INPUT DATA MATRIKS

Matriks adalah susunan bilangan, simbol, atau ekspresi dalam baris dan kolom yang membentuk suatu persegi atau persegi panjang.

Data matriks dapat diinput ke R dengan syntax “matrix(c([elemen-elemen matriks]), nrow = [jumlah baris], ncol = [jumlah kolom])”

Ganti [] sesuai dengan elemen matriks yang ingin dimasukkan beserta jumlah baris dan kolomnya.

Berikut adalah contoh data matriks yang saya input.

library(factoextra)
## Warning: package 'factoextra' was built under R version 4.4.3
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(MASS)
library(StatMatch)
## Warning: package 'StatMatch' was built under R version 4.4.3
## Loading required package: proxy
## Warning: package 'proxy' was built under R version 4.4.3
## 
## Attaching package: 'proxy'
## The following objects are masked from 'package:stats':
## 
##     as.dist, dist
## The following object is masked from 'package:base':
## 
##     as.matrix
## Loading required package: survey
## Warning: package 'survey' was built under R version 4.4.3
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
## Loading required package: lpSolve
## Warning: package 'lpSolve' was built under R version 4.4.2
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
## 
##     select
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# input data #
X = matrix(c(7,8,8,
             5,7,7,
             8,7,9), nrow = 3, ncol = 3); X
##      [,1] [,2] [,3]
## [1,]    7    5    8
## [2,]    8    7    7
## [3,]    8    7    9
Y = matrix(c(7,7,9,
             9,8,6,
             9,8,7), nrow = 3, ncol = 3, byrow = TRUE); Y
##      [,1] [,2] [,3]
## [1,]    7    7    9
## [2,]    9    8    6
## [3,]    9    8    7

PENJUMLAHAN DAN PENGURANGAN MATRIKS

Matriks persegi dapat diberi operasi penjumlahan dan pengurangan dengan simbol “+” dan “-”

# penjumlahan
X + Y
##      [,1] [,2] [,3]
## [1,]   14   12   17
## [2,]   17   15   13
## [3,]   17   15   16
# pengurangan
X - Y
##      [,1] [,2] [,3]
## [1,]    0   -2   -1
## [2,]   -1   -1    1
## [3,]   -1   -1    2
Y - X
##      [,1] [,2] [,3]
## [1,]    0    2    1
## [2,]    1    1   -1
## [3,]    1    1   -2

PERKALIAN MATRIKS / ELEMEN MATRIKS

Matriks dapat dikalikan jika jumlah kolom matriks pertama = jumlah baris matriks kedua. Gunakan simbol “%*%” untuk perkalian antar matriks.

Elemen antar matriks juga dapat dikalikan, begitu pula dengan perkalian antara elemen matriks dengan nilai skalar. Dua perkalian tersebut dapat dilakukan di R dengan simbol “*”

# perkalian
X %*% Y
##      [,1] [,2] [,3]
## [1,]  166  153  149
## [2,]  182  168  163
## [3,]  200  184  177
Y %*% X
##      [,1] [,2] [,3]
## [1,]  177  147  186
## [2,]  175  143  182
## [3,]  183  150  191
# perkalian antar elemen 
X*Y
##      [,1] [,2] [,3]
## [1,]   49   35   72
## [2,]   72   56   42
## [3,]   72   56   63
2*X
##      [,1] [,2] [,3]
## [1,]   14   10   16
## [2,]   16   14   14
## [3,]   16   14   18

TRANSPOSE

Transpose matriks adalah operasi matriks yang menukarkan posisi baris dengan kolom.

Syntax dari transpose adalah “t([nama matriks])”

# transpose
transX = t(X); transX
##      [,1] [,2] [,3]
## [1,]    7    8    8
## [2,]    5    7    7
## [3,]    8    7    9
transY = t(Y); transY
##      [,1] [,2] [,3]
## [1,]    7    9    9
## [2,]    7    8    8
## [3,]    9    6    7

INVERS

Invers matriks adalah matriks kebalikan yang, jika dikalikan dengan matriks aslinya, menghasilkan matriks identitas.

