#Sample size

library(gtsummary)
library(dplyr)

#Annual Canadian Lynx trappings 1821–1934

head(lynx)
Time Series:
Start = 1821 
End = 1826 
Frequency = 1 
[1]  269  321  585  871 1475 2821
data(lynx)
class(lynx)
[1] "ts"
start(lynx)
[1] 1821    1
end(lynx)
[1] 1934    1
frequency(lynx)
[1] 1
plot(lynx)

summary(lynx)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   39.0   348.2   771.0  1538.0  2566.8  6991.0 

Interpretation:

Min (39.0): The smallest observed value in your dataset.

1st Quartile (348.2): 25% of the data values are less than or equal to 348.2.

Median (771.0): The 50th percentile; half the data values are below 771.0 and half are above.

Mean (1538.0): The arithmetic average; noticeably higher than the median, suggesting a right-skewed distribution.

3rd Quartile (2566.8): 75% of the values are less than or equal to 2566.8.

Max (6991.0): The largest observed value.

👉 Overall interpretation: The data are positively skewed (since the mean > median, and the maximum is much larger than the quartiles). Most values cluster between ~350 and ~2600, but a few large values (outliers) push the mean up to ~1538.

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KI1NhbXBsZSBzaXplDQpgYGB7cn0NCmxpYnJhcnkoZ3RzdW1tYXJ5KQ0KbGlicmFyeShkcGx5cikNCmBgYA0KDQojQW5udWFsIENhbmFkaWFuIEx5bnggdHJhcHBpbmdzIDE4MjEtLTE5MzQNCmBgYHtyfQ0KaGVhZChseW54KQ0KYGBgDQoNCmBgYHtyfQ0KZGF0YShseW54KQ0KYGBgDQoNCmBgYHtyfQ0KY2xhc3MobHlueCkNCmBgYA0KDQpgYGB7cn0NCnN0YXJ0KGx5bngpDQpgYGANCg0KYGBge3J9DQplbmQobHlueCkNCmBgYA0KDQpgYGB7cn0NCmZyZXF1ZW5jeShseW54KQ0KYGBgDQoNCmBgYHtyfQ0KcGxvdChseW54KQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtbWFyeShseW54KQ0KYGBgDQpJbnRlcnByZXRhdGlvbjogIA0KDQpNaW4gKDM5LjApOiBUaGUgc21hbGxlc3Qgb2JzZXJ2ZWQgdmFsdWUgaW4geW91ciBkYXRhc2V0Lg0KDQoxc3QgUXVhcnRpbGUgKDM0OC4yKTogMjUlIG9mIHRoZSBkYXRhIHZhbHVlcyBhcmUgbGVzcyB0aGFuIG9yIGVxdWFsIHRvIDM0OC4yLg0KDQpNZWRpYW4gKDc3MS4wKTogVGhlIDUwdGggcGVyY2VudGlsZTsgaGFsZiB0aGUgZGF0YSB2YWx1ZXMgYXJlIGJlbG93IDc3MS4wIGFuZCBoYWxmIGFyZSBhYm92ZS4NCg0KTWVhbiAoMTUzOC4wKTogVGhlIGFyaXRobWV0aWMgYXZlcmFnZTsgbm90aWNlYWJseSBoaWdoZXIgdGhhbiB0aGUgbWVkaWFuLCBzdWdnZXN0aW5nIGEgcmlnaHQtc2tld2VkIGRpc3RyaWJ1dGlvbi4NCg0KM3JkIFF1YXJ0aWxlICgyNTY2LjgpOiA3NSUgb2YgdGhlIHZhbHVlcyBhcmUgbGVzcyB0aGFuIG9yIGVxdWFsIHRvIDI1NjYuOC4NCg0KTWF4ICg2OTkxLjApOiBUaGUgbGFyZ2VzdCBvYnNlcnZlZCB2YWx1ZS4NCg0K8J+RiSBPdmVyYWxsIGludGVycHJldGF0aW9uOg0KVGhlIGRhdGEgYXJlIHBvc2l0aXZlbHkgc2tld2VkIChzaW5jZSB0aGUgbWVhbiA+IG1lZGlhbiwgYW5kIHRoZSBtYXhpbXVtIGlzIG11Y2ggbGFyZ2VyIHRoYW4gdGhlIHF1YXJ0aWxlcykuIE1vc3QgdmFsdWVzIGNsdXN0ZXIgYmV0d2VlbiB+MzUwIGFuZCB+MjYwMCwgYnV0IGEgZmV3IGxhcmdlIHZhbHVlcyAob3V0bGllcnMpIHB1c2ggdGhlIG1lYW4gdXAgdG8gfjE1MzguDQoNCg0K