f1 <- read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv")

f1
##      Temp Sex Beats
## 1    96.3   1    70
## 2    96.7   1    71
## 3    96.9   1    74
## 4    97.0   1    80
## 5    97.1   1    73
## 6    97.1   1    75
## 7    97.1   1    82
## 8    97.2   1    64
## 9    97.3   1    69
## 10   97.4   1    70
## 11   97.4   1    68
## 12   97.4   1    72
## 13   97.4   1    78
## 14   97.5   1    70
## 15   97.5   1    75
## 16   97.6   1    74
## 17   97.6   1    69
## 18   97.6   1    73
## 19   97.7   1    77
## 20   97.8   1    58
## 21   97.8   1    73
## 22   97.8   1    65
## 23   97.8   1    74
## 24   97.9   1    76
## 25   97.9   1    72
## 26   98.0   1    78
## 27   98.0   1    71
## 28   98.0   1    74
## 29   98.0   1    67
## 30   98.0   1    64
## 31   98.0   1    78
## 32   98.1   1    73
## 33   98.1   1    67
## 34   98.2   1    66
## 35   98.2   1    64
## 36   98.2   1    71
## 37   98.2   1    72
## 38   98.3   1    86
## 39   98.3   1    72
## 40   98.4   1    68
## 41   98.4   1    70
## 42   98.4   1    82
## 43   98.4   1    84
## 44   98.5   1    68
## 45   98.5   1    71
## 46   98.6   1    77
## 47   98.6   1    78
## 48   98.6   1    83
## 49   98.6   1    66
## 50   98.6   1    70
## 51   98.6   1    82
## 52   98.7   1    73
## 53   98.7   1    78
## 54   98.8   1    78
## 55   98.8   1    81
## 56   98.8   1    78
## 57   98.9   1    80
## 58   99.0   1    75
## 59   99.0   1    79
## 60   99.0   1    81
## 61   99.1   1    71
## 62   99.2   1    83
## 63   99.3   1    63
## 64   99.4   1    70
## 65   99.5   1    75
## 66   96.4   2    69
## 67   96.7   2    62
## 68   96.8   2    75
## 69   97.2   2    66
## 70   97.2   2    68
## 71   97.4   2    57
## 72   97.6   2    61
## 73   97.7   2    84
## 74   97.7   2    61
## 75   97.8   2    77
## 76   97.8   2    62
## 77   97.8   2    71
## 78   97.9   2    68
## 79   97.9   2    69
## 80   97.9   2    79
## 81   98.0   2    76
## 82   98.0   2    87
## 83   98.0   2    78
## 84   98.0   2    73
## 85   98.0   2    89
## 86   98.1   2    81
## 87   98.2   2    73
## 88   98.2   2    64
## 89   98.2   2    65
## 90   98.2   2    73
## 91   98.2   2    69
## 92   98.2   2    57
## 93   98.3   2    79
## 94   98.3   2    78
## 95   98.3   2    80
## 96   98.4   2    79
## 97   98.4   2    81
## 98   98.4   2    73
## 99   98.4   2    74
## 100  98.4   2    84
## 101  98.5   2    83
## 102  98.6   2    82
## 103  98.6   2    85
## 104  98.6   2    86
## 105  98.6   2    77
## 106  98.7   2    72
## 107  98.7   2    79
## 108  98.7   2    59
## 109  98.7   2    64
## 110  98.7   2    65
## 111  98.7   2    82
## 112  98.8   2    64
## 113  98.8   2    70
## 114  98.8   2    83
## 115  98.8   2    89
## 116  98.8   2    69
## 117  98.8   2    73
## 118  98.8   2    84
## 119  98.9   2    76
## 120  99.0   2    79
## 121  99.0   2    81
## 122  99.1   2    80
## 123  99.1   2    74
## 124  99.2   2    77
## 125  99.2   2    66
## 126  99.3   2    68
## 127  99.4   2    77
## 128  99.9   2    79
## 129 100.0   2    78
## 130 100.8   2    77

