CFA

This is my CFA.

library(lavaan)
library(psych)
library(lavaan)
library(semPlot)
library(semTools)
library(readxl)
library(haven)
library(tidyverse)
library(psych)
library(Hmisc)

AI_Chatbot_Project_5 <- read_sav("AI Chatbot Project 5.sav")


model<- '
 
# measurement model
 
## control
Expec =~ Expec_1 + Expec_2 + Expec_3 + Expec_4
#Gen =~ 1*Gender
Inno =~ Inno_1 + Inno_2 + Inno_3
 
## core
Anx =~ Anx_1 + Anx_2 + Anx_3 + Anx_4 
Frus =~ Frus_1 + Frus_3
Anger =~ Anger_1 + Anger_2 + Anger_3
HBH =~ HBH_1 + HBH_2 + HBH_3 + HBH_4
CBH =~ CBH_1 + CBH_2 + CBH_3

# correlations

HBH_3 ~~   HBH_4
HBH_1 ~~   HBH_2
HBH_2 ~~   HBH_3
HBH_2 ~~   HBH_4
Anger_2 ~~ Anger_3
Anger_1 ~~ Anger_3
 
'

fit <- cfa(model, AI_Chatbot_Project_5)
summary(fit, fit.measures = TRUE, standardized=TRUE)
#fit <- cfa(model, AI_Chatbot_Project_5, se="bootstrap", bootstrap=5000)
parameterEstimates(fit, ci=TRUE, level=0.95, boot.ci.type="perc")
modindices(fit, minimum.value = 10, sort = TRUE)
ratio<-fitMeasures(fit,c("chisq"))/fitMeasures(fit,c("df"))
htmt(model, AI_Chatbot_Project_5)
fitMeasures(fit,c("chisq","df","cfi","tli","rmsea","srmr"))

SEM

library(lavaan)
library(psych)
library(lavaan)
library(semPlot)
library(semTools)
library(readxl)
library(haven)
library(tidyverse)
library(psych)
library(Hmisc)

AI_Chatbot_Project_5 <- read_sav("AI Chatbot Project 5.sav")


model<- '
 
# measurement model
 
## control
Expec =~ Expec_1 + Expec_2 + Expec_3 + Expec_4
#Gen =~ 1*Gender
Inno =~ Inno_1 + Inno_2 + Inno_3
 
## core
Anx =~ Anx_1 + Anx_2 + Anx_3 + Anx_4 
Frus =~ Frus_1 + Frus_3
Anger =~ Anger_1 + Anger_2 
HBH =~ HBH_1 + HBH_2 + HBH_3 + HBH_4
CBH =~ CBH_1 + CBH_2 + CBH_3

# correlations

HBH_3 ~~   HBH_4
HBH_1 ~~   HBH_2
HBH_2 ~~   HBH_3
HBH_2 ~~   HBH_4
Inno_1 ~~  Inno_2

Frus ~~   Anger


# Relationship

HBH ~ Anger + Expec + Inno
CBH ~ Frus  + Expec + Inno

Frus ~ Anx
Anger ~ Anx
 
'

fit <- cfa(model, AI_Chatbot_Project_5)
summary(fit, fit.measures = TRUE, standardized=TRUE)
lavaan 0.6-19 ended normally after 84 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        62

  Number of observations                           498

Model Test User Model:
                                                      
  Test statistic                               557.212
  Degrees of freedom                               191
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                             13575.651
  Degrees of freedom                               231
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.973
  Tucker-Lewis Index (TLI)                       0.967

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -13846.221
  Loglikelihood unrestricted model (H1)             NA
                                                      
  Akaike (AIC)                               27816.441
  Bayesian (BIC)                             28077.499
  Sample-size adjusted Bayesian (SABIC)      27880.708

Root Mean Square Error of Approximation:

  RMSEA                                          0.062
  90 Percent confidence interval - lower         0.056
  90 Percent confidence interval - upper         0.068
  P-value H_0: RMSEA <= 0.050                    0.001
  P-value H_0: RMSEA >= 0.080                    0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.089

