sample size
library(gtsummary)
library(dplyr)
##Major European Stock Indices, 1991–1998
head(EuStockMarkets)
Time Series:
Start = c(1991, 130)
End = c(1991, 135)
Frequency = 260
DAX SMI CAC FTSE
1991.496 1628.75 1678.1 1772.8 2443.6
1991.500 1613.63 1688.5 1750.5 2460.2
1991.504 1606.51 1678.6 1718.0 2448.2
1991.508 1621.04 1684.1 1708.1 2470.4
1991.512 1618.16 1686.6 1723.1 2484.7
1991.515 1610.61 1671.6 1714.3 2466.8
DAX (Germany), SMI (Switzerland), CAC (France), FTSE (UK).
data("EuStockMarkets")
summary(EuStockMarkets)
DAX SMI CAC FTSE
Min. :1402 Min. :1587 Min. :1611 Min. :2281
1st Qu.:1744 1st Qu.:2166 1st Qu.:1875 1st Qu.:2843
Median :2141 Median :2796 Median :1992 Median :3247
Mean :2531 Mean :3376 Mean :2228 Mean :3566
3rd Qu.:2722 3rd Qu.:3812 3rd Qu.:2274 3rd Qu.:3994
Max. :6186 Max. :8412 Max. :4388 Max. :6179
str(EuStockMarkets)
Time-Series [1:1860, 1:4] from 1991 to 1999: 1629 1614 1607 1621 1618 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:4] "DAX" "SMI" "CAC" "FTSE"
plot(EuStockMarkets)

Interpretation: 1. Structure of the Time Series
Your data is a multivariate time series (matrix time series with 4
variables). In R, when you use:
ts(data, start = c(1991, 130), end = c(1991, 135), frequency =
260)
1991.496, 1991.500, etc. → These decimal values are R’s way of
expressing “year + fraction of the year”
1991.496 = 1991 + (130/260) ≈ mid-year (July).
1991.515 = 1991 + (135/260).
You have 6 daily observations (130th → 135th trading day).
So, R is placing your stock data along a trading-day calendar.
🔹 2. Market Movements in Your Data Day DAX (Germany) SMI
(Switzerland) CAC (France) FTSE (UK) Start 1628.75 1678.1 1772.8 2443.6
End 1610.61 1671.6 1714.3 2466.8 Change ↓ -18.14 ↓ -6.5 ↓ -58.5 ↑
+23.2
DAX (Germany): Decreased → negative short-term movement.
SMI (Switzerland): Very stable, small decline.
CAC (France): Strongest decline, suggesting bearish pressure.
FTSE (UK): Only one showing an increase → relative market
strength.
🔹 3. Possible Interpretation
This was likely a period where continental Europe (Germany, France,
Switzerland) faced selling pressure, while UK market remained
resilient.
This divergence might be due to:
Macroeconomic news (different economic conditions, monetary policy,
or political events).
Currency differences (FTSE is GBP-denominated vs. others in
continental currencies).
Sector composition (FTSE historically had strong oil/mining exposure,
which may rise while others fall).
🔹 4. Statistical Analysis You Can Do in R
Here are some deeper analyses you might run:
- Plot the series
plot.ts(your_timeseries, main=“European Stock Indices, 1991”,
col=1:4)
This shows trends side by side.
- Calculate daily returns (%)
returns <- diff(log(your_timeseries)) * 100
This gives percentage changes, which are better for comparison.
- Correlation between indices
cor(returns, use=“complete.obs”)
This shows how closely the indices move together (usually high for
European markets).
- Summary statistics
summary(returns)
This gives min, max, mean, volatility.
🔹 5. Key Insights
Over 6 days, CAC dropped most (-3.3%), showing weakness in the French
market.
FTSE gained (+0.9%), decoupling from others.
DAX and SMI fell slightly, consistent with mild bearishness.
Strong co-movement is expected, but here FTSE diverged → could
indicate market-specific news.
