Executive Summary
This report commpares two statistical analysis methods and determines
the usefulness of the bootstrap method for the desired population mean.
Our variable of interest is the percentage of protein intake in a
country consumed via animal products. We can then use the provided
evidence and make decisions on which method would be best beneficial for
future research questions.
url="https://pengdsci.github.io/STA321/ww02/w02-Protein_Supply_Quantity_Data.csv"
protein = read.csv(url, header = TRUE)
var.name = names(protein)
Introduction of Data
Set
This data set includes the percentage of protein
intake from different types of food in countries around the
world. The last couple of columns also includes counts of obesity and
COVID-19 cases as percentages of the total population for comparison
purposes.
This data set can be found at kaggle.com.
The data has been uploaded to w02-Protein_Supply_Quantity_Data.csv
for internet availability.
T-Test Method
The equation for the T-Test confidence interval is given by the
following: \[ \bar{X} \pm t_{n-1, 1-alpha/2}
\times \frac{s}{\sqrt{n}} \] Where \(\bar{X}\) is the sample mean, \(t\) is the t statistic at our 95%
confidence interval, \(s\) is the
standard deviation, and \(n\) is the
sample size.
The calculated confidence interval is:
t <- t.test(protein$AnimalProducts,
conf.level = 0.95)
hist(protein$AnimalProducts,
xlab = "Protein Intake % Consumed Via Animal Products",
main = "Empirical Distribution")

t$conf.int
## [1] 20.03275 22.43156
## attr(,"conf.level")
## [1] 0.95
Bootstrap Method
The bootstrap method is a simulated sampling method. We use \(\{x_1^{(i*)}, x_2^{(i*)}, \cdots,
x_n^{(i*)}\}\) to denote the \(i^{th}\) bootstrap sample. Then the
corresponding mean is called bootstrap sample mean and denoted by \(\hat{\mu}_i^*\), for \(i = 1, 2, ..., n\).
set.seed(123)
bt.sample.mean.vec = NULL
for(i in 1:1000){ith.bt.sample = sample(x = protein$AnimalProducts,
size = 170,
replace = TRUE)
bt.sample.mean.vec[i] = mean(ith.bt.sample)}
hist(bt.sample.mean.vec,
xlab = "Protein Intake % Consumed Via Animal Products",
main = "Bootstrap Emprical Distribution")

bt.CI = quantile(bt.sample.mean.vec, c(0.025, 0.975))
bt.CI
## 2.5% 97.5%
## 20.06479 22.41047
Conclusions
