Load Packages

Study 2

Confirmatory Factor Analysis

Two-Factor Model (Efficacy Scales)

TwoFactor_model <- '
  # Factor 1: Bias-Awareness Efficacy
  Awareness =~ DSE_Aware_1 + DSE_Aware_2 + DSE_Aware_3

  # Factor 2: Intergroup-Management Efficacy
  Management =~ DSE_Management_1 + DSE_Management_2 + DSE_Management_3 +
                DSE_Management_4 + DSE_Management_5
'

TwoFactor_fit <- cfa(TwoFactor_model, Study_2_CFA, estimator = "ML")

# plot CFA results
semPaths(TwoFactor_fit, "std", weighted = FALSE, nCharNodes = 7, 
         shapeMan = "rectangle", sizeMan = 8, sizeMan2 = 5)

## Fit Indices:
## 
##  chisq     df pvalue    cfi   srmr 
## 63.101 19.000  0.000  0.957  0.036
## Standardized Factor Loadings:
## 
##                  Awrnss Mngmnt
## DSE_Aware_1       0.816  0.000
## DSE_Aware_2       0.785  0.000
## DSE_Aware_3       0.742  0.000
## DSE_Management_1  0.000  0.827
## DSE_Management_2  0.000  0.802
## DSE_Management_3  0.000  0.808
## DSE_Management_4  0.000  0.800
## DSE_Management_5  0.000  0.783
## 
## 
## Explained Variance (R²):
## 
##      DSE_Aware_1      DSE_Aware_2      DSE_Aware_3 DSE_Management_1 
##            0.666            0.616            0.551            0.684 
## DSE_Management_2 DSE_Management_3 DSE_Management_4 DSE_Management_5 
##            0.643            0.652            0.640            0.613

One-Factor Model (Efficacy Scales)

OneFactor_model <- '
  # One Factor: Bias-Awareness & Intergroup-Management Efficacy
  OneFactor =~ DSE_Aware_1 + DSE_Aware_2 + DSE_Aware_3 + 
               DSE_Management_1 + DSE_Management_2 + DSE_Management_3 +
                DSE_Management_4 + DSE_Management_5
'

OneFactor_fit <- cfa(OneFactor_model, Study_2_CFA, estimator = "ML")
## Fit Indices:
## 
##   chisq      df  pvalue     cfi    srmr 
## 214.570  20.000   0.000   0.809   0.108
## Standardized Factor Loadings:
## 
##                  OnFctr
## DSE_Aware_1       0.545
## DSE_Aware_2       0.510
## DSE_Aware_3       0.512
## DSE_Management_1  0.825
## DSE_Management_2  0.787
## DSE_Management_3  0.793
## DSE_Management_4  0.794
## DSE_Management_5  0.785
## 
## 
## Explained Variance (R²):
## 
##      DSE_Aware_1      DSE_Aware_2      DSE_Aware_3 DSE_Management_1 
##            0.297            0.260            0.262            0.681 
## DSE_Management_2 DSE_Management_3 DSE_Management_4 DSE_Management_5 
##            0.620            0.629            0.630            0.616
## 
## 
##  Three-Factor vs One-Factor Model:
## 
## Chi-Squared Difference Test
## 
##               Df    AIC    BIC   Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)
## TwoFactor_fit 19 4372.8 4431.3  63.101                                      
## OneFactor_fit 20 4522.3 4577.3 214.570     151.47 0.80883       1  < 2.2e-16
##                  
## TwoFactor_fit    
## OneFactor_fit ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Five-Factor Measurement Model (All Five Multi-Item Scales)

FiveFactor_model <- '
  # Factor 1: Bias-Awareness Efficacy
  Awareness =~ DSE_Aware_1 + DSE_Aware_2 + DSE_Aware_3

  # Factor 2: Intergroup-Management Efficacy
  Management =~ DSE_Management_1 + DSE_Management_2 + DSE_Management_3 +
                DSE_Management_4 + DSE_Management_5

  # Factor 3: Leader Diversity Advocacy
  InclusiveLeadership =~ Inclusive_Leader_1 + Inclusive_Leader_2 +
                         Inclusive_Leader_3 + Inclusive_Leader_4

  # Factor 4: Pro-Diversity Attitudes
  ProDiversity =~ ProDiversity_1 + ProDiversity_2 +
                  ProDiversity_3 + ProDiversity_4

  # Factor 5: Organizational Allyship
  OrgAlly =~ Org_Allyship_1 + Org_Allyship_2 + Org_Allyship_3 +
             Org_Allyship_4 + Org_Allyship_5 + Org_Allyship_6 + 
             Org_Allyship_7 + Org_Allyship_8 + Org_Allyship_9
'

FiveFactor_fit <- cfa(FiveFactor_model, Study_2_CFA, estimator = "ML")
## Fit Indices:
## 
##   chisq      df  pvalue     cfi    srmr 
## 528.693 265.000   0.000   0.940   0.046
## Standardized Factor Loadings:
## 
##                    Awrnss Mngmnt InclsL PrDvrs OrgAll
## DSE_Aware_1         0.817  0.000  0.000  0.000  0.000
## DSE_Aware_2         0.795  0.000  0.000  0.000  0.000
## DSE_Aware_3         0.743  0.000  0.000  0.000  0.000
## DSE_Management_1    0.000  0.821  0.000  0.000  0.000
## DSE_Management_2    0.000  0.805  0.000  0.000  0.000
## DSE_Management_3    0.000  0.812  0.000  0.000  0.000
## DSE_Management_4    0.000  0.809  0.000  0.000  0.000
## DSE_Management_5    0.000  0.784  0.000  0.000  0.000
## Inclusive_Leader_1  0.000  0.000  0.822  0.000  0.000
## Inclusive_Leader_2  0.000  0.000  0.872  0.000  0.000
## Inclusive_Leader_3  0.000  0.000  0.851  0.000  0.000
## Inclusive_Leader_4  0.000  0.000  0.901  0.000  0.000
## ProDiversity_1      0.000  0.000  0.000  0.882  0.000
## ProDiversity_2      0.000  0.000  0.000  0.872  0.000
## ProDiversity_3      0.000  0.000  0.000  0.822  0.000
## ProDiversity_4      0.000  0.000  0.000  0.830  0.000
## Org_Allyship_1      0.000  0.000  0.000  0.000  0.690
## Org_Allyship_2      0.000  0.000  0.000  0.000  0.838
## Org_Allyship_3      0.000  0.000  0.000  0.000  0.797
## Org_Allyship_4      0.000  0.000  0.000  0.000  0.819
## Org_Allyship_5      0.000  0.000  0.000  0.000  0.827
## Org_Allyship_6      0.000  0.000  0.000  0.000  0.871
## Org_Allyship_7      0.000  0.000  0.000  0.000  0.832
## Org_Allyship_8      0.000  0.000  0.000  0.000  0.871
## Org_Allyship_9      0.000  0.000  0.000  0.000  0.872
## 
## 
## Explained Variance (R²):
## 
##        DSE_Aware_1        DSE_Aware_2        DSE_Aware_3   DSE_Management_1 
##              0.667              0.632              0.551              0.674 
##   DSE_Management_2   DSE_Management_3   DSE_Management_4   DSE_Management_5 
##              0.649              0.660              0.654              0.614 
## Inclusive_Leader_1 Inclusive_Leader_2 Inclusive_Leader_3 Inclusive_Leader_4 
##              0.675              0.760              0.724              0.811 
##     ProDiversity_1     ProDiversity_2     ProDiversity_3     ProDiversity_4 
##              0.779              0.760              0.675              0.689 
##     Org_Allyship_1     Org_Allyship_2     Org_Allyship_3     Org_Allyship_4 
##              0.476              0.702              0.635              0.670 
##     Org_Allyship_5     Org_Allyship_6     Org_Allyship_7     Org_Allyship_8 
##              0.684              0.759              0.692              0.759 
##     Org_Allyship_9 
##              0.761

Four-Factor Alternative Model #1 (Combine predictors into single factor)

FourFactor_model <- '
  # Factor 1: Bias-Awareness Efficacy
  Awareness =~ DSE_Aware_1 + DSE_Aware_2 + DSE_Aware_3

