Flipped Assignment 2

Reading csv files

f1<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv")
f1
##      Temp Sex Beats
## 1    96.3   1    70
## 2    96.7   1    71
## 3    96.9   1    74
## 4    97.0   1    80
## 5    97.1   1    73
## 6    97.1   1    75
## 7    97.1   1    82
## 8    97.2   1    64
## 9    97.3   1    69
## 10   97.4   1    70
## 11   97.4   1    68
## 12   97.4   1    72
## 13   97.4   1    78
## 14   97.5   1    70
## 15   97.5   1    75
## 16   97.6   1    74
## 17   97.6   1    69
## 18   97.6   1    73
## 19   97.7   1    77
## 20   97.8   1    58
## 21   97.8   1    73
## 22   97.8   1    65
## 23   97.8   1    74
## 24   97.9   1    76
## 25   97.9   1    72
## 26   98.0   1    78
## 27   98.0   1    71
## 28   98.0   1    74
## 29   98.0   1    67
## 30   98.0   1    64
## 31   98.0   1    78
## 32   98.1   1    73
## 33   98.1   1    67
## 34   98.2   1    66
## 35   98.2   1    64
## 36   98.2   1    71
## 37   98.2   1    72
## 38   98.3   1    86
## 39   98.3   1    72
## 40   98.4   1    68
## 41   98.4   1    70
## 42   98.4   1    82
## 43   98.4   1    84
## 44   98.5   1    68
## 45   98.5   1    71
## 46   98.6   1    77
## 47   98.6   1    78
## 48   98.6   1    83
## 49   98.6   1    66
## 50   98.6   1    70
## 51   98.6   1    82
## 52   98.7   1    73
## 53   98.7   1    78
## 54   98.8   1    78
## 55   98.8   1    81
## 56   98.8   1    78
## 57   98.9   1    80
## 58   99.0   1    75
## 59   99.0   1    79
## 60   99.0   1    81
## 61   99.1   1    71
## 62   99.2   1    83
## 63   99.3   1    63
## 64   99.4   1    70
## 65   99.5   1    75
## 66   96.4   2    69
## 67   96.7   2    62
## 68   96.8   2    75
## 69   97.2   2    66
## 70   97.2   2    68
## 71   97.4   2    57
## 72   97.6   2    61
## 73   97.7   2    84
## 74   97.7   2    61
## 75   97.8   2    77
## 76   97.8   2    62
## 77   97.8   2    71
## 78   97.9   2    68
## 79   97.9   2    69
## 80   97.9   2    79
## 81   98.0   2    76
## 82   98.0   2    87
## 83   98.0   2    78
## 84   98.0   2    73
## 85   98.0   2    89
## 86   98.1   2    81
## 87   98.2   2    73
## 88   98.2   2    64
## 89   98.2   2    65
## 90   98.2   2    73
## 91   98.2   2    69
## 92   98.2   2    57
## 93   98.3   2    79
## 94   98.3   2    78
## 95   98.3   2    80
## 96   98.4   2    79
## 97   98.4   2    81
## 98   98.4   2    73
## 99   98.4   2    74
## 100  98.4   2    84
## 101  98.5   2    83
## 102  98.6   2    82
## 103  98.6   2    85
## 104  98.6   2    86
## 105  98.6   2    77
## 106  98.7   2    72
## 107  98.7   2    79
## 108  98.7   2    59
## 109  98.7   2    64
## 110  98.7   2    65
## 111  98.7   2    82
## 112  98.8   2    64
## 113  98.8   2    70
## 114  98.8   2    83
## 115  98.8   2    89
## 116  98.8   2    69
## 117  98.8   2    73
## 118  98.8   2    84
## 119  98.9   2    76
## 120  99.0   2    79
## 121  99.0   2    81
## 122  99.1   2    80
## 123  99.1   2    74
## 124  99.2   2    77
## 125  99.2   2    66
## 126  99.3   2    68
## 127  99.4   2    77
## 128  99.9   2    79
## 129 100.0   2    78
## 130 100.8   2    77