Syntax dari invers matriks adalah “solve([nama matriks])”

# invers
inv_X = solve(X); inv_X
##            [,1]        [,2]       [,3]
## [1,]  0.7777778  0.61111111 -1.1666667
## [2,] -0.8888889 -0.05555556  0.8333333
## [3,]  0.0000000 -0.50000000  0.5000000
inv_Y = solve(Y); inv_Y
##           [,1]      [,2]      [,3]
## [1,] -1.142857 -3.285714  4.285714
## [2,]  1.285714  4.571429 -5.571429
## [3,]  0.000000 -1.000000  1.000000

DETERMINAN

Determinan matriks adalah sebuah nilai skalar yang dapat dihitung dari elemen-elemen matriks persegi, yang digunakan untuk menentukan sifat-sifat penting dari matriks tersebut, seperti apakah matriks itu memiliki invers.

Syntax untuk mencari determinan suatu matriks yaitu “det([nama matriks])”

det(X)
## [1] 18
det(Y)
## [1] -7

MEMANGGIL KOMPONEN MATRIKS

Matriks dapat dipanggil secara spesifik, seperti memanggil baris atau kolom tertentu. Misal, untuk matriks A, syntax untuk memanggil matriks sesuai baris atau kolom adalah “A[‘urutan baris’,]” dan “A[,‘urutan kolom’]”

Selain itu, komponen sel juga dapat dipanggil secara spesifik dengan syntax “A[‘urutan baris’,‘urutan kolom’]”

Untuk memanggil banyak kolom atau banyak baris sekaligus, gunakan simbol “:”

# Memanggil Komponen Matriks
A
A[,2]         # Kolom 2
A[3,]         # Baris 3
A[3,2]        # Sel(3, 2)
A[c(1,3),2]   # Sel(1,2) dan sel(3,2)
A[,1:3]       # kolom(1,2,3)
A[2:4,]       # baris(2,3,4)

NILAI EIGEN

Nilai Eigen menunjukkan jumlah variasi (informasi) yang dapat dijelaskan oleh satu komponen. Vektor Eigen menunjukkan jumlah variasi (informasi) yang dijelaskan suatu komponen lainnya. Nilai Eigen dan Vektor Eigen ini sangat berguna dalam analisis data multivariat.

Syntax dari nilai eigen dan vektor eigen yaitu “eigen([nama matriks])”

eigX = eigen(X); eigX
## eigen() decomposition
## $values
## [1] 22.0388206+0.0000000i  0.4805897+0.7653589i  0.4805897-0.7653589i
## 
## $vectors
##               [,1]                  [,2]                  [,3]
## [1,] -0.5252493+0i -0.5213058+0.3774442i -0.5213058-0.3774442i
## [2,] -0.5724650+0i  0.6759135+0.0000000i  0.6759135+0.0000000i
## [3,] -0.6296006+0i -0.0337302-0.3574624i -0.0337302+0.3574624i
eigY = eigen(Y); eigY
## eigen() decomposition
## $values
## [1] 23.3166467 -1.5148304  0.1981837
## 
## $vectors
##            [,1]       [,2]       [,3]
## [1,] -0.5707682 -0.7807683  0.5632016
## [2,] -0.5677535  0.5352215 -0.8021793
## [3,] -0.5931943  0.3223954  0.1982734
eigvalX = eigX$values; eigvalX
## [1] 22.0388206+0.0000000i  0.4805897+0.7653589i  0.4805897-0.7653589i
eigvalY = eigY$values; eigvalY
## [1] 23.3166467 -1.5148304  0.1981837
eigvecX = eigX$vectors; eigvecX
##               [,1]                  [,2]                  [,3]
## [1,] -0.5252493+0i -0.5213058+0.3774442i -0.5213058-0.3774442i
## [2,] -0.5724650+0i  0.6759135+0.0000000i  0.6759135+0.0000000i
## [3,] -0.6296006+0i -0.0337302-0.3574624i -0.0337302+0.3574624i
eigvecY = eigY$vectors; eigvecY
##            [,1]       [,2]       [,3]
## [1,] -0.5707682 -0.7807683  0.5632016
## [2,] -0.5677535  0.5352215 -0.8021793
## [3,] -0.5931943  0.3223954  0.1982734

Dekomposisi Singular Value (SVD)

SVD memecah sebuah matriks 𝐴m×n menjadi tiga matriks, yaitu matriks nilai singular, matriks U, dan matriks V.