  # Factor 2: Intergroup-Management Efficacy
  Management =~ DSE_Management_1 + DSE_Management_2 + DSE_Management_3 +
                DSE_Management_4 + DSE_Management_5

  # Factor 3: Leader Diversity Advocacy & Pro-Diversity Attitudes
  Predictors =~ Inclusive_Leader_1 + Inclusive_Leader_2 +
                Inclusive_Leader_3 + Inclusive_Leader_4 +
                ProDiversity_1 + ProDiversity_2 +
                ProDiversity_3 + ProDiversity_4

  # Factor 4: Organizational Allyship
  OrgAlly =~ Org_Allyship_1 + Org_Allyship_2 + Org_Allyship_3 +
             Org_Allyship_4 + Org_Allyship_5 + Org_Allyship_6 + 
             Org_Allyship_7 + Org_Allyship_8 + Org_Allyship_9
'

FourFactor_fit <- cfa(FourFactor_model, Study_2_CFA, estimator = "ML")

Three-Factor Alternative Model #2 (Combine predictors and outcome into single factor)

ThreeFactor_model <- '
  # Factor 1: Bias-Awareness Efficacy
  Awareness =~ DSE_Aware_1 + DSE_Aware_2 + DSE_Aware_3

  # Factor 2: Self-Regulation Efficacy
  Regulation =~ DSE_Regulate_1 + DSE_Regulate_2 + DSE_Regulate_3 +
                DSE_Regulate_4 + DSE_Regulate_5

  # Factor 3: Intergroup-Management Efficacy
  Management =~ DSE_Management_1 + DSE_Management_2 + DSE_Management_3 +
                DSE_Management_4 + DSE_Management_5

  # Factor 4: Leader Diversity Advocacy & Pro-Diversity Attitudes
  Predictors_Outcome =~ Inclusive_Leader_1 + Inclusive_Leader_2 +
                Inclusive_Leader_3 + Inclusive_Leader_4 +
                ProDiversity_1 + ProDiversity_2 +
                ProDiversity_3 + ProDiversity_4 +
                Org_Allyship_1 + Org_Allyship_2 + Org_Allyship_3 +
                Org_Allyship_4 + Org_Allyship_5 + Org_Allyship_6 + 
                Org_Allyship_7 + Org_Allyship_8 + Org_Allyship_9
'

ThreeFactor_fit <- cfa(ThreeFactor_model, Study_2_CFA, estimator = "ML")

Table 4: Model Comparison

Alternative_Model_5vs4 <- anova(FiveFactor_fit, 
                                 FourFactor_fit)

Alternative_Model_5vs3 <- anova(FiveFactor_fit, 
                                   ThreeFactor_fit)

# extract values based on column indices
Measurement_Model <- Alternative_Model_5vs4[1, ]  
Alt_Model1_4f <- Alternative_Model_5vs4[2, ] 
Alt_Model2_3f <- Alternative_Model_5vs3[2, ] 

discriminant_model_comparisons <- rbind(Measurement_Model,
                           Alt_Model1_4f,
                           Alt_Model2_3f
                           ) 

# Print the data frame
print(discriminant_model_comparisons)
## 
## Chi-Squared Difference Test
## 
##                  Df   AIC   BIC   Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)
## FiveFactor_fit  265 13894 14100  528.69                                      
## FourFactor_fit  269 14382 14574 1025.09      496.4 0.73478       4  < 2.2e-16
## ThreeFactor_fit 399 16807 17032 1930.63     1401.9 0.20372     134  < 2.2e-16
##                    
## FiveFactor_fit     
## FourFactor_fit  ***
## ThreeFactor_fit ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Extract fit indices for each model
fits <- list(
  FiveFactor_fit,
  FourFactor_fit,
  ThreeFactor_fit)

# Get CFI and SRMR from each fit
fit_indices <- lapply(fits, function(x) {
  fitMeasures(x, c("cfi", "srmr"))
})

# Convert to a data frame
fit_indices_df <- do.call(rbind, fit_indices)
rownames(fit_indices_df) <- c("FiveFactor", "FourFactor_Alt1", "ThreeFactor_Alt2")
fit_indices_df
##                        cfi       srmr
## FiveFactor       0.9404892 0.04577072
## FourFactor_Alt1  0.8293646 0.08850493
## ThreeFactor_Alt2 0.7065158 0.14433903

Reliability Estimates (Cronbach Alpha) - Study 1 Measures

# Reliability estimates for self-efficacy scales
awareness_alpha <- alpha(Study_2_CFA[, c("DSE_Aware_1", "DSE_Aware_2", "DSE_Aware_3")])

management_alpha <- alpha(Study_2_CFA[, c("DSE_Management_1", "DSE_Management_2", "DSE_Management_3", "DSE_Management_4", "DSE_Management_5")]) 
                                           
cat("Alpha for bias-awareness efficacy:", awareness_alpha$total$raw_alpha, "\n",
    "Alpha for intergroup-management efficacy:", management_alpha$total$raw_alpha, "\n")                                
## Alpha for bias-awareness efficacy: 0.8230046 
##  Alpha for intergroup-management efficacy: 0.9015689
org_ally_alpha <- alpha(Study_2_CFA[, c("Org_Allyship_1", "Org_Allyship_2", "Org_Allyship_3", "Org_Allyship_4", "Org_Allyship_5", "Org_Allyship_6", "Org_Allyship_7", "Org_Allyship_8", "Org_Allyship_9")])
                                         
cat("Alpha for organizational ally work:", org_ally_alpha$total$raw_alpha, "\n")
## Alpha for organizational ally work: 0.9499809
# Reliability estimates for leader diversity advocacy and pro-diversity
incl_leader_alpha <- alpha(Study_2_CFA[, c("Inclusive_Leader_1", "Inclusive_Leader_2", "Inclusive_Leader_3", "Inclusive_Leader_4")])
                                            
prodiversity_alpha <- alpha(Study_2_CFA[, c("ProDiversity_1", "ProDiversity_2", "ProDiversity_3", "ProDiversity_4")])

cat("Alpha for leader diversity advocacy:", incl_leader_alpha$total$raw_alpha, "\n",
    "Alpha for pro-diversity attitudes:", prodiversity_alpha$total$raw_alpha, "\n")
## Alpha for leader diversity advocacy: 0.917747 
##  Alpha for pro-diversity attitudes: 0.9107846

Table 5: Descriptives & Correlations

## 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable                M    SD   1           2            3           
##   1. Male                 0.50 0.50                                      
##                                                                          
##   2. White                0.59 0.49 -.00                                 
##                                     [-.13, .13]                          
##                                                                          
##   3. Ideology             3.79 1.59 .01         .22**                    
##                                     [-.12, .14] [.09, .34]               
##                                                                          
##   4. LdrAdvocacy          3.75 1.09 .03         -.14*        -.24**      
##                                     [-.10, .15] [-.26, -.01] [-.36, -.11]
##                                                                          
##   5. PDB                  5.63 1.19 -.03        -.10         -.23**      
##                                     [-.16, .10] [-.23, .03]  [-.35, -.10]
##                                                                          
##   6. AWARE                3.83 0.93 .04         -.20**       -.23**      
##                                     [-.09, .17] [-.32, -.07] [-.34, -.10]
##                                                                          
##   7. REGULATE             4.12 0.72 .09         -.09         -.12        
##                                     [-.04, .22] [-.21, .04]  [-.25, .00] 
##                                                                          
##   8. MANAGE               3.85 0.85 .05         -.16*        -.24**      
##                                     [-.08, .17] [-.29, -.04] [-.36, -.12]
##                                                                          
##   9. OrgAlly              3.11 1.05 .02         -.04         -.25**      
##                                     [-.10, .15] [-.17, .09]  [-.37, -.13]
##                                                                          
##   10. Diversity_Voice     4.82 1.42 .05         -.05         -.15*       
##                                     [-.08, .18] [-.18, .08]  [-.27, -.02]
##                                                                          
##   11. Interracial_Contact 4.16 0.76 .00         .02          -.01        
##                                     [-.12, .13] [-.11, .14]  [-.14, .12] 
##                                                                          
##   12. Familiarity         3.18 0.86 .17*        -.01         .05         
##                                     [.04, .29]  [-.14, .12]  [-.08, .18] 
##                                                                          
##   4          5           6          7          8          9          
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##   .47**                                                              
##   [.36, .56]                                                         
##                                                                      
##   .29**      .36**                                                   
##   [.17, .40] [.24, .46]                                              
##                                                                      
##   .38**      .46**       .52**                                       
##   [.26, .48] [.35, .56]  [.42, .61]                                  
##                                                                      
##   .35**      .44**       .51**      .69**                            
##   [.23, .46] [.33, .54]  [.41, .60] [.62, .75]                       
##                                                                      
##   .50**      .27**       .22**      .19**      .40**                 
##   [.40, .59] [.15, .39]  [.10, .34] [.07, .31] [.29, .51]            
##                                                                      
##   .60**      .31**       .31**      .33**      .46**      .76**      
##   [.51, .68] [.19, .43]  [.19, .42] [.21, .44] [.35, .56] [.70, .81] 
##                                                                      
##   .25**      .50**       .27**      .56**      .45**      .08        
##   [.13, .37] [.40, .59]  [.15, .38] [.46, .64] [.34, .54] [-.05, .21]
##                                                                      
##   .15*       .08         .22**      .24**      .25**      .13*       
##   [.02, .27] [-.05, .21] [.09, .34] [.11, .35] [.13, .37] [.00, .25] 
##                                                                      
##   10         11         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##                         
##   .18**                 
##   [.06, .30]            
##                         
##   .24**      .09        
##   [.12, .36] [-.04, .22]
##                         
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 