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  Expec =~                                                              
    Expec_1           1.000                               1.270    0.933
    Expec_2           1.041    0.031   33.976    0.000    1.323    0.901
    Expec_3           0.795    0.042   19.118    0.000    1.010    0.687
    Expec_4           1.177    0.033   36.153    0.000    1.495    0.922
  Inno =~                                                               
    Inno_1            1.000                               1.156    0.741
    Inno_2            0.859    0.037   23.099    0.000    0.992    0.744
    Inno_3            1.336    0.074   18.093    0.000    1.544    0.981
  Anx =~                                                                
    Anx_1             1.000                               1.276    0.904
    Anx_2             1.017    0.026   39.305    0.000    1.298    0.969
    Anx_3             0.971    0.027   35.521    0.000    1.239    0.933
    Anx_4             0.869    0.040   21.487    0.000    1.109    0.743
  Frus =~                                                               
    Frus_1            1.000                               1.343    0.931
    Frus_3            1.081    0.025   43.914    0.000    1.453    0.978
  Anger =~                                                              
    Anger_1           1.000                               1.633    0.975
    Anger_2           1.027    0.023   44.386    0.000    1.677    0.931
  HBH =~                                                                
    HBH_1             1.000                               1.588    0.949
    HBH_2             1.042    0.020   51.270    0.000    1.655    0.964
    HBH_3             1.054    0.028   38.241    0.000    1.673    0.936
    HBH_4             1.064    0.029   37.297    0.000    1.690    0.929
  CBH =~                                                                
    CBH_1             1.000                               1.568    0.969
    CBH_2             1.024    0.017   59.534    0.000    1.606    0.977
    CBH_3             0.859    0.027   32.033    0.000    1.347    0.845

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  HBH ~                                                                 
    Anger             0.689    0.033   20.812    0.000    0.709    0.709
    Expec            -0.089    0.062   -1.437    0.151   -0.071   -0.071
    Inno              0.194    0.068    2.853    0.004    0.141    0.141
  CBH ~                                                                 
    Frus              0.676    0.043   15.586    0.000    0.579    0.579
    Expec            -0.107    0.068   -1.566    0.117   -0.087   -0.087
    Inno              0.073    0.074    0.987    0.324    0.054    0.054
  Frus ~                                                                
    Anx               0.086    0.049    1.759    0.079    0.081    0.081
  Anger ~                                                               
    Anx               0.188    0.059    3.186    0.001    0.147    0.147

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .HBH_3 ~~                                                              
   .HBH_4             0.272    0.046    5.932    0.000    0.272    0.643
 .HBH_1 ~~                                                              
   .HBH_2             0.064    0.031    2.074    0.038    0.064    0.264
 .HBH_2 ~~                                                              
   .HBH_3             0.073    0.033    2.212    0.027    0.073    0.253
   .HBH_4             0.086    0.034    2.546    0.011    0.086    0.282
 .Inno_1 ~~                                                             
   .Inno_2            0.416    0.062    6.678    0.000    0.416    0.446
 .Frus ~~                                                               
   .Anger             1.863    0.135   13.785    0.000    0.862    0.862
  Expec ~~                                                              
    Inno              1.013    0.099   10.212    0.000    0.690    0.690
    Anx              -0.254    0.077   -3.293    0.001   -0.157   -0.157
  Inno ~~                                                               
    Anx              -0.397    0.074   -5.349    0.000   -0.269   -0.269
 .HBH ~~                                                                
   .CBH               1.019    0.085   11.988    0.000    0.717    0.717