Syntax SVD adalah “svd([nama matriks])”

library(MASS)
A <- matrix(c(5,-3,6,2,-4,8,-2,5,-1,7,3,9), 4, 3, byrow=TRUE)
A
##      [,1] [,2] [,3]
## [1,]    5   -3    6
## [2,]    2   -4    8
## [3,]   -2    5   -1
## [4,]    7    3    9
svd_result <- svd(A)
singular_value <- svd_result$d ; singular_value
## [1] 16.07076  7.41936  3.11187
U <- svd_result$u ; U
##            [,1]       [,2]       [,3]
## [1,] -0.5046975  0.2278362 -0.3742460
## [2,] -0.5178195  0.4138180  0.7413297
## [3,]  0.1646416 -0.6063789  0.5337354
## [4,] -0.6708477 -0.6396483 -0.1596770
V <- svd_result$v ; V
##            [,1]        [,2]       [,3]
## [1,] -0.5341591 -0.17494276 -0.8270847
## [2,]  0.1490928 -0.98251336  0.1115295
## [3,] -0.8321330 -0.06373793  0.5509011

MATRIKS JARAK

Sintaks “set.seed” berfungsi untuk mengatur titik awal (seed) dari generator angka acak dalam suatu program.

Adapun syntax “sample” digunakan untuk memperoleh sejumlah angka acak dari rentang tertentu dengan menentukan nilai minimum dan maksimum.

Sementara itu, syntax “scale” digunakan untuk menstandarisasi data.

set.seed(321)
ss <- sample(1:50, 15)
df <- USArrests[ss, ]
df.scaled <- scale(df); df.scaled
##                  Murder     Assault   UrbanPop        Rape
## Wyoming      -0.3721741 -0.02296746 -0.3418930 -0.62039386
## Illinois      0.4221896  1.02244775  1.2520675  0.62633064
## Mississippi   1.6799322  1.14124493 -1.4507350 -0.39776448
## Kansas       -0.5486994 -0.56943449  0.0739228 -0.26418686
## New York      0.5766492  1.08184634  1.4599754  0.93801176
## Kentucky      0.2677300 -0.64071280 -0.8963140 -0.51650015
## Oklahoma     -0.4163054 -0.14176464  0.2125281  0.03265231
## Hawaii       -0.7031590 -1.38913505  1.2520675  0.06233622
## Missouri      0.1132704  0.17898775  0.3511333  1.24969289
## New Mexico    0.6428462  1.45011760  0.3511333  1.82852926
## Louisiana     1.5254725  1.02244775  0.0739228  0.35917539
## South Dakota -1.0341439 -0.91394632 -1.3814324 -1.03596869
## Iowa         -1.3871944 -1.27033787 -0.5498008 -1.25859806
## North Dakota -1.6961136 -1.40101477 -1.4507350 -1.85227639
## Texas         0.9296998  0.45222127  1.0441596  0.84896001
## attr(,"scaled:center")
##     Murder    Assault   UrbanPop       Rape 
##   8.486667 162.933333  64.933333  19.780000 
## attr(,"scaled:scale")
##    Murder   Assault  UrbanPop      Rape 
##  4.531929 84.177081 14.429467  6.737655

JARAK EUCLIDEAN

Euclidean adalah jarak lurus (garis terpendek) antara dua titik di ruang 𝑝-dimensi [jarak lurus standar].

Berikut adalah syntax dari jarak Euclidean.

