Exercícios - tranformações

Author

Dennison Carvalho

Lista 7.3 - q1

bac <- c(10, 15, 22, 35, 40, 50, 120, 300)
# descritivas: variabilidade muito alta
m.bac <- mean(bac)
print(m.bac)
[1] 74
sd.bac <- sd(bac)
print(sd.bac)
[1] 97.63343
var(bac)
[1] 9532.286
hist(bac, probability = T)
curve(dnorm(x,mean(bac),sd(bac)),add = T,col = "red")

log.bac <- log10(bac)
mean(log.bac)
[1] 1.614989
sd(log.bac)
[1] 0.4804955
var(log.bac)
[1] 0.2308759
hist(log.bac, probability = T, ylim = c(0,0.8),
     main = "Histograma do log dos dados")
curve(dnorm(x, mean(log.bac),sd(log.bac)), add = T,
      col = "blue")

# assimetria dos dados "normais"
AS.bac = 3*(m.bac - median(bac))/sd.bac
print(AS.bac)
[1] 1.121542
# assimetria dos dados transformados
AS.log.bac = 3*(mean(log.bac) - median(log.bac))/sd(log.bac)
print(AS.log.bac)
[1] 0.2617629
### dados flor de Íris
# carregar dos dados

IRIS <- iris
# lendo as 6 primeiras linhas
head(IRIS)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
tail(IRIS) # 6 últimas linhas
    Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
145          6.7         3.3          5.7         2.5 virginica
146          6.7         3.0          5.2         2.3 virginica
147          6.3         2.5          5.0         1.9 virginica
148          6.5         3.0          5.2         2.0 virginica
149          6.2         3.4          5.4         2.3 virginica
150          5.9         3.0          5.1         1.8 virginica
attach(IRIS)
m.sepal <- mean(Sepal.Length)
print(m.sepal)
[1] 5.843333
sd.sepal <- sd(Sepal.Length)
print(sd.sepal)
[1] 0.8280661
hist(Sepal.Length, probability = T,ylim = c(0,0.6))
curve(dnorm(x, mean(Sepal.Length),sd(Sepal.Length)),add=T,
      col = "red")

Padronização (score z)

\[ z = \dfrac{X-\bar{X}}{s} \]

z.sepal <- (Sepal.Length - m.sepal)/sd.sepal

hist(z.sepal, probability = T, ylim = c(0,0.5),
     main = "Score z de Sepal.lenght")
curve(dnorm(x, mean(z.sepal), sd(z.sepal)),add = T,
      col = "blue")