## # A tibble: 10 × 3
## player value S
## <chr> <chr> <dbl>
## 1 Gianluigi Donnarumma $78.000.000 426
## 2 Keylor Navas $9.000.000 420
## 3 Koen Casteels $28.000.000 415
## 4 Yassine Bounou $28.500.000 413
## 5 Lucas Mantela $27.000.000 409
## 6 Alejandro Remiro Gargallo $23.500.000 407
## 7 Gerónimo Rulli $20.500.000 405
## 8 Stefan Ortega $14.500.000 401
## 9 Kasper Schmeichel $3.400.000 400
## 10 Anthony Lopes $16.000.000 399
## # A tibble: 10 × 4
## player value s_ q_
## <chr> <dbl> <dbl> <dbl>
## 1 Richard Brush 4 277 69.2
## 2 Scott Flinders 6 299 49.8
## 3 Andy Lonergan 6 292 48.7
## 4 Eldin Jakupović 10 311 31.1
## 5 Thomas Mikkelsen 15 324 21.6
## 6 Peter Abradanel 15 311 20.7
## 7 Enrico Guarna 15 309 20.6
## 8 Jefferson Epazo 20 327 16.4
## 9 Niki Mäenpää 20 322 16.1
## 10 Federico Marchetti 20 314 15.7
## # A tibble: 6 × 41
## player country height weight age club ball_control dribbling marking
## <chr> <chr> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <chr>
## 1 Kalidou Koul… Senegal 186 89 32 Chel… 72 70 <NA>
## 2 Iñaki Peña Spain 184 78 24 FC B… 21 12 None
## 3 Cañizares Spain 186 81 21 Real… 28 8 None
## 4 Estanis Spain 185 72 20 FC B… 63 68 None
## 5 Christian Pu… United… 177 69 24 Chel… 85 87 None
## 6 Roberto Spain 186 75 21 FC B… 70 71 None
## # ℹ 32 more variables: slide_tackle <dbl>, stand_tackle <dbl>,
## # aggression <dbl>, reactions <dbl>, att_position <dbl>, interceptions <dbl>,
## # vision <dbl>, composure <dbl>, crossing <dbl>, short_pass <dbl>,
## # long_pass <dbl>, acceleration <dbl>, stamina <dbl>, strength <dbl>,
## # balance <dbl>, sprint_speed <dbl>, agility <dbl>, jumping <dbl>,
## # heading <dbl>, shot_power <dbl>, finishing <dbl>, long_shots <dbl>,
## # curve <dbl>, fk_acc <dbl>, penalties <dbl>, volleys <dbl>, …
la mediana, la dispersión y los valores atípicos
El gráfico muestra cómo se reparten los salarios en cada club. La línea del medio es la mediana, las cajas muestran la variación y los puntos de afuera son jugadores con sueldos muy diferentes al resto. Así se puede ver rápido qué club paga más y cuál tiene sueldos más repartidos.
## # A tibble: 15 × 42
## player country height weight age club ball_control dribbling marking
## <chr> <chr> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <chr>
## 1 Sadio Mané Senegal 174 69 31 FC B… 86 88 None
## 2 Erling Haal… Norway 195 94 23 Manc… 82 78 None
## 3 Gianluigi D… Italy 196 90 24 Pari… 30 28 None
## 4 Bruno Ferna… Portug… 179 69 28 Manc… 84 79 None
## 5 Marco Verra… Italy 165 60 30 Pari… 92 91 None
## 6 Lautaro Mar… Argent… 174 72 26 Inter 86 84 None
## 7 João Cance… Portug… 182 74 29 FC B… 86 85 None
## 8 Federico Va… Uruguay 182 78 25 Real… 85 81 None
## 9 Virgil van … Nether… 193 92 32 Live… 76 70 None
## 10 Kevin De Br… Belgium 181 75 32 Manc… 90 86 None
## 11 Joshua Kimm… Germany 177 75 28 FC B… 85 82 None
## 12 Kylian Mbap… France 182 73 24 Pari… 91 93 None
## 13 Rodri Spain 191 82 27 Manc… 85 78 None
## 14 Mohamed Sal… Egypt 175 71 31 Live… 86 88 None
## 15 Neymar Jr Brazil 175 68 31 Pari… 94 95 None
## # ℹ 33 more variables: slide_tackle <dbl>, stand_tackle <dbl>,
## # aggression <dbl>, reactions <dbl>, att_position <dbl>, interceptions <dbl>,
## # vision <dbl>, composure <dbl>, crossing <dbl>, short_pass <dbl>,
## # long_pass <dbl>, acceleration <dbl>, stamina <dbl>, strength <dbl>,
## # balance <dbl>, sprint_speed <dbl>, agility <dbl>, jumping <dbl>,
## # heading <dbl>, shot_power <dbl>, finishing <dbl>, long_shots <dbl>,
## # curve <dbl>, fk_acc <dbl>, penalties <dbl>, volleys <dbl>, …
## # A tibble: 15 × 37
## player country height weight age club ball_control dribbling marking
## <chr> <chr> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <chr>
## 1 Sadio Mané Senegal 174 69 31 FC B… 86 88 None
## 2 Erling Haal… Norway 195 94 23 Manc… 82 78 None
## 3 Gianluigi D… Italy 196 90 24 Pari… 30 28 None
## 4 Bruno Ferna… Portug… 179 69 28 Manc… 84 79 None
## 5 Marco Verra… Italy 165 60 30 Pari… 92 91 None
## 6 Lautaro Mar… Argent… 174 72 26 Inter 86 84 None
## 7 João Cance… Portug… 182 74 29 FC B… 86 85 None
## 8 Federico Va… Uruguay 182 78 25 Real… 85 81 None
## 9 Virgil van … Nether… 193 92 32 Live… 76 70 None
## 10 Kevin De Br… Belgium 181 75 32 Manc… 90 86 None
## 11 Joshua Kimm… Germany 177 75 28 FC B… 85 82 None
## 12 Kylian Mbap… France 182 73 24 Pari… 91 93 None
## 13 Rodri Spain 191 82 27 Manc… 85 78 None
## 14 Mohamed Sal… Egypt 175 71 31 Live… 86 88 None
## 15 Neymar Jr Brazil 175 68 31 Pari… 94 95 None
## # ℹ 28 more variables: slide_tackle <dbl>, stand_tackle <dbl>,
## # aggression <dbl>, reactions <dbl>, att_position <dbl>, interceptions <dbl>,
## # vision <dbl>, composure <dbl>, crossing <dbl>, short_pass <dbl>,
## # long_pass <dbl>, acceleration <dbl>, stamina <dbl>, strength <dbl>,
## # balance <dbl>, sprint_speed <dbl>, agility <dbl>, jumping <dbl>,
## # heading <dbl>, shot_power <dbl>, finishing <dbl>, long_shots <dbl>,
## # curve <dbl>, fk_acc <dbl>, penalties <dbl>, volleys <dbl>, value <chr>, …
## # A tibble: 15 × 5
## player club value_num promedio desviacion
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 Sadio Mané FC Bayern München 101000000 77.5 15.4
## 2 Erling Haaland Manchester City 123000000 75.8 17.0
## 3 Gianluigi Donnarumma Paris SG 78000000 35.5 22.7
## 4 Bruno Fernandes Manchester Utd 72500000 80.7 8.74
## 5 Marco Verratti Paris SG 77500000 76.5 13.9
## 6 Lautaro MartÃnez Inter 79500000 76.7 15.7
## 7 João Cancelo FC Bayern München 72000000 78.6 9.08
## 8 Federico Valverde Real Madrid 77500000 78.8 8.87
## 9 Virgil van Dijk Liverpool 84500000 73.3 15.0
## 10 Kevin De Bruyne Manchester City 107500000 80.9 11.8
## 11 Joshua Kimmich FC Bayern München 97000000 79.6 10.6
## 12 Kylian Mbappé Paris SG 153500000 78.6 17.7
## 13 Rodri Manchester City 77000000 74.5 11.8
## 14 Mohamed Salah Liverpool 99500000 78.7 14.4
## 15 Neymar Jr Paris SG 99500000 77 18.8
## # A tibble: 1 × 5
## player club value_num promedio desviacion
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 Kevin De Bruyne Manchester City 107500000 80.9 11.8
## # A tibble: 1 × 5
## player club value_num promedio desviacion
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 Bruno Fernandes Manchester Utd 72500000 80.7 8.74
## # A tibble: 2 × 6
## player club value_num promedio desviacion tipo
## <chr> <chr> <dbl> <dbl> <dbl> <chr>
## 1 Kevin De Bruyne Manchester City 107500000 80.9 11.8 Mejor promedio
## 2 Bruno Fernandes Manchester Utd 72500000 80.7 8.74 Más consistente
| player | club | value_num | promedio | desviacion | tipo |
|---|---|---|---|---|---|
| Kevin De Bruyne | Manchester City | 107500000 | 80.89286 | 11.848861 | Mejor promedio |
| Bruno Fernandes | Manchester Utd | 72500000 | 80.67857 | 8.743478 | Más consistente |