dist.eucl <- dist(df.scaled, method = "euclidean"); dist.eucl
##                Wyoming  Illinois Mississippi    Kansas  New York  Kentucky
## Illinois     2.4122476                                                    
## Mississippi  2.6164146 3.1543527                                          
## Kansas       0.7934567 2.3786048   3.1993198                              
## New York     2.7921742 0.4095812   3.3878156 2.7128511                    
## Kentucky     1.0532156 2.9515362   2.3433244 1.2948587 3.2757206          
## Oklahoma     0.8659748 1.8685718   2.9986711 0.5547563 2.2043102 1.4993175
## Hawaii       2.2322175 2.7203365   4.4270510 1.4800030 2.9246694 2.5403456
## Missouri     2.0625111 1.4167282   3.0563398 1.8349434 1.5351057 2.3176129
## New Mexico   3.1109091 1.5775154   3.0617092 3.1551035 1.4705638 3.4011133
## Louisiana    2.4137967 1.6360410   1.7133330 2.6879097 1.7776353 2.4609320
## South Dakota 1.5765126 3.9457686   3.4644086 1.7515852 4.3067435 1.5082173
## Iowa         1.7426214 3.9154083   4.0958166 1.6038155 4.2724405 1.9508929
## North Dakota 2.5296038 4.8794481   4.4694938 2.6181473 5.2524274 2.5546862
## Texas        2.4496576 0.8218968   2.9692463 2.3259192 0.8377979 2.6949264
##               Oklahoma    Hawaii  Missouri New Mexico Louisiana South Dakota
## Illinois                                                                    
## Mississippi                                                                 
## Kansas                                                                      
## New York                                                                    
## Kentucky                                                                    
## Oklahoma                                                                    
## Hawaii       1.6491638                                                      
## Missouri     1.3724911 2.3123720                                            
## New Mexico   2.6268378 3.7154012 1.4937447                                  
## Louisiana    2.2916633 3.5012381 1.8909275  1.7882330                       
## South Dakota 2.1588538 2.9115203 3.2767510  4.4281177 3.7902169             
## Iowa         2.1130016 2.3395756 3.3845451  4.6758935 4.0922753    0.9964108
## North Dakota 3.0891779 3.4578871 4.3173165  5.5131433 4.8442635    1.1604313
## Texas        1.8768374 2.5920693 1.1756214  1.5867966 1.3643137    3.8935265
##                   Iowa North Dakota
## Illinois                           
## Mississippi                        
## Kansas                             
## New York                           
## Kentucky                           
## Oklahoma                           
## Hawaii                             
## Missouri                           
## New Mexico                         
## Louisiana                          
## South Dakota                       
## Iowa                               
## North Dakota 1.1298867             
## Texas        3.9137858    4.8837032
fviz_dist(dist.eucl)

Jarak Chebyshev

Chebyshev adalah jarak ditentukan oleh selisih terbesar, yaitu jarak maksimum di antara perbedaan koordinat. Fokus pada dimensi dengan selisih terbesar.

Berikut adalah syntax dari jarak Chebyshev.

dist.cheb <- dist(df.scaled, method = "maximum"); dist.cheb
##                Wyoming  Illinois Mississippi    Kansas  New York  Kentucky
## Illinois     1.5939604                                                    
## Mississippi  2.0521063 2.7028025                                          
## Kansas       0.5464670 1.5918822   2.2286315                              
## New York     1.8018683 0.3116811   2.9107104 1.6512808                    
## Kentucky     0.6399041 2.1483815   1.7819577 0.9702368 2.3562894          
## Oklahoma     0.6530462 1.1642124   2.0962376 0.4276699 1.2474473 1.1088421
## Hawaii       1.5939604 2.4115828   2.7028025 1.1781447 2.4709814 2.1483815
## Missouri     1.8700867 0.9009342   1.8018683 1.5138797 1.1088421 1.7661930
## New Mexico   2.4489231 1.2021986   2.2262937 2.0927161 1.1088421 2.3450294
## Louisiana    1.8976467 1.1781447   1.5246578 2.0741719 1.3860526 1.6631605
## South Dakota 1.0395394 2.6334999   2.7140760 1.4553552 2.8414078 1.3018739
## Iowa         1.2473704 2.2927856   3.0671266 0.9944112 2.3521842 1.6549244
## North Dakota 1.3780473 2.7028025   3.3760458 1.5880895 2.9107104 1.9638436
## Texas        1.4693539 0.5702265   2.4948946 1.4783991 0.6296251 1.9404736
##               Oklahoma    Hawaii  Missouri New Mexico Louisiana South Dakota
## Illinois                                                                    
## Mississippi                                                                 
## Kansas                                                                      
## New York                                                                    
## Kentucky                                                                    
## Oklahoma                                                                    
## Hawaii       1.2473704                                                      
## Missouri     1.2170406 1.5681228                                            
## New Mexico   1.7958770 2.8392526 1.2711298                                  
## Louisiana    1.9417780 2.4115828 1.4122022  1.4693539                       
## South Dakota 1.5939604 2.6334999 2.2856616  2.8644979 2.5596164             
## Iowa         1.2912504 1.8018683 2.5082909  3.0871273 2.9126670    0.8316315
## North Dakota 1.8849287 2.7028025 3.1019693  3.6808057 3.2215862    0.8163077
## Texas        1.3460052 1.8413563 0.8164294  0.9978963 0.9702368    2.4255920
##                   Iowa North Dakota
## Illinois                           
## Mississippi                        
## Kansas                             
## New York                           
## Kentucky                           
## Oklahoma                           
## Hawaii                             
## Missouri                           
## New Mexico                         
## Louisiana                          
## South Dakota                       
## Iowa                               
## North Dakota 0.9009342             
## Texas        2.3168942    2.7012364
fviz_dist(dist.cheb)

Jarak Manhattan

Manhattan adalah jumlah perbedaan absolut antar koordinat, seperti berjalan di jalan kota berbentuk grid [jarak berbasis grid (jumlah selisih)].

