\[X = \left\{\begin{array}{rl} 1, & \hbox{se ocorrer sucesso} \\ 0, & \hbox{se ocorrer fracasso} \end{array}\right.\]
\[P(X = x) = p^x \times q^{1-x}\]
\[\boldsymbol{P(X = 1) = 0,5^1 \times 0,5^{1-1}}=0,5\]
\[P(X=x) = \left( \begin{array}{c} n \\ x \end{array} \right) \times p^x \times q^{n-x}\]
dbinom(x = 0, size = 3, prob = 0.4)
## [1] 0.216
dbinom(x = 1, size = 3, prob = 0.4)
## [1] 0.432
dbinom(x = 2, size = 3, prob = 0.4)
## [1] 0.288
dbinom(x = 3, size = 3, prob = 0.4)
## [1] 0.064
x <- 0:3
p <- dbinom(x = x, size = 3, prob = 0.4)
px <- data.frame(x, p)
px
## x p
## 1 0 0.216
## 2 1 0.432
## 3 2 0.288
## 4 3 0.064
barplot(px$p, names.arg = px$x, xlab = "Dias de chuva",
ylab = "Probabilidades", col = 2:5)
| PONTOS, x | 1 | 2 | 3 | 4 | 5 | |
|---|---|---|---|---|---|---|
| FREQUÊNCIA | 24 | 33 | 42 | 30 | 21 | \(\sum = 150\) |
\(P(1)=\dfrac{24}{150} = 0,16 \qquad P(2)=\dfrac{33}{150} = 0,22 \qquad P(3)=\dfrac{42}{150} = 0,28 \qquad P(4)=\dfrac{30}{150} = 0,20 \qquad P(5)=\dfrac{21}{150} = 0,14\)
| x | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| P(x) | 0,16 | 0,22 | 0,28 | 0,20 | 0,14 |
x <- 1:5;
f <- c(24, 33, 42, 30, 21);
px <- f/sum(f)
px
## [1] 0.16 0.22 0.28 0.20 0.14
barplot(px, names.arg = x, col = 2:6)
\(P(X=x) = \left( \begin{array}{c} n\\ x \end{array} \right) \times p^x \times q^{n-x}\)
\(P(X=5) = \dfrac{8!}{(8-5)! \times 5!} \times 0,5^5 \times 0,5^{8-5} = \dfrac{40320}{120,6} = 0,2188 =21,88\%\)
\(P(x\geq 1)= 1 - {P(X=0)} = 1-{ q^n} = 1- 0,5^8 = 0,9960 = 99,6\%\)
\(P(X\leq 2) = P(X=0)+ P(X=1) + P(X=2) = 0,1445 = 14,55\%\)
n = 8;
p = 0.5;
px <- function(x = x, n = n, p = p){
choose(n,x) * p^x * (1-p)^{n-x}
}
#a) dar 5 caras
px(x = 5, n = 8, p = 0.5)
## [1] 0.21875
#b) dar pelo menos uma cara
1 - px(x = 0, n = 8, p = 0.5)
## [1] 0.9960938
#c) dar no máximo 2 caras
sum(px(x = 0:2, n = 8, p = 0.5))
## [1] 0.1445312
# Utilizando a função dbinom do R
dbinom(x = 5, size = 8, prob = 0.5)
## [1] 0.21875
1 - dbinom(x = 0, size = 8, prob = 0.5)
## [1] 0.9960938
sum(dbinom(x = 0:2, size = 8, prob = 0.5))
## [1] 0.1445313
\[P(X=x) = \dfrac{e^{-\lambda} \times \lambda^x}{x!}\]
\(P(X=x) = \dfrac{e^{-\lambda} \times \lambda^x}{x!}, \text{ onde } \lambda\text{ é a média }(\mu).\)
\[P(X \leq 3)= P(X=0)+P(X=1)+P(X=2)+P(X=3)\] \[P(X \leq 3) = \dfrac{e^{-\lambda} \times \lambda^0}{0!}+\dfrac{e^{-\lambda} \times \lambda^1}{1!}+\dfrac{e^{-\lambda} \times \lambda^2}{2!}+\dfrac{e^{-\lambda} \times \lambda^3}{3!}\] \[P(X \leq 3)= \dfrac{e^{-4} \times 4^0}{1}+\dfrac{e^{-4} \times 4^1}{1}+\dfrac{e^{-4} \times 4^2}{2}+\dfrac{e^{-4} \times 4^3}{6}\]
\[P(X \leq 3)= e^{-4} + 4 \times e^{-4} + 8 \times e^{-4} +10,66 \times e^{-4} = 23,66 \times e^{-4} = 0,4334 = 43,34\%\]
\(P(X=x) = \dfrac{e^{-\lambda} \times \lambda^x}{x!}, \text{ onde } \lambda\text{ é a média } (\mu).\)
Agora para 90 minutos \(\lambda=3\) (1 hora (60 minutos) \(\lambda=2\))
\[P(X=0)= \dfrac{e^{-\lambda} \times 3^0}{1} = 0,0498 = 4,98 \%\]
# Escrevendo a função
lambda = 4
x = 0:3
exp(1)^{-lambda} * lambda^x / factorial(x)
## [1] 0.01831564 0.07326256 0.14652511 0.19536681
sum(exp(1)^{-lambda} * lambda^x / factorial(x))
## [1] 0.4334701
# Utilizando a função dpois
dpois(x = 0:3,lambda = 4)
## [1] 0.01831564 0.07326256 0.14652511 0.19536681
sum(dpois(x = 0:3,lambda = 4))
## [1] 0.4334701