Run Mplus Path Models

Table 6 (Model 1): Path Model for Organizational Ally Work

## Mplus VERSION 8.11 (Mac)
## MUTHEN & MUTHEN
## 09/04/2025  11:42 AM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Study 2: Mediation Models
##   DATA: FILE = "Study2.dat";
##   VARIABLE:
##     NAMES = Male White Ideology LdrDivAd PDB Aware Regulate Manage OrgAlly DVoice pastexp;
##   MISSING = ALL (999);
## 
##   USEVARIABLES LdrDivAd PDB Aware Manage OrgAlly
##           PolID;
## 
##   DEFINE:
##   ! Political Ideology centered at the scale midpoint (= 4)
##   PolID = Ideology - 4;
## 
##   ! Grand-mean center Leader Diversity Advocacy and Pro-Diversity Attitudes
##   CENTER LdrDivAd PDB (GRANDMEAN);
## 
##   ANALYSIS:
##     ESTIMATOR = ML;
## 
##   MODEL:
##     Aware    ON PDB LdrDivAd;
##     Manage   ON PDB LdrDivAd;
## 
##     OrgAlly  ON PolID PDB LdrDivAd Aware Manage;
## 
## 
##     ! Covariances among predictors
##     PDB WITH LdrDivAd PolID;
##   LdrDivAd WITH PolID;
##     Aware WITH Manage;
## 
## 
## 
## INPUT READING TERMINATED NORMALLY
## 
## 
## 
## Study 2: Mediation Models
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         234
## 
## Number of dependent variables                                    3
## Number of independent variables                                  3
## Number of continuous latent variables                            0
## 
## Observed dependent variables
## 
##   Continuous
##    AWARE       MANAGE      ORGALLY
## 
## Observed independent variables
##    LDRDIVAD    PDB         POLID
## 
## Variables with special functions
## 
##   Centering (GRANDMEAN)
##    LDRDIVAD    PDB
## 
## 
## Estimator                                                       ML
## Information matrix                                        OBSERVED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## Maximum number of iterations for H1                           2000
## Convergence criterion for H1                             0.100D-03
## 
## Input data file(s)
##   Study2.dat
## 
## Input data format  FREE
## 
## 
## SUMMARY OF DATA
## 
##      Number of missing data patterns             1
## 
## 
## COVARIANCE COVERAGE OF DATA
## 
## Minimum covariance coverage value   0.100
## 
## 
##      PROPORTION OF DATA PRESENT
## 
## 
##            Covariance Coverage
##               AWARE         MANAGE        ORGALLY       LDRDIVAD      PDB
##               ________      ________      ________      ________      ________
##  AWARE          1.000
##  MANAGE         1.000         1.000
##  ORGALLY        1.000         1.000         1.000
##  LDRDIVAD       1.000         1.000         1.000         1.000
##  PDB            1.000         1.000         1.000         1.000         1.000
##  POLID          1.000         1.000         1.000         1.000         1.000
## 
## 
##            Covariance Coverage
##               POLID
##               ________
##  POLID          1.000
## 
## 
## 
## UNIVARIATE SAMPLE STATISTICS
## 
## 
##      UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
## 
##          Variable/         Mean/     Skewness/   Minimum/ % with                Percentiles
##         Sample Size      Variance    Kurtosis    Maximum  Min/Max      20%/60%    40%/80%    Median
## 
##      AWARE                 3.833      -0.606       1.000    1.71%       3.000      3.667      4.000
##              234.000       0.861       0.144       5.000   20.94%       4.000      5.000
##      MANAGE                3.852      -0.469       1.000    0.43%       3.000      3.600      4.000
##              234.000       0.712      -0.298       5.000   13.68%       4.200      4.600
##      ORGALLY               3.115      -0.348       1.000    5.56%       2.111      3.000      3.222
##              234.000       1.093      -0.519       5.000    3.85%       3.444      4.000
##      LDRDIVAD              0.000      -0.935      -2.747    4.27%      -0.747      0.003      0.253
##              234.000       1.192       0.250       1.253   17.95%       0.253      1.003
##      PDB                   0.000      -0.826      -3.630    0.85%      -1.130      0.120      0.370
##              234.000       1.408       0.043       1.370   20.09%       0.370      1.120
##      POLID                -0.209       0.082      -3.000    8.97%      -2.000      0.000      0.000
##              234.000       2.507      -0.479       3.000    5.98%       0.000      1.000
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       25
## 
## Loglikelihood
## 
##           H0 Value                       -1960.717
##           H1 Value                       -1957.512
## 
## Information Criteria
## 
##           Akaike (AIC)                    3971.435
##           Bayesian (BIC)                  4057.818
##           Sample-Size Adjusted BIC        3978.579
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                              6.412
##           Degrees of Freedom                     2
##           P-Value                           0.0405
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.097
##           90 Percent C.I.                    0.017  0.186
##           Probability RMSEA <= .05           0.128
## 
## CFI/TLI
## 
##           CFI                                0.980
##           TLI                                0.882
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            235.747
##           Degrees of Freedom                    12
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.033
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  AWARE    ON
##     PDB                0.220      0.053      4.123      0.000
##     LDRDIVAD           0.134      0.058      2.307      0.021
## 
##  MANAGE   ON
##     PDB                0.250      0.047      5.379      0.000
##     LDRDIVAD           0.141      0.051      2.790      0.005
## 
##  ORGALLY  ON
##     POLID             -0.070      0.037     -1.868      0.062
##     PDB               -0.050      0.057     -0.877      0.381
##     LDRDIVAD           0.403      0.060      6.744      0.000
##     AWARE             -0.052      0.072     -0.725      0.468
##     MANAGE             0.347      0.083      4.196      0.000
## 
##  PDB      WITH
##     LDRDIVAD           0.606      0.094      6.483      0.000
##     POLID             -0.432      0.126     -3.428      0.001
## 
##  LDRDIVAD WITH
##     POLID             -0.413      0.116     -3.551      0.000
## 
##  AWARE    WITH
##     MANAGE             0.262      0.045      5.798      0.000
## 
##  Means
##     LDRDIVAD           0.000      0.071      0.000      1.000
##     PDB                0.000      0.078      0.000      1.000
##     POLID             -0.209      0.104     -2.023      0.043
## 
##  Intercepts
##     AWARE              3.833      0.056     68.386      0.000
##     MANAGE             3.852      0.049     78.931      0.000
##     ORGALLY            1.963      0.332      5.916      0.000
## 
##  Variances
##     LDRDIVAD           1.192      0.110     10.817      0.000
##     PDB                1.408      0.130     10.817      0.000
##     POLID              2.507      0.232     10.817      0.000
## 
##  Residual Variances
##     AWARE              0.735      0.068     10.817      0.000
##     MANAGE             0.557      0.052     10.817      0.000
##     ORGALLY            0.737      0.068     10.817      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.866E-03
##        (ratio of smallest to largest eigenvalue)
## 
## 
##      Beginning Time:  11:42:56
##         Ending Time:  11:42:56
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2024 Muthen & Muthen