Berikut adalah syntax dari jarak Manhattan.

dist.man <- dist(df.scaled, method = "manhattan"); dist.man
##                 Wyoming   Illinois Mississippi     Kansas   New York   Kentucky
## Illinois      4.6804639                                                        
## Mississippi   4.5477901  5.1034373                                             
## Kansas        1.4950151  4.6314334   5.5975464                                 
## New York      5.4139111  0.7334472   5.4091682  5.3648806                      
## Kentucky      1.9159642  5.1088324   3.8673166  2.1102578  5.8422796           
## Oklahoma      1.3703957  3.6359252   5.4729270  0.9955082  4.3693724  2.8409781
## Hawaii        3.9738430  4.1009258   8.0763743  2.4788279  4.8343730  4.4465291
## Missouri      3.2505127  2.6766756   5.9782446  3.2014823  2.7867606  3.9878005
## New Mexico    5.6300548  2.7514592   5.3741207  5.5810243  2.4338278  6.0584233
## Louisiana     4.3384469  2.5485829   2.5548545  4.2894164  2.9731109  4.7668154
## South Dakota  3.0080629  7.6885267   5.4767741  3.0570933  8.4219740  2.5796943
## Iowa          3.1085028  7.7889667   7.2404771  3.1575333  8.5224139  3.3731605
## North Dakota  5.0427114  9.7231753   7.3728174  5.0917419 10.4566225  4.6143429
## Texas         4.6324690  1.5082739   5.1808752  4.5834386  1.4875431  5.0608376
##                Oklahoma     Hawaii   Missouri New Mexico  Louisiana
## Illinois                                                           
## Mississippi                                                        
## Kansas                                                             
## New York                                                           
## Kentucky                                                           
## Oklahoma                                                           
## Hawaii        2.6034473                                            
## Missouri      2.2059740  4.4728430                                 
## New Mexico    4.5855161  6.8523850  2.3795420                      
## Louisiana     3.5711187  6.1151982  3.4233902  3.0568606           
## South Dakota  4.0526016  4.5379784  6.2585756  8.6381176  7.3465098
## Iowa          4.1530415  3.9256352  6.3590155  8.7385576  7.4469497
## North Dakota  6.0872501  5.6222495  8.2932241 10.6727662  9.3811583
## Texas         3.5879303  4.4687467  2.1834220  2.9573454  2.6260207
##              South Dakota       Iowa North Dakota
## Illinois                                         
## Mississippi                                      
## Kansas                                           
## New York                                         
## Kentucky                                         
## Oklahoma                                         
## Hawaii                                           
## Missouri                                         
## New Mexico                                       
## Louisiana                                        
## South Dakota                                     
## Iowa            1.7637030                        
## North Dakota    2.0346485  1.9342086             
## Texas           7.6405319  7.7409718    9.6751804
fviz_dist(dist.man)

Jarak Mahalanobis

Mahalanobis adalah jarak antar titik yang mempertimbangkan skala (varians) dan korelasi antar variabel.

Berikut adalah syntax dari jarak Mahalanobis.