Both methods are valuable for analysis. We can see that our
confidence intervals are similar. With a standard confidence interval
available, the bootstrap method is not necessarily pertinent to this
study. With no significant difference between the two, the standard
sample may be more useful for computational ease. Further decisions can
be made based on project needs.
LS0tDQp0aXRsZTogIkNvbXBhcmlzb24gb2YgVC1UZXN0IGFuZCBCb290c3RyYXAgQ29uZmlkZW5jZSBJbnRlcnZhbHMiDQphdXRob3I6ICJOb2FoIEJyZWNoYmlsbCINCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDogeWVzDQogICAgdG9jX2RlcHRoOiA0DQogICAgZmlnX3dpZHRoOiA2DQogICAgZmlnX2hlaWdodDogNA0KICAgIGZpZ19jYXB0aW9uOiB5ZXMNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIHRvY19jb2xsYXBzZWQ6IHllcw0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIHNtb290aF9zY3JvbGw6IHllcw0KICAgIHRoZW1lOiBsdW1lbg0KICBwZGZfZG9jdW1lbnQ6IA0KICAgIHRvYzogeWVzDQogICAgdG9jX2RlcHRoOiA0DQogICAgZmlnX2NhcHRpb246IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogIHdvcmRfZG9jdW1lbnQ6DQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZGVwdGg6ICc0Jw0KLS0tDQoNCjxzdHlsZSB0eXBlPSJ0ZXh0L2NzcyI+DQpoMS50aXRsZSB7DQogIGZvbnQtc2l6ZTogMjBweDsNCiAgY29sb3I6IERhcmtSZWQ7DQogIHRleHQtYWxpZ246IGNlbnRlcjsNCn0NCmg0LmF1dGhvciB7IC8qIEhlYWRlciA0IC0gYW5kIHRoZSBhdXRob3IgYW5kIGRhdGEgaGVhZGVycyB1c2UgdGhpcyB0b28gICovDQogICAgZm9udC1zaXplOiAxOHB4Ow0KICBmb250LWZhbWlseTogIlRpbWVzIE5ldyBSb21hbiIsIFRpbWVzLCBzZXJpZjsNCiAgY29sb3I6IERhcmtSZWQ7DQogIHRleHQtYWxpZ246IGNlbnRlcjsNCn0NCmg0LmRhdGUgeyAvKiBIZWFkZXIgNCAtIGFuZCB0aGUgYXV0aG9yIGFuZCBkYXRhIGhlYWRlcnMgdXNlIHRoaXMgdG9vICAqLw0KICBmb250LXNpemU6IDE4cHg7DQogIGZvbnQtZmFtaWx5OiAiVGltZXMgTmV3IFJvbWFuIiwgVGltZXMsIHNlcmlmOw0KICBjb2xvcjogRGFya0JsdWU7DQogIHRleHQtYWxpZ246IGNlbnRlcjsNCn0NCmgxIHsgLyogSGVhZGVyIDMgLSBhbmQgdGhlIGF1dGhvciBhbmQgZGF0YSBoZWFkZXJzIHVzZSB0aGlzIHRvbyAgKi8NCiAgICBmb250LXNpemU6IDIycHg7DQogICAgZm9udC1mYW1pbHk6ICJUaW1lcyBOZXcgUm9tYW4iLCBUaW1lcywgc2VyaWY7DQogICAgY29sb3I6IGRhcmtyZWQ7DQogICAgdGV4dC1hbGlnbjogY2VudGVyOw0KfQ0KaDIgeyAvKiBIZWFkZXIgMyAtIGFuZCB0aGUgYXV0aG9yIGFuZCBkYXRhIGhlYWRlcnMgdXNlIHRoaXMgdG9vICAqLw0KICAgIGZvbnQtc2l6ZTogMThweDsNCiAgICBmb250LWZhbWlseTogIlRpbWVzIE5ldyBSb21hbiIsIFRpbWVzLCBzZXJpZjsNCiAgICBjb2xvcjogbmF2eTsNCiAgICB0ZXh0LWFsaWduOiBsZWZ0Ow0KfQ0KDQpoMyB7IC8qIEhlYWRlciAzIC0gYW5kIHRoZSBhdXRob3IgYW5kIGRhdGEgaGVhZGVycyB1c2UgdGhpcyB0b28gICovDQogICAgZm9udC1zaXplOiAxNXB4Ow0KICAgIGZvbnQtZmFtaWx5OiAiVGltZXMgTmV3IFJvbWFuIiwgVGltZXMsIHNlcmlmOw0KICAgIGNvbG9yOiBuYXZ5Ow0KICAgIHRleHQtYWxpZ246IGxlZnQ7DQp9DQoNCmg0IHsgLyogSGVhZGVyIDQgLSBhbmQgdGhlIGF1dGhvciBhbmQgZGF0YSBoZWFkZXJzIHVzZSB0aGlzIHRvbyAgKi8NCiAgICBmb250LXNpemU6IDE4cHg7DQogICAgZm9udC1mYW1pbHk6ICJUaW1lcyBOZXcgUm9tYW4iLCBUaW1lcywgc2VyaWY7DQogICAgY29sb3I6IGRhcmtyZWQ7DQogICAgdGV4dC1hbGlnbjogbGVmdDsNCn0NCjwvc3R5bGU+DQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQpsaWJyYXJ5KGtuaXRyKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpgYGANCg0KIyBFeGVjdXRpdmUgU3VtbWFyeQ0KVGhpcyByZXBvcnQgY29tbXBhcmVzIHR3byBzdGF0aXN0aWNhbCBhbmFseXNpcyBtZXRob2RzIGFuZCBkZXRlcm1pbmVzIHRoZSB1c2VmdWxuZXNzIG9mIHRoZSBib290c3RyYXAgbWV0aG9kIGZvciB0aGUgZGVzaXJlZCBwb3B1bGF0aW9uIG1lYW4uIE91ciB2YXJpYWJsZSBvZiBpbnRlcmVzdCBpcyB0aGUgcGVyY2VudGFnZSBvZiBwcm90ZWluIGludGFrZSBpbiBhIGNvdW50cnkgY29uc3VtZWQgdmlhIGFuaW1hbCBwcm9kdWN0cy4gV2UgY2FuIHRoZW4gdXNlIHRoZSBwcm92aWRlZCBldmlkZW5jZSBhbmQgbWFrZSBkZWNpc2lvbnMgb24gd2hpY2ggbWV0aG9kIHdvdWxkIGJlIGJlc3QgYmVuZWZpY2lhbCBmb3IgZnV0dXJlIHJlc2VhcmNoIHF1ZXN0aW9ucy4NCg0KYGBge3J9DQp1cmw9Imh0dHBzOi8vcGVuZ2RzY2kuZ2l0aHViLmlvL1NUQTMyMS93dzAyL3cwMi1Qcm90ZWluX1N1cHBseV9RdWFudGl0eV9EYXRhLmNzdiINCnByb3RlaW4gPSByZWFkLmNzdih1cmwsIGhlYWRlciA9IFRSVUUpDQp2YXIubmFtZSA9IG5hbWVzKHByb3RlaW4pDQpgYGANCg0KIyBJbnRyb2R1Y3Rpb24gb2YgRGF0YSBTZXQNClRoaXMgZGF0YSBzZXQgaW5jbHVkZXMgdGhlICoqcGVyY2VudGFnZSBvZiBwcm90ZWluIGludGFrZSoqIGZyb20gZGlmZmVyZW50IHR5cGVzIG9mIGZvb2QgaW4gY291bnRyaWVzIGFyb3VuZCB0aGUgd29ybGQuIFRoZSBsYXN0IGNvdXBsZSBvZiBjb2x1bW5zIGFsc28gaW5jbHVkZXMgY291bnRzIG9mIG9iZXNpdHkgYW5kIENPVklELTE5IGNhc2VzIGFzIHBlcmNlbnRhZ2VzIG9mIHRoZSB0b3RhbCBwb3B1bGF0aW9uIGZvciBjb21wYXJpc29uIHB1cnBvc2VzLg0KDQoNClRoaXMgZGF0YSBzZXQgY2FuIGJlIGZvdW5kIGF0IFtrYWdnbGUuY29tXShodHRwczovL3d3dy5rYWdnbGUuY29tL21hcmlhcmVuL2NvdmlkMTktaGVhbHRoeS1kaWV0LWRhdGFzZXQ/c2VsZWN0PVByb3RlaW5fU3VwcGx5X1F1YW50aXR5X0RhdGEuY3N2KS4gVGhlIGRhdGEgaGFzIGJlZW4gdXBsb2FkZWQgdG8gW3cwMi1Qcm90ZWluX1N1cHBseV9RdWFudGl0eV9EYXRhLmNzdl0oaHR0cHM6Ly9wZW5nZHNjaS5naXRodWIuaW8vU1RBMzIxL3d3MDIvdzAyLVByb3RlaW5fU3VwcGx5X1F1YW50aXR5X0RhdGEuY3N2KSBmb3IgaW50ZXJuZXQgYXZhaWxhYmlsaXR5Lg0KDQojIFQtVGVzdCBNZXRob2QNClRoZSBlcXVhdGlvbiBmb3IgdGhlIFQtVGVzdCBjb25maWRlbmNlIGludGVydmFsIGlzIGdpdmVuIGJ5IHRoZSBmb2xsb3dpbmc6DQokJCBcYmFye1h9IFxwbSB0X3tuLTEsIDEtYWxwaGEvMn0gXHRpbWVzIFxmcmFje3N9e1xzcXJ0e259fSAkJCANCldoZXJlICRcYmFye1h9JCBpcyB0aGUgc2FtcGxlIG1lYW4sICR0JCBpcyB0aGUgdCBzdGF0aXN0aWMgYXQgb3VyIDk1JSBjb25maWRlbmNlIGludGVydmFsLCAkcyQgaXMgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiwgYW5kICRuJCBpcyB0aGUgc2FtcGxlIHNpemUuDQoNClRoZSBjYWxjdWxhdGVkIGNvbmZpZGVuY2UgaW50ZXJ2YWwgaXM6DQoNCmBgYHtyfQ0KdCA8LSB0LnRlc3QocHJvdGVpbiRBbmltYWxQcm9kdWN0cywgDQogICAgICAgY29uZi5sZXZlbCA9IDAuOTUpDQoNCmhpc3QocHJvdGVpbiRBbmltYWxQcm9kdWN0cywNCiAgICAgeGxhYiA9ICJQcm90ZWluIEludGFrZSAlIENvbnN1bWVkIFZpYSBBbmltYWwgUHJvZHVjdHMiLA0KICAgICBtYWluID0gIkVtcGlyaWNhbCBEaXN0cmlidXRpb24iKQ0KdCRjb25mLmludA0KYGBgDQoNCiMgQm9vdHN0cmFwIE1ldGhvZCANClRoZSBib290c3RyYXAgbWV0aG9kIGlzIGEgc2ltdWxhdGVkIHNhbXBsaW5nIG1ldGhvZC4gV2UgdXNlICRce3hfMV57KGkqKX0sIHhfMl57KGkqKX0sIFxjZG90cywgeF9uXnsoaSopfVx9JCB0byBkZW5vdGUgdGhlICRpXnt0aH0kIGJvb3RzdHJhcCBzYW1wbGUuIFRoZW4gdGhlIGNvcnJlc3BvbmRpbmcgbWVhbiBpcyBjYWxsZWQgYm9vdHN0cmFwIHNhbXBsZSBtZWFuIGFuZCBkZW5vdGVkIGJ5ICRcaGF0e1xtdX1faV4qJCwgZm9yICRpID0gMSwgMiwgLi4uLCBuJC4NCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KYnQuc2FtcGxlLm1lYW4udmVjID0gTlVMTA0KZm9yKGkgaW4gMToxMDAwKXtpdGguYnQuc2FtcGxlID0gc2FtcGxlKHggPSBwcm90ZWluJEFuaW1hbFByb2R1Y3RzLA0KICAgICAgICAgICAgICAgICAgICAgICBzaXplID0gMTcwLA0KICAgICAgICAgICAgICAgICAgICAgICByZXBsYWNlID0gVFJVRSkNCiAgYnQuc2FtcGxlLm1lYW4udmVjW2ldID0gbWVhbihpdGguYnQuc2FtcGxlKX0NCg0KaGlzdChidC5zYW1wbGUubWVhbi52ZWMsDQogICAgIHhsYWIgPSAiUHJvdGVpbiBJbnRha2UgJSBDb25zdW1lZCBWaWEgQW5pbWFsIFByb2R1Y3RzIiwNCiAgICAgbWFpbiA9ICJCb290c3RyYXAgRW1wcmljYWwgRGlzdHJpYnV0aW9uIikNCmJ0LkNJID0gcXVhbnRpbGUoYnQuc2FtcGxlLm1lYW4udmVjLCBjKDAuMDI1LCAwLjk3NSkpDQpidC5DSQ0KYGBgDQoNCiMgQ29uY2x1c2lvbnMNCkJvdGggbWV0aG9kcyBhcmUgdmFsdWFibGUgZm9yIGFuYWx5c2lzLiBXZSBjYW4gc2VlIHRoYXQgb3VyIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIGFyZSBzaW1pbGFyLiBXaXRoIGEgc3RhbmRhcmQgY29uZmlkZW5jZSBpbnRlcnZhbCBhdmFpbGFibGUsIHRoZSBib290c3RyYXAgbWV0aG9kIGlzIG5vdCBuZWNlc3NhcmlseSBwZXJ0aW5lbnQgdG8gdGhpcyBzdHVkeS4gV2l0aCBubyBzaWduaWZpY2FudCBkaWZmZXJlbmNlIGJldHdlZW4gdGhlIHR3bywgdGhlIHN0YW5kYXJkIHNhbXBsZSBtYXkgYmUgbW9yZSB1c2VmdWwgZm9yIGNvbXB1dGF0aW9uYWwgZWFzZS4gRnVydGhlciBkZWNpc2lvbnMgY2FuIGJlIG1hZGUgYmFzZWQgb24gcHJvamVjdCBuZWVkcy4g