Lista 7.3 - q1
bac <- c(10, 15, 22, 35, 40, 50, 120, 300)
# descritivas: variabilidade muito alta
m.bac <- mean(bac)
print(m.bac)
sd.bac <- sd(bac)
print(sd.bac)
hist(bac, probability = T)
curve(dnorm(x,mean(bac),sd(bac)),add = T,col = "red")
log.bac <- log10(bac)
mean(log.bac)
hist(log.bac, probability = T, ylim = c(0,0.8),
main = "Histograma do log dos dados")
curve(dnorm(x, mean(log.bac),sd(log.bac)), add = T,
col = "blue")
# assimetria dos dados "normais"
AS.bac = 3*(m.bac - median(bac))/sd.bac
print(AS.bac)
# assimetria dos dados transformados
AS.log.bac = 3*(mean(log.bac) - median(log.bac))/sd(log.bac)
print(AS.log.bac)
### dados flor de Íris
# carregar dos dados
IRIS <- iris
# lendo as 6 primeiras linhas
head(IRIS)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
tail(IRIS) # 6 últimas linhas
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica
attach(IRIS)
m.sepal <- mean(Sepal.Length)
print(m.sepal)
sd.sepal <- sd(Sepal.Length)
print(sd.sepal)
hist(Sepal.Length, probability = T,ylim = c(0,0.6))
curve(dnorm(x, mean(Sepal.Length),sd(Sepal.Length)),add=T,
col = "red")
Padronização (score z)
\[
z = \dfrac{X-\bar{X}}{s}
\]
z.sepal <- (Sepal.Length - m.sepal)/sd.sepal
hist(z.sepal, probability = T, ylim = c(0,0.5),
main = "Score z de Sepal.lenght")
curve(dnorm(x, mean(z.sepal), sd(z.sepal)),add = T,
col = "blue")