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Expec_1           0.242    0.025    9.625    0.000    0.242    0.130
   .Expec_2           0.404    0.034   11.817    0.000    0.404    0.187
   .Expec_3           1.142    0.076   15.005    0.000    1.142    0.528
   .Expec_4           0.397    0.038   10.543    0.000    0.397    0.151
   .Inno_1            1.094    0.086   12.752    0.000    1.094    0.450
   .Inno_2            0.794    0.063   12.687    0.000    0.794    0.446
   .Inno_3            0.093    0.088    1.058    0.290    0.093    0.038
   .Anx_1             0.366    0.028   12.909    0.000    0.366    0.184
   .Anx_2             0.108    0.017    6.283    0.000    0.108    0.060
   .Anx_3             0.227    0.021   11.020    0.000    0.227    0.129
   .Anx_4             0.997    0.066   15.063    0.000    0.997    0.448
   .Frus_1            0.278    0.027   10.145    0.000    0.278    0.133
   .Frus_3            0.094    0.025    3.779    0.000    0.094    0.043
   .Anger_1           0.139    0.029    4.772    0.000    0.139    0.050
   .Anger_2           0.430    0.041   10.603    0.000    0.430    0.133
   .HBH_1             0.281    0.040    7.056    0.000    0.281    0.100
   .HBH_2             0.208    0.046    4.498    0.000    0.208    0.071
   .HBH_3             0.397    0.048    8.288    0.000    0.397    0.124
   .HBH_4             0.451    0.051    8.783    0.000    0.451    0.136
   .CBH_1             0.160    0.022    7.384    0.000    0.160    0.061
   .CBH_2             0.125    0.022    5.822    0.000    0.125    0.046
   .CBH_3             0.729    0.049   14.766    0.000    0.729    0.287
    Expec             1.614    0.118   13.643    0.000    1.000    1.000
    Inno              1.336    0.147    9.119    0.000    1.000    1.000
    Anx               1.629    0.125   12.995    0.000    1.000    1.000
   .Frus              1.792    0.132   13.621    0.000    0.993    0.993
   .Anger             2.609    0.176   14.808    0.000    0.978    0.978
   .HBH               1.241    0.096   12.914    0.000    0.492    0.492
   .CBH               1.626    0.113   14.349    0.000    0.661    0.661
#fit <- cfa(model, AI_Chatbot_Project_5, se="bootstrap", bootstrap=5000)
parameterEstimates(fit, ci=TRUE, level=0.95, boot.ci.type="perc")
       lhs op     rhs    est    se      z pvalue ci.lower ci.upper
1    Expec =~ Expec_1  1.000 0.000     NA     NA    1.000    1.000
2    Expec =~ Expec_2  1.041 0.031 33.976  0.000    0.981    1.101
3    Expec =~ Expec_3  0.795 0.042 19.118  0.000    0.713    0.876
4    Expec =~ Expec_4  1.177 0.033 36.153  0.000    1.113    1.241
5     Inno =~  Inno_1  1.000 0.000     NA     NA    1.000    1.000
6     Inno =~  Inno_2  0.859 0.037 23.099  0.000    0.786    0.931
7     Inno =~  Inno_3  1.336 0.074 18.093  0.000    1.191    1.481
8      Anx =~   Anx_1  1.000 0.000     NA     NA    1.000    1.000
9      Anx =~   Anx_2  1.017 0.026 39.305  0.000    0.966    1.068
10     Anx =~   Anx_3  0.971 0.027 35.521  0.000    0.917    1.025
11     Anx =~   Anx_4  0.869 0.040 21.487  0.000    0.790    0.948
12    Frus =~  Frus_1  1.000 0.000     NA     NA    1.000    1.000