dist.mah <- mahalanobis.dist(df.scaled); dist.mah
##               Wyoming  Illinois Mississippi    Kansas  New York Kentucky
## Wyoming      0.000000 1.7186109    2.820779 1.4195095 1.8695558 2.867847
## Illinois     1.718611 0.0000000    3.658323 2.2905255 0.4722069 3.878642
## Mississippi  2.820779 3.6583235    0.000000 3.2139075 3.6566922 2.544477
## Kansas       1.419510 2.2905255    3.213907 0.0000000 2.1522535 2.048031
## New York     1.869556 0.4722069    3.656692 2.1522535 0.0000000 3.698342
## Kentucky     2.867847 3.8786421    2.544477 2.0480310 3.6983422 0.000000
## Oklahoma     1.146496 1.8980286    3.237573 0.6499978 1.7772007 2.505941
## Hawaii       3.466671 3.6449604    4.722203 2.2108491 3.3748818 2.753554
## Missouri     3.198071 3.6796400    3.956918 2.2592572 3.3618939 2.642756
## New Mexico   3.281318 3.5101406    4.057258 3.1016653 3.2869855 3.870023
## Louisiana    2.284940 2.5550539    1.688058 2.2700723 2.4136664 2.119635
## South Dakota 1.826205 3.3564158    3.087365 1.6274307 3.3404110 2.261154
## Iowa         1.327907 2.6329606    3.559587 1.1128197 2.6839965 2.621704
## North Dakota 1.582582 3.1919907    3.553572 1.9466491 3.3317039 3.040465
## Texas        2.540604 2.4769381    3.093919 1.7462066 2.1399545 2.108949
##               Oklahoma   Hawaii Missouri New Mexico Louisiana South Dakota
## Wyoming      1.1464956 3.466671 3.198071   3.281318  2.284940     1.826205
## Illinois     1.8980286 3.644960 3.679640   3.510141  2.555054     3.356416
## Mississippi  3.2375727 4.722203 3.956918   4.057258  1.688058     3.087365
## Kansas       0.6499978 2.210849 2.259257   3.101665  2.270072     1.627431
## New York     1.7772007 3.374882 3.361894   3.286985  2.413666     3.340411
## Kentucky     2.5059414 2.753554 2.642756   3.870023  2.119635     2.261154
## Oklahoma     0.0000000 2.705865 2.203038   2.660216  2.350208     1.672866
## Hawaii       2.7058650 0.000000 3.193764   4.645567  3.383255     3.551072
## Missouri     2.2030382 3.193764 0.000000   1.836797  3.256319     2.505784
## New Mexico   2.6602159 4.645567 1.836797   0.000000  3.676879     3.026024
## Louisiana    2.3502077 3.383255 3.256319   3.676879  0.000000     3.021642
## South Dakota 1.6728664 3.551072 2.505784   3.026024  3.021642     0.000000
## Iowa         1.3299426 2.790197 3.145245   3.792086  2.954252     1.518854
## North Dakota 1.9813596 3.780966 3.590548   3.950259  3.434074     1.304743
## Texas        1.9635201 2.082005 2.576037   3.501666  1.527269     3.090805
##                  Iowa North Dakota    Texas
## Wyoming      1.327907     1.582582 2.540604
## Illinois     2.632961     3.191991 2.476938
## Mississippi  3.559587     3.553572 3.093919
## Kansas       1.112820     1.946649 1.746207
## New York     2.683996     3.331704 2.139954
## Kentucky     2.621704     3.040465 2.108949
## Oklahoma     1.329943     1.981360 1.963520
## Hawaii       2.790197     3.780966 2.082005
## Missouri     3.145245     3.590548 2.576037
## New Mexico   3.792086     3.950259 3.501666
## Louisiana    2.954252     3.434074 1.527269
## South Dakota 1.518854     1.304743 3.090805
## Iowa         0.000000     1.045923 2.734770
## North Dakota 1.045923     0.000000 3.563193
## Texas        2.734770     3.563193 0.000000
dist.mah_matrix <- as.matrix(dist.mah);dist.mah_matrix
##               Wyoming  Illinois Mississippi    Kansas  New York Kentucky
## Wyoming      0.000000 1.7186109    2.820779 1.4195095 1.8695558 2.867847
## Illinois     1.718611 0.0000000    3.658323 2.2905255 0.4722069 3.878642
## Mississippi  2.820779 3.6583235    0.000000 3.2139075 3.6566922 2.544477
## Kansas       1.419510 2.2905255    3.213907 0.0000000 2.1522535 2.048031
## New York     1.869556 0.4722069    3.656692 2.1522535 0.0000000 3.698342
## Kentucky     2.867847 3.8786421    2.544477 2.0480310 3.6983422 0.000000
## Oklahoma     1.146496 1.8980286    3.237573 0.6499978 1.7772007 2.505941
## Hawaii       3.466671 3.6449604    4.722203 2.2108491 3.3748818 2.753554
## Missouri     3.198071 3.6796400    3.956918 2.2592572 3.3618939 2.642756
## New Mexico   3.281318 3.5101406    4.057258 3.1016653 3.2869855 3.870023
## Louisiana    2.284940 2.5550539    1.688058 2.2700723 2.4136664 2.119635
## South Dakota 1.826205 3.3564158    3.087365 1.6274307 3.3404110 2.261154
## Iowa         1.327907 2.6329606    3.559587 1.1128197 2.6839965 2.621704
## North Dakota 1.582582 3.1919907    3.553572 1.9466491 3.3317039 3.040465
## Texas        2.540604 2.4769381    3.093919 1.7462066 2.1399545 2.108949
##               Oklahoma   Hawaii Missouri New Mexico Louisiana South Dakota
## Wyoming      1.1464956 3.466671 3.198071   3.281318  2.284940     1.826205
## Illinois     1.8980286 3.644960 3.679640   3.510141  2.555054     3.356416
## Mississippi  3.2375727 4.722203 3.956918   4.057258  1.688058     3.087365
## Kansas       0.6499978 2.210849 2.259257   3.101665  2.270072     1.627431
## New York     1.7772007 3.374882 3.361894   3.286985  2.413666     3.340411
## Kentucky     2.5059414 2.753554 2.642756   3.870023  2.119635     2.261154
## Oklahoma     0.0000000 2.705865 2.203038   2.660216  2.350208     1.672866
## Hawaii       2.7058650 0.000000 3.193764   4.645567  3.383255     3.551072
## Missouri     2.2030382 3.193764 0.000000   1.836797  3.256319     2.505784
## New Mexico   2.6602159 4.645567 1.836797   0.000000  3.676879     3.026024
## Louisiana    2.3502077 3.383255 3.256319   3.676879  0.000000     3.021642
## South Dakota 1.6728664 3.551072 2.505784   3.026024  3.021642     0.000000
## Iowa         1.3299426 2.790197 3.145245   3.792086  2.954252     1.518854
## North Dakota 1.9813596 3.780966 3.590548   3.950259  3.434074     1.304743
## Texas        1.9635201 2.082005 2.576037   3.501666  1.527269     3.090805
##                  Iowa North Dakota    Texas
## Wyoming      1.327907     1.582582 2.540604
## Illinois     2.632961     3.191991 2.476938
## Mississippi  3.559587     3.553572 3.093919
## Kansas       1.112820     1.946649 1.746207
## New York     2.683996     3.331704 2.139954
## Kentucky     2.621704     3.040465 2.108949
## Oklahoma     1.329943     1.981360 1.963520
## Hawaii       2.790197     3.780966 2.082005
## Missouri     3.145245     3.590548 2.576037
## New Mexico   3.792086     3.950259 3.501666
## Louisiana    2.954252     3.434074 1.527269
## South Dakota 1.518854     1.304743 3.090805
## Iowa         0.000000     1.045923 2.734770
## North Dakota 1.045923     0.000000 3.563193
## Texas        2.734770     3.563193 0.000000