Hypothesis 1b: Mediation Analysis

res <- readModels("Mplus Syntax/Study2_Mediation.out")

# Extract coefficients
a_est <- res$parameters$unstandardized$est[2]  # Effect of X on M (a-path)
b_est <- res$parameters$unstandardized$est[8]  # Effect of M on Y (b-path)

# Extract standard errors
a_se <- res$parameters$unstandardized$se[2]
b_se <- res$parameters$unstandardized$se[8] 

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_est, mu.y = b_est, se.x = a_se, se.y = b_se,
               rho = 0, alpha = .10, sims = 10000, method = "parametric")
## Indirect effect estimate: -0.006968
## Indirect effect standard error: 0.01093705
## Monte Carlo 90% CI: [ -0.02655867 , 0.008882594 ]

Hypothesis 3: Mediation Analysis

# Extract coefficients
a_est <- res$parameters$unstandardized$est[4]  # Effect of X on M (a-path)
b_est <- res$parameters$unstandardized$est[9]   # Effect of M on Y (b-path)

# Extract standard errors
a_se <- res$parameters$unstandardized$se[4]
b_se <- res$parameters$unstandardized$se[9]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_est, mu.y = b_est, se.x = a_se, se.y = b_se,
               rho = 0, alpha = .01, sims = 10000, method = "parametric")
## Indirect effect estimate: 0.048927
## Indirect effect standard error: 0.02163475
## Monte Carlo 99% CI: [ 0.002980975 , 0.1152867 ]

Table 6 (Model 2): Conditional Path Model for Organizational Ally Work

## Mplus VERSION 8.11 (Mac)
## MUTHEN & MUTHEN
## 09/04/2025  11:42 AM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Study 2: Moderated Mediation Models
##   DATA: FILE = "Study2.dat";
##   VARIABLE:
##     NAMES = Male White Ideology LdrDivAd PDB Aware Regulate Manage OrgAlly DVoice pastexp;
##   MISSING = ALL (999);
## 
##   USEVARIABLES LdrDivAd PDB Aware Manage OrgAlly
##           PolID LDA_PDB
## 
##   DEFINE:
##   ! Political Ideology centered at the scale midpoint (= 4)
##   PolID = Ideology - 4;
## 
##   ! Grand-mean center Leader Diversity Advocacy and Pro-Diversity Attitudes
##   CENTER LdrDivAd PDB (GRANDMEAN);
## 
##   ! Create interaction term
##   LDA_PDB = LdrDivAd * PDB;
## 
##   ANALYSIS:
##     ESTIMATOR = ML;
## 
##   MODEL:
##     Aware    ON PDB
##                 LdrDivAd
##                 LDA_PDB;
## 
##     Manage   ON PDB (c2)
##                 LdrDivAd (c1)
##                 LDA_PDB (c3);
## 
##     OrgAlly  ON PolID
##                 PDB
##                 LdrDivAd
##                 Aware
##                 Manage (mg);
## 
##     ! Covariances among predictors
##     PDB WITH LdrDivAd PolID;
##   LdrDivAd WITH PolID;
##     Aware WITH Manage;
## 
##   MODEL CONSTRAINT:
## 
##           LOOP(PDB, -1.96, 1.96, .98); ! Two Standard Deviations Below/Above Mean
##           PLOT(LdrDivAd_mg);
##           LdrDivAd_mg = (c1 + c3*PDB)*mg;
## 
##   PLOT: TYPE = PLOT2;
## 
## 
## 
## INPUT READING TERMINATED NORMALLY
## 
## 
## 
## Study 2: Moderated Mediation Models
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         234
## 
## Number of dependent variables                                    3
## Number of independent variables                                  4
## Number of continuous latent variables                            0
## 
## Observed dependent variables
## 
##   Continuous
##    AWARE       MANAGE      ORGALLY
## 
## Observed independent variables
##    LDRDIVAD    PDB         POLID       LDA_PDB
## 
## Variables with special functions
## 
##   Centering (GRANDMEAN)
##    LDRDIVAD    PDB
## 
## 
## Estimator                                                       ML
## Information matrix                                        OBSERVED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## Maximum number of iterations for H1                           2000
## Convergence criterion for H1                             0.100D-03
## 
## Input data file(s)
##   Study2.dat
## 
## Input data format  FREE
## 
## 
## SUMMARY OF DATA
## 
##      Number of missing data patterns             1
## 
## 
## COVARIANCE COVERAGE OF DATA
## 
## Minimum covariance coverage value   0.100
## 
## 
##      PROPORTION OF DATA PRESENT
## 
## 
##            Covariance Coverage
##               AWARE         MANAGE        ORGALLY       LDRDIVAD      PDB
##               ________      ________      ________      ________      ________
##  AWARE          1.000
##  MANAGE         1.000         1.000
##  ORGALLY        1.000         1.000         1.000
##  LDRDIVAD       1.000         1.000         1.000         1.000
##  PDB            1.000         1.000         1.000         1.000         1.000
##  POLID          1.000         1.000         1.000         1.000         1.000
##  LDA_PDB        1.000         1.000         1.000         1.000         1.000
## 
## 
##            Covariance Coverage
##               POLID         LDA_PDB
##               ________      ________
##  POLID          1.000
##  LDA_PDB        1.000         1.000
## 
## 
## 
## UNIVARIATE SAMPLE STATISTICS
## 
## 
##      UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
## 
##          Variable/         Mean/     Skewness/   Minimum/ % with                Percentiles
##         Sample Size      Variance    Kurtosis    Maximum  Min/Max      20%/60%    40%/80%    Median
## 
##      AWARE                 3.833      -0.606       1.000    1.71%       3.000      3.667      4.000
##              234.000       0.861       0.144       5.000   20.94%       4.000      5.000
##      MANAGE                3.852      -0.469       1.000    0.43%       3.000      3.600      4.000
##              234.000       0.712      -0.298       5.000   13.68%       4.200      4.600
##      ORGALLY               3.115      -0.348       1.000    5.56%       2.111      3.000      3.222
##              234.000       1.093      -0.519       5.000    3.85%       3.444      4.000
##      LDRDIVAD              0.000      -0.935      -2.747    4.27%      -0.747      0.003      0.253
##              234.000       1.192       0.250       1.253   17.95%       0.253      1.003
##      PDB                   0.000      -0.826      -3.630    0.85%      -1.130      0.120      0.370
##              234.000       1.408       0.043       1.370   20.09%       0.370      1.120
##      POLID                -0.209       0.082      -3.000    8.97%      -2.000      0.000      0.000
##              234.000       2.507      -0.479       3.000    5.98%       0.000      1.000
##      LDA_PDB               0.606       2.052      -3.922    0.43%      -0.215      0.004      0.218
##              234.000       2.114       7.321       8.600    0.43%       0.437      1.374
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       27
## 
## Loglikelihood
## 
##           H0 Value                       -1955.708
##           H1 Value                       -1931.227
## 
## Information Criteria
## 
##           Akaike (AIC)                    3965.415
##           Bayesian (BIC)                  4058.709
##           Sample-Size Adjusted BIC        3973.131
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                             48.961
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.175
##           90 Percent C.I.                    0.131  0.222
##           Probability RMSEA <= .05           0.000
## 
## CFI/TLI
## 
##           CFI                                0.814
##           TLI                                0.536
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            246.278
##           Degrees of Freedom                    15
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.110
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  AWARE    ON
##     PDB                0.224      0.053      4.230      0.000
##     LDRDIVAD           0.176      0.061      2.862      0.004
##     LDA_PDB            0.082      0.042      1.955      0.051
## 
##  MANAGE   ON
##     PDB                0.256      0.046      5.607      0.000
##     LDRDIVAD           0.198      0.053      3.748      0.000
##     LDA_PDB            0.112      0.036      3.099      0.002
## 
##  ORGALLY  ON
##     POLID             -0.070      0.037     -1.868      0.062
##     PDB               -0.050      0.057     -0.877      0.381
##     LDRDIVAD           0.403      0.060      6.744      0.000
##     AWARE             -0.052      0.072     -0.725      0.468
##     MANAGE             0.347      0.083      4.196      0.000
## 
##  PDB      WITH
##     LDRDIVAD           0.606      0.094      6.483      0.000
##     POLID             -0.432      0.126     -3.428      0.001
## 
##  LDRDIVAD WITH
##     POLID             -0.413      0.116     -3.551      0.000
## 
##  AWARE    WITH
##     MANAGE             0.246      0.044      5.625      0.000
## 
##  Means
##     LDRDIVAD           0.000      0.071      0.000      1.000
##     PDB                0.000      0.078      0.000      1.000
##     POLID             -0.209      0.104     -2.023      0.043
## 
##  Intercepts
##     AWARE              3.783      0.061     61.916      0.000
##     MANAGE             3.784      0.053     71.988      0.000
##     ORGALLY            1.963      0.332      5.916      0.000
## 
##  Variances
##     LDRDIVAD           1.192      0.110     10.817      0.000
##     PDB                1.408      0.130     10.817      0.000
##     POLID              2.507      0.232     10.817      0.000
## 
##  Residual Variances
##     AWARE              0.723      0.067     10.817      0.000
##     MANAGE             0.535      0.049     10.817      0.000
##     ORGALLY            0.737      0.068     10.817      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.991E-04
##        (ratio of smallest to largest eigenvalue)
## 
## 
## PLOT INFORMATION
## 
## The following plots are available:
## 
##   Loop plots
## 
##      Beginning Time:  11:42:56
##         Ending Time:  11:42:56
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2024 Muthen & Muthen

