Obtenha para os valores abaixo, o modelo de previsão, usando o método dos mínimos quadrados, para os valores calculados:

X 1 2 3 4 5 6 7 8
Y 1,7 2,3 3,2 3,6 4,5 5,3 6,0 6,5
x=c(1, 2, 3, 4, 5, 6, 7, 8)
y=c(1.7, 2.3, 3.2, 3.6, 4.5, 5.3, 6.0, 6.5)
prev1=data.frame(x,y)
prev1
##   x   y
## 1 1 1.7
## 2 2 2.3
## 3 3 3.2
## 4 4 3.6
## 5 5 4.5
## 6 6 5.3
## 7 7 6.0
## 8 8 6.5

O modelo é apresentado a seguir:

modelo=lm(y~x)
summary(modelo)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.18452 -0.08155  0.02143  0.09911  0.12143 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.96071    0.09397   10.22 5.10e-05 ***
## x            0.70595    0.01861   37.94 2.24e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1206 on 6 degrees of freedom
## Multiple R-squared:  0.9958, Adjusted R-squared:  0.9952 
## F-statistic:  1439 on 1 and 6 DF,  p-value: 2.24e-08