Purpose
This report will analyze the difference in standard sampling and
bootstrap sampling. The sample distribution and confidence intervals
will be used to justify the use of bootstrap sampling in future
analysis.
Data Set
Description
This data set includes the percentage of protein
intake from different types of food in countries around the
world. The last couple of columns also includes counts of obesity and
COVID-19 cases as percentages of the total population for comparison
purposes.
Data can be found at kaggle.com.
This data set is also uploaded to the course Github repository. w02-Protein_Supply_Quantity_Data.csv.
url="https://pengdsci.github.io/STA321/ww02/w02-Protein_Supply_Quantity_Data.csv"
protein = read.csv(url, header = TRUE)
var.name = names(protein)
kable(data.frame(var.name))
Country |
AlcoholicBeverages |
AnimalProducts |
Animalfats |
CerealsExcludingBeer |
Eggs |
FishSeafood |
FruitsExcludingWine |
Meat |
MilkExcludingButter |
Offals |
Oilcrops |
Pulses |
Spices |
StarchyRoots |
Stimulants |
Treenuts |
VegetalProducts |
VegetableOils |
Vegetables |
Miscellaneous |
Obesity |
Confirmed |
Deaths |
Recovered |
Active |
Population |
Variable of Study
The studied variable was “Animal Products”. The responses of this
variable correspond to the percentage of protein intake different
countries’ populations consume from animal products. This response can
vary from a number of factors, including livestock availability,
economy, prevalence of dietary restrictions, and much more.
Sample Mean and
Distribution
The following is the distribution of the standard sample. The sample
mean was 21.3.
set.seed(123)
animalproducts <- sample(protein$AnimalProducts,
100,
replace = FALSE
)
hist(animalproducts,
breaks = 8,
xlab = "Protein Intake % Via Animal Products",
main = "Approximated Distribution of Animal Product Consumption"
)

CI <- quantile(animalproducts, c(0.025, 0.975))
mean(animalproducts)
## [1] 21.33699
Bootstrap Method
The following is the distribution of the bootstrap sample. The sample
mean was 21.4
set.seed(123)
animalproducts.bootstrap <- sample(protein$AnimalProducts,
100,
replace = TRUE
)
hist(animalproducts.bootstrap,
breaks = 8,
xlab = "Protein Intake % Via Animal Products",
main = "Bootstrap Approx. Dist. of Animal Product Consumption")

bootstrap.CI <- quantile(animalproducts.bootstrap, c(0.025, 0.095))
mean(animalproducts.bootstrap)
## [1] 21.41313
Comparison
The following table compares the confidence intervals of the standard
sample and the bootstrap sample. Note the smaller range of the
bootstrapped sample. Bootstrapped samples have normal distributions,