Hypothesis 5a: Moderated Mediation (Bias-Awareness Efficacy and Organizational Ally Work)

res <- readModels("Mplus Syntax/Study2_Moderated Mediation.out")

# Extract coefficients
a_int <- res$parameters$unstandardized$est[3]  # Effect of XW on M (a-path)
b_est <- res$parameters$unstandardized$est[10]  # Effect of M on Y (b-path)

# Extract standard errors
a_int_se <- res$parameters$unstandardized$se[3]
b_se <- res$parameters$unstandardized$se[10]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_int, mu.y = b_est, se.x = a_int_se, se.y = b_se,
               rho = 0, alpha = .10, sims = 10000, method = "parametric")
## 
## --- Index of Moderated Mediation ---
## Estimate: -0.004264
## Standard error: 0.00698367
## Monte Carlo 90% CI: [ -0.01696925 , 0.005518282 ]

Hypothesis 5b: Moderated Mediation (Intergroup-Management Efficacy and Organizational Ally Work)

# Extract coefficients
a_int <- res$parameters$unstandardized$est[6]  # Effect of XW on M (a-path)
b_est <- res$parameters$unstandardized$est[11]  # Effect of M on Y (b-path)

# Extract standard errors
a_int_se <- res$parameters$unstandardized$se[6]
b_se <- res$parameters$unstandardized$se[11]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_int, mu.y = b_est, se.x = a_int_se, se.y = b_se,
               rho = 0, alpha = .01, sims = 10000, method = "parametric")
## 
## --- Index of Moderated Mediation ---
## Estimate: 0.038864
## Standard error: 0.0158554
## Monte Carlo 99% CI: [ 0.005639582 , 0.08740678 ]
## 
## --- Conditional Indirect Effects ---
## At LOW PDB (-1 SD):
## Indirect effect estimate: 0.02246
## Standard error (LOW PDB): 0.0249
## Monte Carlo 90% CI: [ -0.016 , 0.065 ]
## At HIGH PDB (+1 SD):
## Indirect effect estimate: 0.115
## Standard error (HIGH PDB): 0.0367
## Monte Carlo 99% CI: [ 0.036 , 0.225 ]

View Johnson-Neyman Plots for Conditional Indirect Effects

Figure 4: Conditional Indirect Effect on Organizational Ally Work via Intergroup-Management Self-Efficacy

Supplementary Analyses #1: Past Positive Interracial Contact

# View output files
med_out <- readLines("Mplus Syntax/Study2_IntergroupContact.out")
cat(paste(med_out, collapse = "\n"))
## Mplus VERSION 8.11 (Mac)
## MUTHEN & MUTHEN
## 09/04/2025   1:35 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Study 2: Mediation Models
##   DATA: FILE = "Study2.dat";
##   VARIABLE:
##     NAMES = Male White Ideology LdrDivAd PDB Aware Regulate Manage OrgAlly DVoice pastexp;
##   MISSING = ALL (999);
## 
##   USEVARIABLES LdrDivAd PDB Aware Manage OrgAlly
##           pastexp PolID;
## 
##   DEFINE:
##   ! Political Ideology centered at the scale midpoint (= 4)
##   PolID = Ideology - 4;
## 
##   ! Grand-mean center Leader Diversity Advocacy and Pro-Diversity Attitudes
##   CENTER LdrDivAd PDB (GRANDMEAN);
## 
##   ANALYSIS:
##     ESTIMATOR = ML;
## 
##   MODEL:
##     Aware    ON pastexp PDB LdrDivAd;
##     Manage   ON pastexp PDB LdrDivAd;
## 
##     OrgAlly  ON pastexp PolID PDB LdrDivAd Aware Manage;
## 
## 
##     ! Covariances among predictors
##     PDB WITH LdrDivAd PolID pastexp;
##   LdrDivAd WITH PolID pastexp;
##     PolID WITH pastexp;
##     Aware WITH Manage;
## 
## 
## 
## INPUT READING TERMINATED NORMALLY
## 
## 
## 
## Study 2: Mediation Models
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         234
## 
## Number of dependent variables                                    3
## Number of independent variables                                  4
## Number of continuous latent variables                            0
## 
## Observed dependent variables
## 
##   Continuous
##    AWARE       MANAGE      ORGALLY
## 
## Observed independent variables
##    LDRDIVAD    PDB         PASTEXP     POLID
## 
## Variables with special functions
## 
##   Centering (GRANDMEAN)
##    LDRDIVAD    PDB
## 
## 
## Estimator                                                       ML
## Information matrix                                        OBSERVED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## Maximum number of iterations for H1                           2000
## Convergence criterion for H1                             0.100D-03
## 
## Input data file(s)
##   Study2.dat
## 
## Input data format  FREE
## 
## 
## SUMMARY OF DATA
## 
##      Number of missing data patterns             1
## 
## 
## COVARIANCE COVERAGE OF DATA
## 
## Minimum covariance coverage value   0.100
## 
## 
##      PROPORTION OF DATA PRESENT
## 
## 
##            Covariance Coverage
##               AWARE         MANAGE        ORGALLY       LDRDIVAD      PDB
##               ________      ________      ________      ________      ________
##  AWARE          1.000
##  MANAGE         1.000         1.000
##  ORGALLY        1.000         1.000         1.000
##  LDRDIVAD       1.000         1.000         1.000         1.000
##  PDB            1.000         1.000         1.000         1.000         1.000
##  PASTEXP        1.000         1.000         1.000         1.000         1.000
##  POLID          1.000         1.000         1.000         1.000         1.000
## 
## 
##            Covariance Coverage
##               PASTEXP       POLID
##               ________      ________
##  PASTEXP        1.000
##  POLID          1.000         1.000
## 
## 
## 
## UNIVARIATE SAMPLE STATISTICS
## 
## 
##      UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
## 
##          Variable/         Mean/     Skewness/   Minimum/ % with                Percentiles
##         Sample Size      Variance    Kurtosis    Maximum  Min/Max      20%/60%    40%/80%    Median
## 
##      AWARE                 3.833      -0.606       1.000    1.71%       3.000      3.667      4.000
##              234.000       0.861       0.144       5.000   20.94%       4.000      5.000
##      MANAGE                3.852      -0.469       1.000    0.43%       3.000      3.600      4.000
##              234.000       0.712      -0.298       5.000   13.68%       4.200      4.600
##      ORGALLY               3.115      -0.348       1.000    5.56%       2.111      3.000      3.222
##              234.000       1.093      -0.519       5.000    3.85%       3.444      4.000
##      LDRDIVAD              0.000      -0.935      -2.747    4.27%      -0.747      0.003      0.253
##              234.000       1.192       0.250       1.253   17.95%       0.253      1.003
##      PDB                   0.000      -0.826      -3.630    0.85%      -1.130      0.120      0.370
##              234.000       1.408       0.043       1.370   20.09%       0.370      1.120
##      PASTEXP               4.162      -0.834       1.000    0.43%       3.500      4.000      4.000
##              234.000       0.572       0.727       5.000   30.34%       4.500      5.000
##      POLID                -0.209       0.082      -3.000    8.97%      -2.000      0.000      0.000
##              234.000       2.507      -0.479       3.000    5.98%       0.000      1.000
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       33
## 
## Loglikelihood
## 
##           H0 Value                       -2177.858
##           H1 Value                       -2172.783
## 
## Information Criteria
## 
##           Akaike (AIC)                    4421.716
##           Bayesian (BIC)                  4535.742
##           Sample-Size Adjusted BIC        4431.147
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                             10.151
##           Degrees of Freedom                     2
##           P-Value                           0.0062
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.132
##           90 Percent C.I.                    0.060  0.217
##           Probability RMSEA <= .05           0.033
## 
## CFI/TLI
## 
##           CFI                                0.968
##           TLI                                0.757
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            266.467
##           Degrees of Freedom                    15
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.035
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  AWARE    ON
##     PASTEXP            0.146      0.085      1.710      0.087
##     PDB                0.175      0.059      2.939      0.003
##     LDRDIVAD           0.132      0.058      2.285      0.022
## 
##  MANAGE   ON
##     PASTEXP            0.333      0.071      4.674      0.000
##     PDB                0.146      0.050      2.928      0.003
##     LDRDIVAD           0.136      0.048      2.816      0.005
## 
##  ORGALLY  ON
##     PASTEXP           -0.223      0.090     -2.480      0.013
##     POLID             -0.053      0.038     -1.408      0.159
##     PDB                0.007      0.061      0.122      0.903
##     LDRDIVAD           0.402      0.059      6.807      0.000
##     AWARE             -0.051      0.071     -0.716      0.474
##     MANAGE             0.409      0.085      4.787      0.000
## 
##  PDB      WITH
##     LDRDIVAD           0.606      0.094      6.483      0.000
##     POLID             -0.432      0.126     -3.428      0.001
##     PASTEXP            0.450      0.066      6.857      0.000
## 
##  LDRDIVAD WITH
##     POLID             -0.413      0.116     -3.551      0.000
##     PASTEXP            0.207      0.056      3.723      0.000
## 
##  POLID    WITH
##     PASTEXP           -0.009      0.078     -0.112      0.911
## 
##  AWARE    WITH
##     MANAGE             0.241      0.043      5.642      0.000
## 
##  Means
##     LDRDIVAD           0.000      0.071      0.000      1.000
##     PDB                0.000      0.078      0.000      1.000
##     PASTEXP            4.162      0.049     84.195      0.000
##     POLID             -0.209      0.104     -2.023      0.043
## 
##  Intercepts
##     AWARE              3.226      0.359      8.994      0.000
##     MANAGE             2.464      0.301      8.196      0.000
##     ORGALLY            2.656      0.430      6.170      0.000
## 
##  Variances
##     LDRDIVAD           1.192      0.110     10.817      0.000
##     PDB                1.408      0.130     10.817      0.000
##     PASTEXP            0.572      0.053     10.817      0.000
##     POLID              2.507      0.232     10.817      0.000
## 
##  Residual Variances
##     AWARE              0.726      0.067     10.817      0.000
##     MANAGE             0.510      0.047     10.816      0.000
##     ORGALLY            0.718      0.066     10.817      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.556E-03
##        (ratio of smallest to largest eigenvalue)
## 
## 
##      Beginning Time:  13:35:53
##         Ending Time:  13:35:54
##        Elapsed Time:  00:00:01
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2024 Muthen & Muthen
### Mediation via Intergroup-Management Self-Efficacy, Controlling for Past Positive Interracial Contact
res <- readModels("Mplus Syntax/Study2_IntergroupContact.out")