13    Frus =~  Frus_3  1.081 0.025 43.914  0.000    1.033    1.130
14   Anger =~ Anger_1  1.000 0.000     NA     NA    1.000    1.000
15   Anger =~ Anger_2  1.027 0.023 44.386  0.000    0.982    1.072
16     HBH =~   HBH_1  1.000 0.000     NA     NA    1.000    1.000
17     HBH =~   HBH_2  1.042 0.020 51.270  0.000    1.002    1.082
18     HBH =~   HBH_3  1.054 0.028 38.241  0.000    1.000    1.108
19     HBH =~   HBH_4  1.064 0.029 37.297  0.000    1.008    1.120
20     CBH =~   CBH_1  1.000 0.000     NA     NA    1.000    1.000
21     CBH =~   CBH_2  1.024 0.017 59.534  0.000    0.990    1.058
22     CBH =~   CBH_3  0.859 0.027 32.033  0.000    0.806    0.911
23   HBH_3 ~~   HBH_4  0.272 0.046  5.932  0.000    0.182    0.362
24   HBH_1 ~~   HBH_2  0.064 0.031  2.074  0.038    0.003    0.124
25   HBH_2 ~~   HBH_3  0.073 0.033  2.212  0.027    0.008    0.137
26   HBH_2 ~~   HBH_4  0.086 0.034  2.546  0.011    0.020    0.153
27  Inno_1 ~~  Inno_2  0.416 0.062  6.678  0.000    0.294    0.538
28    Frus ~~   Anger  1.863 0.135 13.785  0.000    1.599    2.128
29     HBH  ~   Anger  0.689 0.033 20.812  0.000    0.624    0.754
30     HBH  ~   Expec -0.089 0.062 -1.437  0.151   -0.211    0.032
31     HBH  ~    Inno  0.194 0.068  2.853  0.004    0.061    0.327
32     CBH  ~    Frus  0.676 0.043 15.586  0.000    0.591    0.761
33     CBH  ~   Expec -0.107 0.068 -1.566  0.117   -0.241    0.027
34     CBH  ~    Inno  0.073 0.074  0.987  0.324   -0.072    0.219
35    Frus  ~     Anx  0.086 0.049  1.759  0.079   -0.010    0.181
36   Anger  ~     Anx  0.188 0.059  3.186  0.001    0.072    0.303
37 Expec_1 ~~ Expec_1  0.242 0.025  9.625  0.000    0.193    0.291
38 Expec_2 ~~ Expec_2  0.404 0.034 11.817  0.000    0.337    0.470
39 Expec_3 ~~ Expec_3  1.142 0.076 15.005  0.000    0.993    1.292
40 Expec_4 ~~ Expec_4  0.397 0.038 10.543  0.000    0.323    0.470
41  Inno_1 ~~  Inno_1  1.094 0.086 12.752  0.000    0.926    1.262
42  Inno_2 ~~  Inno_2  0.794 0.063 12.687  0.000    0.671    0.916
43  Inno_3 ~~  Inno_3  0.093 0.088  1.058  0.290   -0.079    0.266
44   Anx_1 ~~   Anx_1  0.366 0.028 12.909  0.000    0.311    0.422
45   Anx_2 ~~   Anx_2  0.108 0.017  6.283  0.000    0.074    0.142
46   Anx_3 ~~   Anx_3  0.227 0.021 11.020  0.000    0.187    0.268
47   Anx_4 ~~   Anx_4  0.997 0.066 15.063  0.000    0.868    1.127
48  Frus_1 ~~  Frus_1  0.278 0.027 10.145  0.000    0.224    0.331
49  Frus_3 ~~  Frus_3  0.094 0.025  3.779  0.000    0.045    0.143
50 Anger_1 ~~ Anger_1  0.139 0.029  4.772  0.000    0.082    0.197
51 Anger_2 ~~ Anger_2  0.430 0.041 10.603  0.000    0.350    0.509
52   HBH_1 ~~   HBH_1  0.281 0.040  7.056  0.000    0.203    0.359
53   HBH_2 ~~   HBH_2  0.208 0.046  4.498  0.000    0.117    0.299
54   HBH_3 ~~   HBH_3  0.397 0.048  8.288  0.000    0.303    0.491
55   HBH_4 ~~   HBH_4  0.451 0.051  8.783  0.000    0.351    0.552
56   CBH_1 ~~   CBH_1  0.160 0.022  7.384  0.000    0.117    0.202
57   CBH_2 ~~   CBH_2  0.125 0.022  5.822  0.000    0.083    0.168
58   CBH_3 ~~   CBH_3  0.729 0.049 14.766  0.000    0.632    0.826
59   Expec ~~   Expec  1.614 0.118 13.643  0.000    1.382    1.845