Sorting and analyzing the data by gender

#male = 1
males<-f1[f1$Sex == 1,]
males
##    Temp Sex Beats
## 1  96.3   1    70
## 2  96.7   1    71
## 3  96.9   1    74
## 4  97.0   1    80
## 5  97.1   1    73
## 6  97.1   1    75
## 7  97.1   1    82
## 8  97.2   1    64
## 9  97.3   1    69
## 10 97.4   1    70
## 11 97.4   1    68
## 12 97.4   1    72
## 13 97.4   1    78
## 14 97.5   1    70
## 15 97.5   1    75
## 16 97.6   1    74
## 17 97.6   1    69
## 18 97.6   1    73
## 19 97.7   1    77
## 20 97.8   1    58
## 21 97.8   1    73
## 22 97.8   1    65
## 23 97.8   1    74
## 24 97.9   1    76
## 25 97.9   1    72
## 26 98.0   1    78
## 27 98.0   1    71
## 28 98.0   1    74
## 29 98.0   1    67
## 30 98.0   1    64
## 31 98.0   1    78
## 32 98.1   1    73
## 33 98.1   1    67
## 34 98.2   1    66
## 35 98.2   1    64
## 36 98.2   1    71
## 37 98.2   1    72
## 38 98.3   1    86
## 39 98.3   1    72
## 40 98.4   1    68
## 41 98.4   1    70
## 42 98.4   1    82
## 43 98.4   1    84
## 44 98.5   1    68
## 45 98.5   1    71
## 46 98.6   1    77
## 47 98.6   1    78
## 48 98.6   1    83
## 49 98.6   1    66
## 50 98.6   1    70
## 51 98.6   1    82
## 52 98.7   1    73
## 53 98.7   1    78
## 54 98.8   1    78
## 55 98.8   1    81
## 56 98.8   1    78
## 57 98.9   1    80
## 58 99.0   1    75
## 59 99.0   1    79
## 60 99.0   1    81
## 61 99.1   1    71
## 62 99.2   1    83
## 63 99.3   1    63
## 64 99.4   1    70
## 65 99.5   1    75
#female =2
females<-f1[f1$Sex == 2,]
females
##      Temp Sex Beats
## 66   96.4   2    69
## 67   96.7   2    62
## 68   96.8   2    75
## 69   97.2   2    66
## 70   97.2   2    68
## 71   97.4   2    57
## 72   97.6   2    61
## 73   97.7   2    84
## 74   97.7   2    61
## 75   97.8   2    77
## 76   97.8   2    62
## 77   97.8   2    71
## 78   97.9   2    68
## 79   97.9   2    69
## 80   97.9   2    79
## 81   98.0   2    76
## 82   98.0   2    87
## 83   98.0   2    78
## 84   98.0   2    73
## 85   98.0   2    89
## 86   98.1   2    81
## 87   98.2   2    73
## 88   98.2   2    64
## 89   98.2   2    65
## 90   98.2   2    73
## 91   98.2   2    69
## 92   98.2   2    57
## 93   98.3   2    79
## 94   98.3   2    78
## 95   98.3   2    80
## 96   98.4   2    79
## 97   98.4   2    81
## 98   98.4   2    73
## 99   98.4   2    74
## 100  98.4   2    84
## 101  98.5   2    83
## 102  98.6   2    82
## 103  98.6   2    85
## 104  98.6   2    86
## 105  98.6   2    77
## 106  98.7   2    72
## 107  98.7   2    79
## 108  98.7   2    59
## 109  98.7   2    64
## 110  98.7   2    65
## 111  98.7   2    82
## 112  98.8   2    64
## 113  98.8   2    70
## 114  98.8   2    83
## 115  98.8   2    89
## 116  98.8   2    69
## 117  98.8   2    73
## 118  98.8   2    84
## 119  98.9   2    76
## 120  99.0   2    79
## 121  99.0   2    81
## 122  99.1   2    80
## 123  99.1   2    74
## 124  99.2   2    77
## 125  99.2   2    66
## 126  99.3   2    68
## 127  99.4   2    77
## 128  99.9   2    79
## 129 100.0   2    78
## 130 100.8   2    77
summary(males$Beats)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   58.00   70.00   73.00   73.37   78.00   86.00
summary(females$Beats)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   57.00   68.00   76.00   74.15   80.00   89.00

The Minimum and the 1st quartile of Males is greater than females.

Histogram plot for males

h_male<-hist(males$Beats, col="blue",main = "Histogram of Males", xlab ="Beats", ylab= "Frequency")

Histogram plot for females

h_female<-hist(females$Beats, col="pink",  main = "Histogram of Females", xlab ="Beats", ylab= "Frequency")

The resting heart rate of males’ are normally distributed as compared to females’ resting heart rate.

Normal Probability Plot for Male

qqnorm(males$Beats) #normal probability plot

Normal Probability Plot for Female

#female
qqnorm(females$Beats) #normal probability plot

Boxplot Comparison

boxplot(males$Beats, females$Beats,names = c("Male", "Female"), col = c("blue", "pink"),main = "Resting heart rate by gender", xlab = "gender", ylab = "Resting heart rate")

The interquartile range of the female 12 whereas the interquartile range of male is 8 which shows that females values are more spread out around the median.