# Extract coefficients
a_est <- res$parameters$unstandardized$est[6]  # Effect of X on M (a-path)
b_est <- res$parameters$unstandardized$est[12]  # Effect of M on Y (b-path)

# Extract standard errors
a_se <- res$parameters$unstandardized$se[6]
b_se <- res$parameters$unstandardized$se[12]    

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_est, mu.y = b_est, se.x = a_se, se.y = b_se,
               rho = 0, alpha = .01, sims = 10000, method = "parametric")
## Indirect effect estimate: 0.055624
## Indirect effect standard error: 0.0231451
## Monte Carlo 99% CI: [ 0.004697249 , 0.1252399 ]

Supplementary Analyses #2: Diversity Voice

# View output files
med_out <- readLines("Mplus Syntax/Study2_Mediation_DVoice.out")
cat(paste(med_out, collapse = "\n"))
## Mplus VERSION 8.11 (Mac)
## MUTHEN & MUTHEN
## 09/04/2025   1:12 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Study 2: Supplemental Mediation Analyses
##   DATA: FILE = "Study2.dat";
##   VARIABLE:
##     NAMES = Male White Ideology LdrDivAd PDB Aware Regulate Manage OrgAlly DVoice pastexp;
##   MISSING = ALL (999);
## 
##   USEVARIABLES LdrDivAd PDB Aware Manage DVoice
##           PolID;
## 
##   DEFINE:
##   ! Political Ideology centered at the scale midpoint (= 4)
##   PolID = Ideology - 4;
## 
##   ! Grand-mean center Leader Diversity Advocacy and Pro-Diversity Attitudes
##   CENTER LdrDivAd PDB (GRANDMEAN);
## 
##   ANALYSIS:
##     ESTIMATOR = ML;
## 
##   MODEL:
##     Aware    ON PDB LdrDivAd;
##     Manage   ON PDB LdrDivAd;
## 
##     DVoice   ON PolID PDB LdrDivAd Aware Manage;
## 
## 
##     ! Covariances among predictors
##     PDB WITH LdrDivAd PolID;
##   LdrDivAd WITH PolID;
##     Aware WITH Manage;
## 
## 
## 
## INPUT READING TERMINATED NORMALLY
## 
## 
## 
## Study 2: Supplemental Mediation Analyses
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         234
## 
## Number of dependent variables                                    3
## Number of independent variables                                  3
## Number of continuous latent variables                            0
## 
## Observed dependent variables
## 
##   Continuous
##    AWARE       MANAGE      DVOICE
## 
## Observed independent variables
##    LDRDIVAD    PDB         POLID
## 
## Variables with special functions
## 
##   Centering (GRANDMEAN)
##    LDRDIVAD    PDB
## 
## 
## Estimator                                                       ML
## Information matrix                                        OBSERVED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## Maximum number of iterations for H1                           2000
## Convergence criterion for H1                             0.100D-03
## 
## Input data file(s)
##   Study2.dat
## 
## Input data format  FREE
## 
## 
## SUMMARY OF DATA
## 
##      Number of missing data patterns             1
## 
## 
## COVARIANCE COVERAGE OF DATA
## 
## Minimum covariance coverage value   0.100
## 
## 
##      PROPORTION OF DATA PRESENT
## 
## 
##            Covariance Coverage
##               AWARE         MANAGE        DVOICE        LDRDIVAD      PDB
##               ________      ________      ________      ________      ________
##  AWARE          1.000
##  MANAGE         1.000         1.000
##  DVOICE         1.000         1.000         1.000
##  LDRDIVAD       1.000         1.000         1.000         1.000
##  PDB            1.000         1.000         1.000         1.000         1.000
##  POLID          1.000         1.000         1.000         1.000         1.000
## 
## 
##            Covariance Coverage
##               POLID
##               ________
##  POLID          1.000
## 
## 
## 
## UNIVARIATE SAMPLE STATISTICS
## 
## 
##      UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
## 
##          Variable/         Mean/     Skewness/   Minimum/ % with                Percentiles
##         Sample Size      Variance    Kurtosis    Maximum  Min/Max      20%/60%    40%/80%    Median
## 
##      AWARE                 3.833      -0.606       1.000    1.71%       3.000      3.667      4.000
##              234.000       0.861       0.144       5.000   20.94%       4.000      5.000
##      MANAGE                3.852      -0.469       1.000    0.43%       3.000      3.600      4.000
##              234.000       0.712      -0.298       5.000   13.68%       4.200      4.600
##      DVOICE                4.824      -0.584       1.000    2.99%       4.000      4.333      4.833
##              234.000       2.004       0.298       7.000    7.26%       5.167      6.000
##      LDRDIVAD              0.000      -0.935      -2.747    4.27%      -0.747      0.003      0.253
##              234.000       1.192       0.250       1.253   17.95%       0.253      1.003
##      PDB                   0.000      -0.826      -3.630    0.85%      -1.130      0.120      0.370
##              234.000       1.408       0.043       1.370   20.09%       0.370      1.120
##      POLID                -0.209       0.082      -3.000    8.97%      -2.000      0.000      0.000
##              234.000       2.507      -0.479       3.000    5.98%       0.000      1.000
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       25
## 
## Loglikelihood
## 
##           H0 Value                       -2010.111
##           H1 Value                       -2006.906
## 
## Information Criteria
## 
##           Akaike (AIC)                    4070.223
##           Bayesian (BIC)                  4156.606
##           Sample-Size Adjusted BIC        4077.367
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                              6.412
##           Degrees of Freedom                     2
##           P-Value                           0.0405
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.097
##           90 Percent C.I.                    0.017  0.186
##           Probability RMSEA <= .05           0.128
## 
## CFI/TLI
## 
##           CFI                                0.983
##           TLI                                0.901
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            278.884
##           Degrees of Freedom                    12
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.034
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  AWARE    ON
##     PDB                0.220      0.053      4.123      0.000
##     LDRDIVAD           0.134      0.058      2.307      0.021
## 
##  MANAGE   ON
##     PDB                0.250      0.047      5.379      0.000
##     LDRDIVAD           0.141      0.051      2.790      0.005
## 
##  DVOICE   ON
##     POLID              0.036      0.046      0.776      0.438
##     PDB               -0.080      0.071     -1.123      0.262
##     LDRDIVAD           0.685      0.074      9.283      0.000
##     AWARE              0.056      0.089      0.629      0.529
##     MANAGE             0.499      0.102      4.879      0.000
## 
##  PDB      WITH
##     LDRDIVAD           0.606      0.094      6.483      0.000
##     POLID             -0.432      0.126     -3.428      0.001
## 
##  LDRDIVAD WITH
##     POLID             -0.413      0.116     -3.551      0.000
## 
##  AWARE    WITH
##     MANAGE             0.262      0.045      5.798      0.000
## 
##  Means
##     LDRDIVAD           0.000      0.071      0.000      1.000
##     PDB                0.000      0.078      0.000      1.000
##     POLID             -0.209      0.104     -2.023      0.043
## 
##  Intercepts
##     AWARE              3.833      0.056     68.386      0.000
##     MANAGE             3.852      0.049     78.931      0.000
##     DVOICE             2.697      0.410      6.579      0.000
## 
##  Variances
##     LDRDIVAD           1.192      0.110     10.817      0.000
##     PDB                1.408      0.130     10.817      0.000
##     POLID              2.507      0.232     10.817      0.000
## 
##  Residual Variances
##     AWARE              0.735      0.068     10.817      0.000
##     MANAGE             0.557      0.052     10.817      0.000
##     DVOICE             1.124      0.104     10.817      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.149E-02
##        (ratio of smallest to largest eigenvalue)
## 
## 
##      Beginning Time:  13:12:33
##         Ending Time:  13:12:33
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2024 Muthen & Muthen

