Berikut adalah jawaban Kelompok 2 pada Tugas Kelompok materi Kalkulus 1
\[ \lim_{x \to 0} \frac{\sqrt{1+\tan x} - \sqrt{1+\sin x}}{x^3} \]
Kalikan dengan sekawan pembilang:
\[ \frac{\sqrt{1+\tan x} - \sqrt{1+\sin x}}{x^3} \cdot \frac{\sqrt{1+\tan x} + \sqrt{1+\sin x}}{\sqrt{1+\tan x} + \sqrt{1+\sin x}} \]
Hasilnya:
\[ = \frac{(1+\tan x) - (1+\sin x)}{x^3 \big(\sqrt{1+\tan x} + \sqrt{1+\sin x}\big)} \]
Sederhanakan:
\[ = \frac{\tan x - \sin x}{x^3 \big(\sqrt{1+\tan x} + \sqrt{1+\sin x}\big)} \]
Untuk \(x \to 0\):
Maka:
\[ \tan x - \sin x = \left(x + \tfrac{1}{3}x^3\right) - \left(x - \tfrac{1}{6}x^3\right) + O(x^5) = \tfrac{1}{2} x^3 + O(x^5) \]
\[ \frac{\tan x - \sin x}{x^3 \big(\sqrt{1+\tan x} + \sqrt{1+\sin x}\big)} \approx \frac{\tfrac{1}{2}x^3}{x^3 \cdot (\sqrt{1+0} + \sqrt{1+0})} = \frac{\tfrac{1}{2}}{2} = \tfrac{1}{4} \]
\[ \lim_{x \to 0} \frac{\sqrt{1+\tan x} - \sqrt{1+\sin x}}{x^3} = \tfrac{1}{4} \]
\[ g(x) = \frac{x^2 - 4}{|x-2|} \]
\[ x^2 - 4 = (x-2)(x+2) \]
Sehingga:
\[ g(x) = \frac{(x-2)(x+2)}{|x-2|} \]
Jika \(x > 2\), maka \(|x-2| = x-2\).
\[ g(x) = \frac{(x-2)(x+2)}{x-2} = x+2 \]
Jika \(x < 2\), maka \(|x-2| = -(x-2)\).
\[ g(x) = \frac{(x-2)(x+2)}{-(x-2)} = -(x+2) \]
Untuk \(x \to 2^+\):
\[ g(x) = x+2 \implies \lim_{x \to 2^+} g(x) = 2+2 = 4 \]
Untuk \(x \to 2^-\):
\[ g(x) = -(x+2) \implies \lim_{x \to 2^-} g(x) = -(2+2) = -4 \]
Karena:
\[ \lim_{x \to 2^+} g(x) = 4, \quad \lim_{x \to 2^-} g(x) = -4 \]
dan hasilnya tidak sama, maka:
\[ \lim_{x \to 2} g(x) \quad \text{TIDAK ADA}. \]