Jarak Minkowski

Jarak Minkowski adalah ukuran jarak antara dua titik dalam ruang vektor yang ditentukan oleh sebuah parameter p untuk mencari jarak umum karena menjadi bentuk dasar yang mencakup berbagai jenis jarak lain.

Berikut adalah syntax dari jarak Minkowski.

set.seed(123)

# Data random (5 observasi dengan 3 variabel)
data <- matrix(runif(15, min = 1, max = 10), nrow = 5, ncol = 3)
colnames(data) <- c("X1", "X2", "X3")
print("Data random:")
## [1] "Data random:"
print(data)
##            X1       X2       X3
## [1,] 3.588198 1.410008 9.611500
## [2,] 8.094746 5.752949 5.080007
## [3,] 4.680792 9.031771 7.098136
## [4,] 8.947157 5.962915 6.153701
## [5,] 9.464206 5.109533 1.926322
# Tentukan dua titik yang akan dihitung jaraknya
p1 <- data[1, ];p1
##       X1       X2       X3 
## 3.588198 1.410008 9.611500
p2 <- data[2, ];p2
##       X1       X2       X3 
## 8.094746 5.752949 5.080007
# Fungsi jarak Minkowski
minkowski_distance <- function(x, y, p) {
  sum(abs(x - y)^p)^(1/p)
}

VEKTOR RATA-RATA

Sebelum dihitung, data yang baru diinput terlebih dahulu.