60    Inno ~~    Inno  1.336 0.147  9.119  0.000    1.049    1.623
61     Anx ~~     Anx  1.629 0.125 12.995  0.000    1.383    1.875
62    Frus ~~    Frus  1.792 0.132 13.621  0.000    1.534    2.050
63   Anger ~~   Anger  2.609 0.176 14.808  0.000    2.264    2.955
64     HBH ~~     HBH  1.241 0.096 12.914  0.000    1.052    1.429
65     CBH ~~     CBH  1.626 0.113 14.349  0.000    1.404    1.849
66   Expec ~~    Inno  1.013 0.099 10.212  0.000    0.819    1.208
67   Expec ~~     Anx -0.254 0.077 -3.293  0.001   -0.405   -0.103
68    Inno ~~     Anx -0.397 0.074 -5.349  0.000   -0.542   -0.251
69     HBH ~~     CBH  1.019 0.085 11.988  0.000    0.853    1.186
modindices(fit, minimum.value = 10, sort = TRUE)
        lhs op     rhs     mi    epc sepc.lv sepc.all sepc.nox
404 Anger_2 ~~   HBH_1 52.180 -0.139  -0.139   -0.399   -0.399
179     HBH =~ Anger_2 44.955  0.226   0.359    0.199    0.199
405 Anger_2 ~~   HBH_2 35.608  0.093   0.093    0.311    0.311
328   Anx_1 ~~   Anx_3 35.087 -0.165  -0.165   -0.572   -0.572
342   Anx_2 ~~   Anx_4 31.952 -0.147  -0.147   -0.448   -0.448
413   HBH_1 ~~   CBH_1 23.512  0.064   0.064    0.301    0.301
397 Anger_1 ~~   HBH_1 22.668  0.079   0.079    0.401    0.401
136    Frus =~ Anger_1 20.473  0.339   0.455    0.271    0.271
197     CBH =~ Anger_2 19.192  0.114   0.179    0.099    0.099
474     Anx  ~    Frus 19.107 -0.689  -0.725   -0.725   -0.725
451    Frus  ~     CBH 17.964 -0.131  -0.153   -0.153   -0.153
398 Anger_1 ~~   HBH_2 17.946 -0.057  -0.057   -0.337   -0.337
414   HBH_1 ~~   CBH_2 17.764 -0.055  -0.055   -0.296   -0.296
455   Anger  ~     HBH 17.436  0.179   0.174    0.174    0.174
456   Anger  ~     CBH 17.008  0.138   0.133    0.133    0.133
417   HBH_2 ~~   CBH_2 16.576  0.044   0.044    0.270    0.270
450    Frus  ~     HBH 16.457 -0.132  -0.156   -0.156   -0.156
453    Frus  ~   Expec 16.348 -0.113  -0.106   -0.106   -0.106
475     Anx  ~   Anger 14.125 -0.492  -0.630   -0.630   -0.630
461   Expec  ~     CBH 13.845 -0.183  -0.227   -0.227   -0.227
354   Anx_3 ~~   Anx_4 13.804  0.100   0.100    0.211    0.211
462   Expec  ~    Frus 13.011 -0.120  -0.127   -0.127   -0.127
327   Anx_1 ~~   Anx_2 12.114  0.110   0.110    0.552    0.552
90     Inno =~ Expec_3 11.870  0.215   0.249    0.169    0.169
195     CBH =~  Frus_3 11.242 -0.074  -0.116   -0.078   -0.078
137    Frus =~ Anger_2 11.224 -0.252  -0.339   -0.188   -0.188
341   Anx_2 ~~   Anx_3 10.314  0.110   0.110    0.700    0.700
178     HBH =~ Anger_1 10.168 -0.095  -0.151   -0.090   -0.090
ratio<-fitMeasures(fit,c("chisq"))/fitMeasures(fit,c("df"))
htmt(model, AI_Chatbot_Project_5)
      Expec  Inno   Anx  Frus Anger   HBH   CBH
Expec 1.000                                    
Inno  0.677 1.000                              
Anx   0.160 0.280 1.000                        
Frus  0.311 0.264 0.068 1.000                  
Anger 0.227 0.222 0.148 0.850 1.000            
HBH   0.121 0.030 0.134 0.536 0.731 1.000      
CBH   0.209 0.132 0.134 0.579 0.608 0.784 1.000
fitMeasures(fit,c("chisq","df","cfi","tli","rmsea","srmr"))
  chisq      df     cfi     tli   rmsea    srmr 
557.212 191.000   0.973   0.967   0.062   0.089