Mediation Analysis (via Bias-Awareness Self-Efficacy)

res <- readModels("Mplus Syntax/Study2_Mediation_DVoice.out")

# Extract coefficients
a_est <- res$parameters$unstandardized$est[2]  # Effect of X on M (a-path)
b_est <- res$parameters$unstandardized$est[8]  # Effect of M on Y (b-path)

# Extract standard errors
a_se <- res$parameters$unstandardized$se[2]
b_se <- res$parameters$unstandardized$se[8] 

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_est, mu.y = b_est, se.x = a_se, se.y = b_se,
               rho = 0, alpha = .10, sims = 10000, method = "parametric")
## Indirect effect estimate: 0.007504
## Indirect effect standard error: 0.01339497
## Monte Carlo 90% CI: [ -0.01225498 , 0.03131819 ]

Mediation Analysis (via Self-Regulation Self-Efficacy)

# Extract coefficients
a_est <- res$parameters$unstandardized$est[4]  # Effect of X on M (a-path)
b_est <- res$parameters$unstandardized$est[9]   # Effect of M on Y (b-path)

# Extract standard errors
a_se <- res$parameters$unstandardized$se[4]
b_se <- res$parameters$unstandardized$se[9]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_est, mu.y = b_est, se.x = a_se, se.y = b_se,
               rho = 0, alpha = .01, sims = 10000, method = "parametric")
## Indirect effect estimate: 0.070359
## Indirect effect standard error: 0.02969098
## Monte Carlo 99% CI: [ 0.004509416 , 0.1594321 ]

Moderated Mediation (Bias-Awareness Efficacy and Diversity Voice)

