Assignment-1
library(survival)
library(ggpubr)
## Loading required package: ggplot2
library(survminer)
##
## Attaching package: 'survminer'
## The following object is masked from 'package:survival':
##
## myeloma
library(gtsummary)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(broom)
library(crosstable)
##
## Attaching package: 'crosstable'
## The following object is masked from 'package:gtsummary':
##
## as_gt
# Load the package
library(survival)
# Load the ovarian dataset
data("ovarian")
## Warning in data("ovarian"): data set 'ovarian' not found
# View the dataset
head(ovarian)
## futime fustat age resid.ds rx ecog.ps
## 1 59 1 72.3315 2 1 1
## 2 115 1 74.4932 2 1 1
## 3 156 1 66.4658 2 1 2
## 4 421 0 53.3644 2 2 1
## 5 431 1 50.3397 2 1 1
## 6 448 0 56.4301 1 1 2
##Variable Types:
Type: Quantitative, Continuous (numeric)
Type: Qualitative, Binary (categorical, nominal)
Type: Quantitative, Continuous (numeric)
Codes: 0 = none, 1 = minimal, 2 = large
Type: Qualitative, Ordinal (ordered categories)
Type: Qualitative, Nominal (categorical)
Codes: 0 = good, 1 = moderate, 2 = poor
Type: Qualitative, Ordinal
str(ovarian)
## 'data.frame': 26 obs. of 6 variables:
## $ futime : num 59 115 156 421 431 448 464 475 477 563 ...
## $ fustat : num 1 1 1 0 1 0 1 1 0 1 ...
## $ age : num 72.3 74.5 66.5 53.4 50.3 ...
## $ resid.ds: num 2 2 2 2 2 1 2 2 2 1 ...
## $ rx : num 1 1 1 2 1 1 2 2 1 2 ...
## $ ecog.ps : num 1 1 2 1 1 2 2 2 1 2 ...
##Interpretetion: ##Types of Variables are given below:Analyzing multiple variables here (e.g., age + rx + ecog.ps in Cox regression). 1. futime : survival time (days)
fustat: censoring status (1 = dead, 0 = alive)
age: patient age
resid.ds: residual disease (0 = no, 1 = yes)
rx: treatment group (1 or 2)
ecog.ps: performance status
head(ovarian)
## futime fustat age resid.ds rx ecog.ps
## 1 59 1 72.3315 2 1 1
## 2 115 1 74.4932 2 1 1
## 3 156 1 66.4658 2 1 2
## 4 421 0 53.3644 2 2 1
## 5 431 1 50.3397 2 1 1
## 6 448 0 56.4301 1 1 2
summary(ovarian)
## futime fustat age resid.ds
## Min. : 59.0 Min. :0.0000 Min. :38.89 Min. :1.000
## 1st Qu.: 368.0 1st Qu.:0.0000 1st Qu.:50.17 1st Qu.:1.000
## Median : 476.0 Median :0.0000 Median :56.85 Median :2.000
## Mean : 599.5 Mean :0.4615 Mean :56.17 Mean :1.577
## 3rd Qu.: 794.8 3rd Qu.:1.0000 3rd Qu.:62.38 3rd Qu.:2.000
## Max. :1227.0 Max. :1.0000 Max. :74.50 Max. :2.000
## rx ecog.ps
## Min. :1.0 Min. :1.000
## 1st Qu.:1.0 1st Qu.:1.000
## Median :1.5 Median :1.000
## Mean :1.5 Mean :1.462
## 3rd Qu.:2.0 3rd Qu.:2.000
## Max. :2.0 Max. :2.000
##Univariate ## Extract age as univariate dataset ## See summary ### Histogram for distribution
ovarian_age <- ovarian$age
summary(ovarian_age)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 38.89 50.17 56.85 56.17 62.38 74.50
hist(ovarian_age, main = "Distribution of Age in Ovarian Cancer Patients",
xlab = "Age", col = "lightblue")
##interpretetion ##Variable: Univariable,analyzing one variable at a
time- Only age