
## Runs Test for Randomness
##
## data: S
## z = 3.064, runs = 66, m = 47, n = 52, p-value = 0.002184
## alternative hypothesis: true number of runs is not equal the expected number
library(randtoolbox)
## Cargando paquete requerido: rngWELL
## This is randtoolbox. For an overview, type 'help("randtoolbox")'.
poker.test(num_aleat,nbcard=5)
##
## Poker test
##
## chisq stat = 0.81, df = 4, p-value = 0.94
##
## (sample size : 100)
##
## observed number 0 1 11 7 1
## expected number 0.032 1.9 9.6 7.7 0.77
Informe
Generación de números pseudoaleatorios:Se generaron 100 números uniformes en [0,1]con semilla 3009. Esto garantiza que los resultados sean reproducibles.
Prueba de uniformidad (Chi-Cuadrado)
Secomparan las frecuencias observadas vs. esperadas en intervalos.<𝐻0H.:Los números son uniformes.Con 𝑝 >0.05 p>0.05, no se rechaza la uniformidad.
Prueba de Corridas (manual)
Se analizó la secuencia de aumentos y descensos.𝐻0H0.Los números son independientes. Si ∣𝑍∣<1.96∣Z∣<1.96, no se rechaza la independencia.
Prueba de Corridas con RunsTest() Valida automáticamente la independencia.Si 𝑝>0.05p>0.05, los números se consideran independientes.
Prueba de Póker: Se agrupan dígitos como “manos de póker” y se comparan patrones esperados.𝐻0H La secuencia es aleatoria.Si 𝑝>0.05 p>0.05, no hay evidencia contra la aleatoriedad.