# View output files
modmed_out <- readLines("Mplus Syntax/Study2_Moderated Mediation_DVoice.out")
cat(paste(modmed_out, collapse = "\n"))
## Mplus VERSION 8.11 (Mac)
## MUTHEN & MUTHEN
## 09/04/2025   1:12 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Study 2: Moderated Mediation Models
##   DATA: FILE = "Study2.dat";
##   VARIABLE:
##     NAMES = Male White Ideology LdrDivAd PDB Aware Regulate Manage OrgAlly DVoice pastexp;
##   MISSING = ALL (999);
## 
##   USEVARIABLES LdrDivAd PDB Aware Manage DVoice
##           PolID LDA_PDB
## 
##   DEFINE:
##   ! Political Ideology centered at the scale midpoint (= 4)
##   PolID = Ideology - 4;
## 
##   ! Grand-mean center Leader Diversity Advocacy and Pro-Diversity Attitudes
##   CENTER LdrDivAd PDB (GRANDMEAN);
## 
##   ! Create interaction term
##   LDA_PDB = LdrDivAd * PDB;
## 
##   ANALYSIS:
##     ESTIMATOR = ML;
## 
##   MODEL:
##     Aware    ON PDB
##                 LdrDivAd
##                 LDA_PDB;
## 
##     Manage   ON PDB (c2)
##                 LdrDivAd (c1)
##                 LDA_PDB (c3);
## 
##     DVoice  ON PolID
##                 PDB
##                 LdrDivAd
##                 Aware
##                 Manage (mg);
## 
##     ! Covariances among predictors
##     PDB WITH LdrDivAd PolID;
##   LdrDivAd WITH PolID;
##     Aware WITH Manage;
## 
##   MODEL CONSTRAINT:
## 
##           LOOP(PDB, -2.38, 2.38, 1.19); ! Two Standard Deviations Below/Above Mean
##           PLOT(LdrDivAd_mg);
##           LdrDivAd_mg = (c1 + c3*PDB)*mg;
## 
##   PLOT: TYPE = PLOT2;
## 
## 
## 
## INPUT READING TERMINATED NORMALLY
## 
## 
## 
## Study 2: Moderated Mediation Models
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         234
## 
## Number of dependent variables                                    3
## Number of independent variables                                  4
## Number of continuous latent variables                            0
## 
## Observed dependent variables
## 
##   Continuous
##    AWARE       MANAGE      DVOICE
## 
## Observed independent variables
##    LDRDIVAD    PDB         POLID       LDA_PDB
## 
## Variables with special functions
## 
##   Centering (GRANDMEAN)
##    LDRDIVAD    PDB
## 
## 
## Estimator                                                       ML
## Information matrix                                        OBSERVED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## Maximum number of iterations for H1                           2000
## Convergence criterion for H1                             0.100D-03
## 
## Input data file(s)
##   Study2.dat
## 
## Input data format  FREE
## 
## 
## SUMMARY OF DATA
## 
##      Number of missing data patterns             1
## 
## 
## COVARIANCE COVERAGE OF DATA
## 
## Minimum covariance coverage value   0.100
## 
## 
##      PROPORTION OF DATA PRESENT
## 
## 
##            Covariance Coverage
##               AWARE         MANAGE        DVOICE        LDRDIVAD      PDB
##               ________      ________      ________      ________      ________
##  AWARE          1.000
##  MANAGE         1.000         1.000
##  DVOICE         1.000         1.000         1.000
##  LDRDIVAD       1.000         1.000         1.000         1.000
##  PDB            1.000         1.000         1.000         1.000         1.000
##  POLID          1.000         1.000         1.000         1.000         1.000
##  LDA_PDB        1.000         1.000         1.000         1.000         1.000
## 
## 
##            Covariance Coverage
##               POLID         LDA_PDB
##               ________      ________
##  POLID          1.000
##  LDA_PDB        1.000         1.000
## 
## 
## 
## UNIVARIATE SAMPLE STATISTICS
## 
## 
##      UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
## 
##          Variable/         Mean/     Skewness/   Minimum/ % with                Percentiles
##         Sample Size      Variance    Kurtosis    Maximum  Min/Max      20%/60%    40%/80%    Median
## 
##      AWARE                 3.833      -0.606       1.000    1.71%       3.000      3.667      4.000
##              234.000       0.861       0.144       5.000   20.94%       4.000      5.000
##      MANAGE                3.852      -0.469       1.000    0.43%       3.000      3.600      4.000
##              234.000       0.712      -0.298       5.000   13.68%       4.200      4.600
##      DVOICE                4.824      -0.584       1.000    2.99%       4.000      4.333      4.833
##              234.000       2.004       0.298       7.000    7.26%       5.167      6.000
##      LDRDIVAD              0.000      -0.935      -2.747    4.27%      -0.747      0.003      0.253
##              234.000       1.192       0.250       1.253   17.95%       0.253      1.003
##      PDB                   0.000      -0.826      -3.630    0.85%      -1.130      0.120      0.370
##              234.000       1.408       0.043       1.370   20.09%       0.370      1.120
##      POLID                -0.209       0.082      -3.000    8.97%      -2.000      0.000      0.000
##              234.000       2.507      -0.479       3.000    5.98%       0.000      1.000
##      LDA_PDB               0.606       2.052      -3.922    0.43%      -0.215      0.004      0.218
##              234.000       2.114       7.321       8.600    0.43%       0.437      1.374
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       27
## 
## Loglikelihood
## 
##           H0 Value                       -2005.102
##           H1 Value                       -1980.298
## 
## Information Criteria
## 
##           Akaike (AIC)                    4064.203
##           Bayesian (BIC)                  4157.497
##           Sample-Size Adjusted BIC        4071.919
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                             49.607
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.176
##           90 Percent C.I.                    0.133  0.223
##           Probability RMSEA <= .05           0.000
## 
## CFI/TLI
## 
##           CFI                                0.841
##           TLI                                0.604
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            290.060
##           Degrees of Freedom                    15
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.115
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  AWARE    ON
##     PDB                0.224      0.053      4.230      0.000
##     LDRDIVAD           0.176      0.061      2.862      0.004
##     LDA_PDB            0.082      0.042      1.955      0.051
## 
##  MANAGE   ON
##     PDB                0.256      0.046      5.607      0.000
##     LDRDIVAD           0.198      0.053      3.748      0.000
##     LDA_PDB            0.112      0.036      3.099      0.002
## 
##  DVOICE   ON
##     POLID              0.036      0.046      0.776      0.437
##     PDB               -0.080      0.071     -1.123      0.262
##     LDRDIVAD           0.685      0.074      9.283      0.000
##     AWARE              0.056      0.089      0.629      0.529
##     MANAGE             0.499      0.102      4.879      0.000
## 
##  PDB      WITH
##     LDRDIVAD           0.606      0.094      6.483      0.000
##     POLID             -0.432      0.126     -3.428      0.001
## 
##  LDRDIVAD WITH
##     POLID             -0.413      0.116     -3.551      0.000
## 
##  AWARE    WITH
##     MANAGE             0.246      0.044      5.625      0.000
## 
##  Means
##     LDRDIVAD           0.000      0.071      0.000      1.000
##     PDB                0.000      0.078      0.000      1.000
##     POLID             -0.209      0.104     -2.023      0.043
## 
##  Intercepts
##     AWARE              3.783      0.061     61.916      0.000
##     MANAGE             3.784      0.053     71.988      0.000
##     DVOICE             2.697      0.410      6.579      0.000
## 
##  Variances
##     LDRDIVAD           1.192      0.110     10.817      0.000
##     PDB                1.408      0.130     10.817      0.000
##     POLID              2.507      0.232     10.817      0.000
## 
##  Residual Variances
##     AWARE              0.723      0.067     10.817      0.000
##     MANAGE             0.535      0.049     10.817      0.000
##     DVOICE             1.124      0.104     10.817      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.148E-03
##        (ratio of smallest to largest eigenvalue)
## 
## 
## PLOT INFORMATION
## 
## The following plots are available:
## 
##   Loop plots
## 
##      Beginning Time:  13:12:34
##         Ending Time:  13:12:34
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2024 Muthen & Muthen
res <- readModels("Mplus Syntax/Study2_Moderated Mediation_DVoice.out")

# Extract coefficients
a_int <- res$parameters$unstandardized$est[3]  # Effect of XW on M (a-path)
b_est <- res$parameters$unstandardized$est[10]  # Effect of M on Y (b-path)

# Extract standard errors
a_int_se <- res$parameters$unstandardized$se[3]
b_se <- res$parameters$unstandardized$se[10]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_int, mu.y = b_est, se.x = a_int_se, se.y = b_se,
               rho = 0, alpha = .10, sims = 10000, method = "parametric")
## 
## --- Index of Moderated Mediation ---
## Estimate: 0.004592
## Standard error: 0.008530261
## Monte Carlo 90% CI: [ -0.007623664 , 0.01998587 ]

Moderated Mediation (Intergroup-Management Efficacy and Diversity Voice)

# Extract coefficients
a_int <- res$parameters$unstandardized$est[6]  # Effect of XW on M (a-path)
b_est <- res$parameters$unstandardized$est[11]  # Effect of M on Y (b-path)

# Extract standard errors
a_int_se <- res$parameters$unstandardized$se[6]
b_se <- res$parameters$unstandardized$se[11]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_int, mu.y = b_est, se.x = a_int_se, se.y = b_se,
               rho = 0, alpha = .01, sims = 10000, method = "parametric")
## 
## --- Index of Moderated Mediation ---
## Estimate: 0.055888
## Standard error: 0.02160316
## Monte Carlo 99% CI: [ 0.008736466 , 0.120739 ]
# Conditional Indirect Effect for High and Low Pro-Diversity Attitudes
# Set moderator values (e.g., ±1 SD)
PDB_low <- -1.19  # 1 SD below mean
PDB_high <- 1.19  # 1 SD above mean

# Extract coefficient and standard error for leader diversity advocacy
a_main <- res$parameters$unstandardized$est[5]  # Effect of X on M (a-path)         
a_main_se <- res$parameters$unstandardized$se[5]

# Compute conditional a-paths
a_low  <- a_main + a_int * PDB_low
a_high <- a_main + a_int * PDB_high

# Compute SEs of conditional a-paths
a_low_se  <- sqrt(a_main_se^2 + (PDB_low^2 * a_int_se^2))
a_high_se <- sqrt(a_main_se^2 + (PDB_high^2 * a_int_se^2))

# Compute Monte Carlo CI for indirect effect at low PDB
mc_ci_low <- medci(mu.x = a_low, mu.y = b_est,
                   se.x = a_low_se, se.y = b_se,
                   rho = 0, alpha = 0.10, sims = 10000, method = "parametric")

# Compute Monte Carlo CI for indirect effect at high PDB
mc_ci_high <- medci(mu.x = a_high, mu.y = b_est,
                    se.x = a_high_se, se.y = b_se,
                    rho = 0, alpha = 0.01, sims = 10000, method = "parametric")
## 
## --- Conditional Indirect Effects ---
## At LOW PDB (-1 SD):
## Indirect effect estimate: 0.0323
## Standard error (LOW PDB): 0.03533
## Monte Carlo 90% CI: [ -0.023 , 0.092 ]
## At HIGH PDB (+1 SD):
## Indirect effect estimate: 0.165
## Standard error (HIGH PDB): 0.04844
## Monte Carlo 99% CI: [ 0.06 , 0.309 ]