Sorting and analyzing the data by gender

Male data analysis

Male <- f1[f1$Sex == 1 , ]
Male
##    Temp Sex Beats
## 1  96.3   1    70
## 2  96.7   1    71
## 3  96.9   1    74
## 4  97.0   1    80
## 5  97.1   1    73
## 6  97.1   1    75
## 7  97.1   1    82
## 8  97.2   1    64
## 9  97.3   1    69
## 10 97.4   1    70
## 11 97.4   1    68
## 12 97.4   1    72
## 13 97.4   1    78
## 14 97.5   1    70
## 15 97.5   1    75
## 16 97.6   1    74
## 17 97.6   1    69
## 18 97.6   1    73
## 19 97.7   1    77
## 20 97.8   1    58
## 21 97.8   1    73
## 22 97.8   1    65
## 23 97.8   1    74
## 24 97.9   1    76
## 25 97.9   1    72
## 26 98.0   1    78
## 27 98.0   1    71
## 28 98.0   1    74
## 29 98.0   1    67
## 30 98.0   1    64
## 31 98.0   1    78
## 32 98.1   1    73
## 33 98.1   1    67
## 34 98.2   1    66
## 35 98.2   1    64
## 36 98.2   1    71
## 37 98.2   1    72
## 38 98.3   1    86
## 39 98.3   1    72
## 40 98.4   1    68
## 41 98.4   1    70
## 42 98.4   1    82
## 43 98.4   1    84
## 44 98.5   1    68
## 45 98.5   1    71
## 46 98.6   1    77
## 47 98.6   1    78
## 48 98.6   1    83
## 49 98.6   1    66
## 50 98.6   1    70
## 51 98.6   1    82
## 52 98.7   1    73
## 53 98.7   1    78
## 54 98.8   1    78
## 55 98.8   1    81
## 56 98.8   1    78
## 57 98.9   1    80
## 58 99.0   1    75
## 59 99.0   1    79
## 60 99.0   1    81
## 61 99.1   1    71
## 62 99.2   1    83
## 63 99.3   1    63
## 64 99.4   1    70
## 65 99.5   1    75
summary(Male$Beats)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   58.00   70.00   73.00   73.37   78.00   86.00
summary(Male$Temp)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    96.3    97.6    98.1    98.1    98.6    99.5
hist(Male$Beats,col = "Blue")

hist(Male$Temp, col = "Red")

Female data analysis

Female <- f1[f1$Sex==2,]
Female
##      Temp Sex Beats
## 66   96.4   2    69
## 67   96.7   2    62
## 68   96.8   2    75
## 69   97.2   2    66
## 70   97.2   2    68
## 71   97.4   2    57
## 72   97.6   2    61
## 73   97.7   2    84
## 74   97.7   2    61
## 75   97.8   2    77
## 76   97.8   2    62
## 77   97.8   2    71
## 78   97.9   2    68
## 79   97.9   2    69
## 80   97.9   2    79
## 81   98.0   2    76
## 82   98.0   2    87
## 83   98.0   2    78
## 84   98.0   2    73
## 85   98.0   2    89
## 86   98.1   2    81
## 87   98.2   2    73
## 88   98.2   2    64
## 89   98.2   2    65
## 90   98.2   2    73
## 91   98.2   2    69
## 92   98.2   2    57
## 93   98.3   2    79
## 94   98.3   2    78
## 95   98.3   2    80
## 96   98.4   2    79
## 97   98.4   2    81
## 98   98.4   2    73
## 99   98.4   2    74
## 100  98.4   2    84
## 101  98.5   2    83
## 102  98.6   2    82
## 103  98.6   2    85
## 104  98.6   2    86
## 105  98.6   2    77
## 106  98.7   2    72
## 107  98.7   2    79
## 108  98.7   2    59
## 109  98.7   2    64
## 110  98.7   2    65
## 111  98.7   2    82
## 112  98.8   2    64
## 113  98.8   2    70
## 114  98.8   2    83
## 115  98.8   2    89
## 116  98.8   2    69
## 117  98.8   2    73
## 118  98.8   2    84
## 119  98.9   2    76
## 120  99.0   2    79
## 121  99.0   2    81
## 122  99.1   2    80
## 123  99.1   2    74
## 124  99.2   2    77
## 125  99.2   2    66
## 126  99.3   2    68
## 127  99.4   2    77
## 128  99.9   2    79
## 129 100.0   2    78
## 130 100.8   2    77
summary(Female$Beats)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   57.00   68.00   76.00   74.15   80.00   89.00
summary(Female$Temp)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   96.40   98.00   98.40   98.39   98.80  100.80
hist(Female$Beats,col = "Pink")

hist(Female$Temp, col = "Purple")

Male and Female Resting heart-rate comparison

boxplot(Male$Beats, Female$Beats, name=c("Male", "Female"), col = c("Blue", "Pink"), main= c("Male boxplot in blue", "Female box plotin pink"),xlab="Gender", ylab= "Resting heart rate")

From the box plot we can see males resting heart rate is more consistent and centered towards the median. whereas Female’s resting hear rate is more spreaded around the median and more spreaded towards whiskers.