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KIyBzYW1wbGUgc2l6ZQ0KDQpgYGB7cn0NCmxpYnJhcnkoZ3RzdW1tYXJ5KQ0KbGlicmFyeShkcGx5cikNCmBgYA0KDQojI01ham9yIEV1cm9wZWFuIFN0b2NrIEluZGljZXMsIDE5OTEtLTE5OTgNCmBgYHtyfQ0KaGVhZChFdVN0b2NrTWFya2V0cykNCg0KYGBgDQoNCiBEQVggKEdlcm1hbnkpLA0KIFNNSSAoU3dpdHplcmxhbmQpLA0KIENBQyAoRnJhbmNlKSwgDQogRlRTRSAoVUspLiANCiANCmBgYHtyfQ0KIGRhdGEoIkV1U3RvY2tNYXJrZXRzIikNCmBgYA0KIA0KDQpgYGB7cn0NCnN1bW1hcnkoRXVTdG9ja01hcmtldHMpDQpgYGANCg0KYGBge3J9DQogIHN0cihFdVN0b2NrTWFya2V0cykNCmBgYA0KDQpgYGB7cn0NCiBwbG90KEV1U3RvY2tNYXJrZXRzKQ0KYGBgDQoNCg0KSW50ZXJwcmV0YXRpb246IA0KMS4gU3RydWN0dXJlIG9mIHRoZSBUaW1lIFNlcmllcw0KDQpZb3VyIGRhdGEgaXMgYSBtdWx0aXZhcmlhdGUgdGltZSBzZXJpZXMgKG1hdHJpeCB0aW1lIHNlcmllcyB3aXRoIDQgdmFyaWFibGVzKS4gSW4gUiwgd2hlbiB5b3UgdXNlOg0KDQp0cyhkYXRhLCBzdGFydCA9IGMoMTk5MSwgMTMwKSwgZW5kID0gYygxOTkxLCAxMzUpLCBmcmVxdWVuY3kgPSAyNjApDQoNCg0KMTk5MS40OTYsIDE5OTEuNTAwLCBldGMuIOKGkiBUaGVzZSBkZWNpbWFsIHZhbHVlcyBhcmUgUuKAmXMgd2F5IG9mIGV4cHJlc3NpbmcgInllYXIgKyBmcmFjdGlvbiBvZiB0aGUgeWVhciINCg0KMTk5MS40OTYgPSAxOTkxICsgKDEzMC8yNjApIOKJiCBtaWQteWVhciAoSnVseSkuDQoNCjE5OTEuNTE1ID0gMTk5MSArICgxMzUvMjYwKS4NCg0KWW91IGhhdmUgNiBkYWlseSBvYnNlcnZhdGlvbnMgKDEzMHRoIOKGkiAxMzV0aCB0cmFkaW5nIGRheSkuDQoNClNvLCBSIGlzIHBsYWNpbmcgeW91ciBzdG9jayBkYXRhIGFsb25nIGEgdHJhZGluZy1kYXkgY2FsZW5kYXIuDQoNCvCflLkgMi4gTWFya2V0IE1vdmVtZW50cyBpbiBZb3VyIERhdGENCkRheQlEQVggKEdlcm1hbnkpCVNNSSAoU3dpdHplcmxhbmQpCUNBQyAoRnJhbmNlKQlGVFNFIChVSykNClN0YXJ0CTE2MjguNzUJMTY3OC4xCTE3NzIuOAkyNDQzLjYNCkVuZAkxNjEwLjYxCTE2NzEuNgkxNzE0LjMJMjQ2Ni44DQpDaGFuZ2UJ4oaTIC0xOC4xNAnihpMgLTYuNQnihpMgLTU4LjUJ4oaRICsyMy4yDQoNCkRBWCAoR2VybWFueSk6IERlY3JlYXNlZCDihpIgbmVnYXRpdmUgc2hvcnQtdGVybSBtb3ZlbWVudC4NCg0KU01JIChTd2l0emVybGFuZCk6IFZlcnkgc3RhYmxlLCBzbWFsbCBkZWNsaW5lLg0KDQpDQUMgKEZyYW5jZSk6IFN0cm9uZ2VzdCBkZWNsaW5lLCBzdWdnZXN0aW5nIGJlYXJpc2ggcHJlc3N1cmUuDQoNCkZUU0UgKFVLKTogT25seSBvbmUgc2hvd2luZyBhbiBpbmNyZWFzZSDihpIgcmVsYXRpdmUgbWFya2V0IHN0cmVuZ3RoLg0KDQrwn5S5IDMuIFBvc3NpYmxlIEludGVycHJldGF0aW9uDQoNClRoaXMgd2FzIGxpa2VseSBhIHBlcmlvZCB3aGVyZSBjb250aW5lbnRhbCBFdXJvcGUgKEdlcm1hbnksIEZyYW5jZSwgU3dpdHplcmxhbmQpIGZhY2VkIHNlbGxpbmcgcHJlc3N1cmUsIHdoaWxlIFVLIG1hcmtldCByZW1haW5lZCByZXNpbGllbnQuDQoNClRoaXMgZGl2ZXJnZW5jZSBtaWdodCBiZSBkdWUgdG86DQoNCk1hY3JvZWNvbm9taWMgbmV3cyAoZGlmZmVyZW50IGVjb25vbWljIGNvbmRpdGlvbnMsIG1vbmV0YXJ5IHBvbGljeSwgb3IgcG9saXRpY2FsIGV2ZW50cykuDQoNCkN1cnJlbmN5IGRpZmZlcmVuY2VzIChGVFNFIGlzIEdCUC1kZW5vbWluYXRlZCB2cy4gb3RoZXJzIGluIGNvbnRpbmVudGFsIGN1cnJlbmNpZXMpLg0KDQpTZWN0b3IgY29tcG9zaXRpb24gKEZUU0UgaGlzdG9yaWNhbGx5IGhhZCBzdHJvbmcgb2lsL21pbmluZyBleHBvc3VyZSwgd2hpY2ggbWF5IHJpc2Ugd2hpbGUgb3RoZXJzIGZhbGwpLg0KDQrwn5S5IDQuIFN0YXRpc3RpY2FsIEFuYWx5c2lzIFlvdSBDYW4gRG8gaW4gUg0KDQpIZXJlIGFyZSBzb21lIGRlZXBlciBhbmFseXNlcyB5b3UgbWlnaHQgcnVuOg0KDQphKSBQbG90IHRoZSBzZXJpZXMNCg0KcGxvdC50cyh5b3VyX3RpbWVzZXJpZXMsIG1haW49IkV1cm9wZWFuIFN0b2NrIEluZGljZXMsIDE5OTEiLCBjb2w9MTo0KQ0KDQoNClRoaXMgc2hvd3MgdHJlbmRzIHNpZGUgYnkgc2lkZS4NCg0KYikgQ2FsY3VsYXRlIGRhaWx5IHJldHVybnMgKCUpDQoNCnJldHVybnMgPC0gZGlmZihsb2coeW91cl90aW1lc2VyaWVzKSkgKiAxMDANCg0KDQpUaGlzIGdpdmVzIHBlcmNlbnRhZ2UgY2hhbmdlcywgd2hpY2ggYXJlIGJldHRlciBmb3IgY29tcGFyaXNvbi4NCg0KYykgQ29ycmVsYXRpb24gYmV0d2VlbiBpbmRpY2VzDQoNCmNvcihyZXR1cm5zLCB1c2U9ImNvbXBsZXRlLm9icyIpDQoNCg0KVGhpcyBzaG93cyBob3cgY2xvc2VseSB0aGUgaW5kaWNlcyBtb3ZlIHRvZ2V0aGVyICh1c3VhbGx5IGhpZ2ggZm9yIEV1cm9wZWFuIG1hcmtldHMpLg0KDQpkKSBTdW1tYXJ5IHN0YXRpc3RpY3MNCg0Kc3VtbWFyeShyZXR1cm5zKQ0KDQoNClRoaXMgZ2l2ZXMgbWluLCBtYXgsIG1lYW4sIHZvbGF0aWxpdHkuDQoNCvCflLkgNS4gS2V5IEluc2lnaHRzDQoNCk92ZXIgNiBkYXlzLCBDQUMgZHJvcHBlZCBtb3N0ICgtMy4zJSksIHNob3dpbmcgd2Vha25lc3MgaW4gdGhlIEZyZW5jaCBtYXJrZXQuDQoNCkZUU0UgZ2FpbmVkICgrMC45JSksIGRlY291cGxpbmcgZnJvbSBvdGhlcnMuDQoNCkRBWCBhbmQgU01JIGZlbGwgc2xpZ2h0bHksIGNvbnNpc3RlbnQgd2l0aCBtaWxkIGJlYXJpc2huZXNzLg0KDQpTdHJvbmcgY28tbW92ZW1lbnQgaXMgZXhwZWN0ZWQsIGJ1dCBoZXJlIEZUU0UgZGl2ZXJnZWQg4oaSIGNvdWxkIGluZGljYXRlIG1hcmtldC1zcGVjaWZpYyBuZXdzLg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==