BB = c(6.2,11.5,8.7,10.1,7.8,6.9,12.0,3.1,14.8,9.4)
PM = c(61,73,68,70,64,60,76,49,84,71)
RTB = c(115,138,127,123,131,120,143,95,160,128)
lizard = as.matrix(cbind(BB,PM,RTB)); lizard
##         BB PM RTB
##  [1,]  6.2 61 115
##  [2,] 11.5 73 138
##  [3,]  8.7 68 127
##  [4,] 10.1 70 123
##  [5,]  7.8 64 131
##  [6,]  6.9 60 120
##  [7,] 12.0 76 143
##  [8,]  3.1 49  95
##  [9,] 14.8 84 160
## [10,]  9.4 71 128

MATRIKS RATA-RATA

Matriks rata-rata adalah matriks baru yang setiap elemennya merupakan hasil rata-rata dari elemen-elemen yang berposisi sama dari sekumpulan matriks yang memiliki dimensi identik.

Berikut adalah syntax untuk mencari matriks rata-rata.

vecMeans = as.matrix(colMeans(lizard)); vecMeans
##       [,1]
## BB    9.05
## PM   67.60
## RTB 128.00
vecRata = matrix(c(mean(BB), mean(PM), mean(RTB)), nrow=3, ncol=1); vecRata
##        [,1]
## [1,]   9.05
## [2,]  67.60
## [3,] 128.00

MATRIKS KOVARIANS

Matriks kovarians adalah matriks persegi simetris yang menunjukkan hubungan linier antar-pasangan variabel, di mana elemen pada diagonal utamanya adalah varians, dan elemen non-diagonalnya adalah kovarians.

Berikut adalah syntax dari matriks kovarians.

varkov = cov(lizard); varkov
##           BB        PM       RTB
## BB  10.98056  31.80000  54.96667
## PM  31.80000  94.04444 160.22222
## RTB 54.96667 160.22222 300.66667

MATRIKS KORELASI

Matriks korelasi adalah sebuah tabel yang menunjukkan koefisien korelasi antar setiap pasangan variabel dalam suatu set data, mengukur kekuatan dan arah hubungan linier mereka.

Berikut adalah syntax dari matriks korelasi.

korel = cor(lizard); korel
##            BB        PM       RTB
## BB  1.0000000 0.9895743 0.9566313
## PM  0.9895743 1.0000000 0.9528259
## RTB 0.9566313 0.9528259 1.0000000

MATRIKS STANDARISASI

Matriks standarisasi adalah matriks di mana setiap elemennya telah diubah menjadi skor-Z, yang menunjukkan seberapa jauh nilai tersebut dari rata-rata dalam satuan standar deviasi.

Berikut adalah syntax dari matriks standarisasi.

n = nrow(lizard);n
## [1] 10
u = matrix(1,n,1); u
##       [,1]
##  [1,]    1
##  [2,]    1
##  [3,]    1
##  [4,]    1
##  [5,]    1
##  [6,]    1
##  [7,]    1
##  [8,]    1
##  [9,]    1
## [10,]    1
xbar = cbind((1/n)*t(u)%*%lizard); xbar
##        BB   PM RTB
## [1,] 9.05 67.6 128
D = lizard - u %*% xbar; D
##          BB    PM RTB
##  [1,] -2.85  -6.6 -13
##  [2,]  2.45   5.4  10
##  [3,] -0.35   0.4  -1
##  [4,]  1.05   2.4  -5
##  [5,] -1.25  -3.6   3
##  [6,] -2.15  -7.6  -8
##  [7,]  2.95   8.4  15
##  [8,] -5.95 -18.6 -33
##  [9,]  5.75  16.4  32
## [10,]  0.35   3.4   0
S = (1/(n-1))*t(D)%*%D; S
##           BB        PM       RTB
## BB  10.98056  31.80000  54.96667
## PM  31.80000  94.04444 160.22222
## RTB 54.96667 160.22222 300.66667
Ds = diag(sqrt(diag(S))); Ds
##          [,1]     [,2]     [,3]
## [1,] 3.313692 0.000000  0.00000
## [2,] 0.000000 9.697651  0.00000
## [3,] 0.000000 0.000000 17.33974
R = solve(Ds) %*% S %*% solve(Ds); R
##           [,1]      [,2]      [,3]
## [1,] 1.0000000 0.9895743 0.9566313
## [2,] 0.9895743 1.0000000 0.9528259
## [3,] 0.9566313 0.9528259 1.0000000