meaning parametric analysis can be continued on this sample. We also can
narrow our estimation of the sample mean with an equal level of
confidence as the standard sample. This is ensured because the same
sample size was used. Overall, the bootstrap sample is useful to
performing further analysis.
kable(data.frame(CI,bootstrap.CI))
2.5% |
8.063812 |
8.952372 |
97.5% |
32.598145 |
11.190900 |
LS0tDQp0aXRsZTogJ1NUQTMyMTogV2VlayAjMDIgQXNzaWdubWVudCcNCmF1dGhvcjogJ05vYWggQnJlY2hiaWxsJw0KZGF0ZTogIjIwMjUtMDktMDciDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6IHllcw0KICAgIHRvY19kZXB0aDogNA0KICAgIGZpZ193aWR0aDogNg0KICAgIGZpZ19oZWlnaHQ6IDQNCiAgICBmaWdfY2FwdGlvbjogeWVzDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICB0b2NfY29sbGFwc2VkOiB5ZXMNCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUNCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICBzbW9vdGhfc2Nyb2xsOiB5ZXMNCiAgICB0aGVtZTogbHVtZW4NCiAgcGRmX2RvY3VtZW50OiANCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogNA0KICAgIGZpZ19jYXB0aW9uOiB5ZXMNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICB3b3JkX2RvY3VtZW50Og0KICAgIHRvYzogeWVzDQogICAgdG9jX2RlcHRoOiAnNCcNCi0tLQ0KDQo8c3R5bGUgdHlwZT0idGV4dC9jc3MiPg0KaDEudGl0bGUgew0KICBmb250LXNpemU6IDIwcHg7DQogIGNvbG9yOiBEYXJrUmVkOw0KICB0ZXh0LWFsaWduOiBjZW50ZXI7DQp9DQpoNC5hdXRob3IgeyAvKiBIZWFkZXIgNCAtIGFuZCB0aGUgYXV0aG9yIGFuZCBkYXRhIGhlYWRlcnMgdXNlIHRoaXMgdG9vICAqLw0KICAgIGZvbnQtc2l6ZTogMThweDsNCiAgZm9udC1mYW1pbHk6ICJUaW1lcyBOZXcgUm9tYW4iLCBUaW1lcywgc2VyaWY7DQogIGNvbG9yOiBEYXJrUmVkOw0KICB0ZXh0LWFsaWduOiBjZW50ZXI7DQp9DQpoNC5kYXRlIHsgLyogSGVhZGVyIDQgLSBhbmQgdGhlIGF1dGhvciBhbmQgZGF0YSBoZWFkZXJzIHVzZSB0aGlzIHRvbyAgKi8NCiAgZm9udC1zaXplOiAxOHB4Ow0KICBmb250LWZhbWlseTogIlRpbWVzIE5ldyBSb21hbiIsIFRpbWVzLCBzZXJpZjsNCiAgY29sb3I6IERhcmtCbHVlOw0KICB0ZXh0LWFsaWduOiBjZW50ZXI7DQp9DQpoMSB7IC8qIEhlYWRlciAzIC0gYW5kIHRoZSBhdXRob3IgYW5kIGRhdGEgaGVhZGVycyB1c2UgdGhpcyB0b28gICovDQogICAgZm9udC1zaXplOiAyMnB4Ow0KICAgIGZvbnQtZmFtaWx5OiAiVGltZXMgTmV3IFJvbWFuIiwgVGltZXMsIHNlcmlmOw0KICAgIGNvbG9yOiBkYXJrcmVkOw0KICAgIHRleHQtYWxpZ246IGNlbnRlcjsNCn0NCmgyIHsgLyogSGVhZGVyIDMgLSBhbmQgdGhlIGF1dGhvciBhbmQgZGF0YSBoZWFkZXJzIHVzZSB0aGlzIHRvbyAgKi8NCiAgICBmb250LXNpemU6IDE4cHg7DQogICAgZm9udC1mYW1pbHk6ICJUaW1lcyBOZXcgUm9tYW4iLCBUaW1lcywgc2VyaWY7DQogICAgY29sb3I6IG5hdnk7DQogICAgdGV4dC1hbGlnbjogbGVmdDsNCn0NCg0KaDMgeyAvKiBIZWFkZXIgMyAtIGFuZCB0aGUgYXV0aG9yIGFuZCBkYXRhIGhlYWRlcnMgdXNlIHRoaXMgdG9vICAqLw0KICAgIGZvbnQtc2l6ZTogMTVweDsNCiAgICBmb250LWZhbWlseTogIlRpbWVzIE5ldyBSb21hbiIsIFRpbWVzLCBzZXJpZjsNCiAgICBjb2xvcjogbmF2eTsNCiAgICB0ZXh0LWFsaWduOiBsZWZ0Ow0KfQ0KDQpoNCB7IC8qIEhlYWRlciA0IC0gYW5kIHRoZSBhdXRob3IgYW5kIGRhdGEgaGVhZGVycyB1c2UgdGhpcyB0b28gICovDQogICAgZm9udC1zaXplOiAxOHB4Ow0KICAgIGZvbnQtZmFtaWx5OiAiVGltZXMgTmV3IFJvbWFuIiwgVGltZXMsIHNlcmlmOw0KICAgIGNvbG9yOiBkYXJrcmVkOw0KICAgIHRleHQtYWxpZ246IGxlZnQ7DQp9DQo8L3N0eWxlPg0KDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0KIyBjb2RlIGNodW5rIHNwZWNpZmllcyB3aGV0aGVyIHRoZSBSIGNvZGUsIHdhcm5pbmdzLCBhbmQgb3V0cHV0IA0KIyB3aWxsIGJlIGluY2x1ZGVkIGluIHRoZSBvdXRwdXQgZmlsZXMuDQpsaWJyYXJ5KGtuaXRyKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUsICAgICAgICAgICAjIGluY2x1ZGUgY29kZSBjaHVuayBpbiB0aGUgb3V0cHV0IGZpbGUNCiAgICAgICAgICAgICAgICAgICAgICB3YXJuaW5ncyA9IEZBTFNFLCAgICAgICAjIHNvbWV0aW1lcywgeW91IGNvZGUgbWF5IHByb2R1Y2Ugd2FybmluZyBtZXNzYWdlcywNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHlvdSBjYW4gY2hvb3NlIHRvIGluY2x1ZGUgdGhlIHdhcm5pbmcgbWVzc2FnZXMgaW4NCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHRoZSBvdXRwdXQgZmlsZS4gDQogICAgICAgICAgICAgICAgICAgICAgcmVzdWx0cyA9IFRSVUUgICAgICAgICAgIyB5b3UgY2FuIGFsc28gZGVjaWRlIHdoZXRoZXIgdG8gaW5jbHVkZSB0aGUgb3V0cHV0DQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBpbiB0aGUgb3V0cHV0IGZpbGUuDQogICAgICAgICAgICAgICAgICAgICAgKSAgIA0KYGBgDQoNCiMgUHVycG9zZQ0KDQpUaGlzIHJlcG9ydCB3aWxsIGFuYWx5emUgdGhlIGRpZmZlcmVuY2UgaW4gc3RhbmRhcmQgc2FtcGxpbmcgYW5kIGJvb3RzdHJhcCBzYW1wbGluZy4gVGhlIHNhbXBsZSBkaXN0cmlidXRpb24gYW5kIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIHdpbGwgYmUgdXNlZCB0byBqdXN0aWZ5IHRoZSB1c2Ugb2YgYm9vdHN0cmFwIHNhbXBsaW5nIGluIGZ1dHVyZSBhbmFseXNpcy4NCg0KIyBEYXRhIFNldCBEZXNjcmlwdGlvbg0KDQpUaGlzIGRhdGEgc2V0IGluY2x1ZGVzIHRoZSAqKnBlcmNlbnRhZ2Ugb2YgcHJvdGVpbiBpbnRha2UqKiBmcm9tIGRpZmZlcmVudCB0eXBlcyBvZiBmb29kIGluIGNvdW50cmllcyBhcm91bmQgdGhlIHdvcmxkLiBUaGUgbGFzdCBjb3VwbGUgb2YgY29sdW1ucyBhbHNvIGluY2x1ZGVzIGNvdW50cyBvZiBvYmVzaXR5IGFuZCBDT1ZJRC0xOSBjYXNlcyBhcyBwZXJjZW50YWdlcyBvZiB0aGUgdG90YWwgcG9wdWxhdGlvbiBmb3IgY29tcGFyaXNvbiBwdXJwb3Nlcy4NCg0KDQpEYXRhIGNhbiBiZSBmb3VuZCBhdCBba2FnZ2xlLmNvbV0oaHR0cHM6Ly93d3cua2FnZ2xlLmNvbS9tYXJpYXJlbi9jb3ZpZDE5LWhlYWx0aHktZGlldC1kYXRhc2V0P3NlbGVjdD1Qcm90ZWluX1N1cHBseV9RdWFudGl0eV9EYXRhLmNzdikuIFRoaXMgZGF0YSBzZXQgaXMgYWxzbyB1cGxvYWRlZCB0byB0aGUgY291cnNlIEdpdGh1YiByZXBvc2l0b3J5LiBbdzAyLVByb3RlaW5fU3VwcGx5X1F1YW50aXR5X0RhdGEuY3N2XShodHRwczovL3Blbmdkc2NpLmdpdGh1Yi5pby9TVEEzMjEvd3cwMi93MDItUHJvdGVpbl9TdXBwbHlfUXVhbnRpdHlfRGF0YS5jc3YpLg0KDQoNCmBgYHtyfQ0KdXJsPSJodHRwczovL3Blbmdkc2NpLmdpdGh1Yi5pby9TVEEzMjEvd3cwMi93MDItUHJvdGVpbl9TdXBwbHlfUXVhbnRpdHlfRGF0YS5jc3YiDQpwcm90ZWluID0gcmVhZC5jc3YodXJsLCBoZWFkZXIgPSBUUlVFKQ0KdmFyLm5hbWUgPSBuYW1lcyhwcm90ZWluKQ0Ka2FibGUoZGF0YS5mcmFtZSh2YXIubmFtZSkpDQpgYGANCg0KIyBWYXJpYWJsZSBvZiBTdHVkeQ0KDQpUaGUgc3R1ZGllZCB2YXJpYWJsZSB3YXMgIkFuaW1hbCBQcm9kdWN0cyIuIFRoZSByZXNwb25zZXMgb2YgdGhpcyB2YXJpYWJsZSBjb3JyZXNwb25kIHRvIHRoZSBwZXJjZW50YWdlIG9mIHByb3RlaW4gaW50YWtlIGRpZmZlcmVudCBjb3VudHJpZXMnIHBvcHVsYXRpb25zIGNvbnN1bWUgZnJvbSBhbmltYWwgcHJvZHVjdHMuIFRoaXMgcmVzcG9uc2UgY2FuIHZhcnkgZnJvbSBhIG51bWJlciBvZiBmYWN0b3JzLCBpbmNsdWRpbmcgbGl2ZXN0b2NrIGF2YWlsYWJpbGl0eSwgZWNvbm9teSwgcHJldmFsZW5jZSBvZiBkaWV0YXJ5IHJlc3RyaWN0aW9ucywgYW5kIG11Y2ggbW9yZS4gDQoNCiMgU2FtcGxlIE1lYW4gYW5kIERpc3RyaWJ1dGlvbg0KVGhlIGZvbGxvd2luZyBpcyB0aGUgZGlzdHJpYnV0aW9uIG9mIHRoZSBzdGFuZGFyZCBzYW1wbGUuIFRoZSBzYW1wbGUgbWVhbiB3YXMgMjEuMy4NCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KYW5pbWFscHJvZHVjdHMgPC0gc2FtcGxlKHByb3RlaW4kQW5pbWFsUHJvZHVjdHMsDQogICAgICAgICAgICAgICAxMDAsDQogICAgICAgICAgICAgICByZXBsYWNlID0gRkFMU0UNCikNCg0KaGlzdChhbmltYWxwcm9kdWN0cywNCiAgICAgYnJlYWtzID0gOCwNCiAgICAgeGxhYiA9ICJQcm90ZWluIEludGFrZSAlIFZpYSBBbmltYWwgUHJvZHVjdHMiLA0KICAgICBtYWluID0gIkFwcHJveGltYXRlZCBEaXN0cmlidXRpb24gb2YgQW5pbWFsIFByb2R1Y3QgQ29uc3VtcHRpb24iDQopDQoNCkNJIDwtIHF1YW50aWxlKGFuaW1hbHByb2R1Y3RzLCBjKDAuMDI1LCAwLjk3NSkpDQptZWFuKGFuaW1hbHByb2R1Y3RzKQ0KYGBgDQojIEJvb3RzdHJhcCBNZXRob2QNClRoZSBmb2xsb3dpbmcgaXMgdGhlIGRpc3RyaWJ1dGlvbiBvZiB0aGUgYm9vdHN0cmFwIHNhbXBsZS4gVGhlIHNhbXBsZSBtZWFuIHdhcyAyMS40DQpgYGB7Un0NCnNldC5zZWVkKDEyMykNCmFuaW1hbHByb2R1Y3RzLmJvb3RzdHJhcCA8LSBzYW1wbGUocHJvdGVpbiRBbmltYWxQcm9kdWN0cywNCiAgICAgICAgICAgICAgICAgICAgICAgICAxMDAsDQogICAgICAgICAgICAgICAgICAgICAgICAgcmVwbGFjZSA9IFRSVUUNCiAgICAgICAgICAgICAgICAgICAgICAgICApDQpoaXN0KGFuaW1hbHByb2R1Y3RzLmJvb3RzdHJhcCwNCiAgICAgYnJlYWtzID0gOCwNCiAgICAgeGxhYiA9ICJQcm90ZWluIEludGFrZSAlIFZpYSBBbmltYWwgUHJvZHVjdHMiLA0KICAgICBtYWluID0gIkJvb3RzdHJhcCBBcHByb3guIERpc3QuIG9mIEFuaW1hbCBQcm9kdWN0IENvbnN1bXB0aW9uIikNCg0KYm9vdHN0cmFwLkNJIDwtIHF1YW50aWxlKGFuaW1hbHByb2R1Y3RzLmJvb3RzdHJhcCwgYygwLjAyNSwgMC4wOTUpKQ0KbWVhbihhbmltYWxwcm9kdWN0cy5ib290c3RyYXApDQpgYGANCg0KIyBDb21wYXJpc29uDQpUaGUgZm9sbG93aW5nIHRhYmxlIGNvbXBhcmVzIHRoZSBjb25maWRlbmNlIGludGVydmFscyBvZiB0aGUgc3RhbmRhcmQgc2FtcGxlIGFuZCB0aGUgYm9vdHN0cmFwIHNhbXBsZS4gTm90ZSB0aGUgc21hbGxlciByYW5nZSBvZiB0aGUgYm9vdHN0cmFwcGVkIHNhbXBsZS4gQm9vdHN0cmFwcGVkIHNhbXBsZXMgaGF2ZSBub3JtYWwgZGlzdHJpYnV0aW9ucywgbWVhbmluZyBwYXJhbWV0cmljIGFuYWx5c2lzIGNhbiBiZSBjb250aW51ZWQgb24gdGhpcyBzYW1wbGUuIFdlIGFsc28gY2FuIG5hcnJvdyBvdXIgZXN0aW1hdGlvbiBvZiB0aGUgc2FtcGxlIG1lYW4gd2l0aCBhbiBlcXVhbCBsZXZlbCBvZiBjb25maWRlbmNlIGFzIHRoZSBzdGFuZGFyZCBzYW1wbGUuIFRoaXMgaXMgZW5zdXJlZCBiZWNhdXNlIHRoZSBzYW1lIHNhbXBsZSBzaXplIHdhcyB1c2VkLiBPdmVyYWxsLCB0aGUgYm9vdHN0cmFwIHNhbXBsZSBpcyB1c2VmdWwgdG8gcGVyZm9ybWluZyBmdXJ0aGVyIGFuYWx5c2lzLg0KYGBge1J9DQprYWJsZShkYXRhLmZyYW1lKENJLGJvb3RzdHJhcC5DSSkpDQpgYGANCg0KDQoNCg0KDQo=