Assignment 2

vec1<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv")
vec1
##      Temp Sex Beats
## 1    96.3   1    70
## 2    96.7   1    71
## 3    96.9   1    74
## 4    97.0   1    80
## 5    97.1   1    73
## 6    97.1   1    75
## 7    97.1   1    82
## 8    97.2   1    64
## 9    97.3   1    69
## 10   97.4   1    70
## 11   97.4   1    68
## 12   97.4   1    72
## 13   97.4   1    78
## 14   97.5   1    70
## 15   97.5   1    75
## 16   97.6   1    74
## 17   97.6   1    69
## 18   97.6   1    73
## 19   97.7   1    77
## 20   97.8   1    58
## 21   97.8   1    73
## 22   97.8   1    65
## 23   97.8   1    74
## 24   97.9   1    76
## 25   97.9   1    72
## 26   98.0   1    78
## 27   98.0   1    71
## 28   98.0   1    74
## 29   98.0   1    67
## 30   98.0   1    64
## 31   98.0   1    78
## 32   98.1   1    73
## 33   98.1   1    67
## 34   98.2   1    66
## 35   98.2   1    64
## 36   98.2   1    71
## 37   98.2   1    72
## 38   98.3   1    86
## 39   98.3   1    72
## 40   98.4   1    68
## 41   98.4   1    70
## 42   98.4   1    82
## 43   98.4   1    84
## 44   98.5   1    68
## 45   98.5   1    71
## 46   98.6   1    77
## 47   98.6   1    78
## 48   98.6   1    83
## 49   98.6   1    66
## 50   98.6   1    70
## 51   98.6   1    82
## 52   98.7   1    73
## 53   98.7   1    78
## 54   98.8   1    78
## 55   98.8   1    81
## 56   98.8   1    78
## 57   98.9   1    80
## 58   99.0   1    75
## 59   99.0   1    79
## 60   99.0   1    81
## 61   99.1   1    71
## 62   99.2   1    83
## 63   99.3   1    63
## 64   99.4   1    70
## 65   99.5   1    75
## 66   96.4   2    69
## 67   96.7   2    62
## 68   96.8   2    75
## 69   97.2   2    66
## 70   97.2   2    68
## 71   97.4   2    57
## 72   97.6   2    61
## 73   97.7   2    84
## 74   97.7   2    61
## 75   97.8   2    77
## 76   97.8   2    62
## 77   97.8   2    71
## 78   97.9   2    68
## 79   97.9   2    69
## 80   97.9   2    79
## 81   98.0   2    76
## 82   98.0   2    87
## 83   98.0   2    78
## 84   98.0   2    73
## 85   98.0   2    89
## 86   98.1   2    81
## 87   98.2   2    73
## 88   98.2   2    64
## 89   98.2   2    65
## 90   98.2   2    73
## 91   98.2   2    69
## 92   98.2   2    57
## 93   98.3   2    79
## 94   98.3   2    78
## 95   98.3   2    80
## 96   98.4   2    79
## 97   98.4   2    81
## 98   98.4   2    73
## 99   98.4   2    74
## 100  98.4   2    84
## 101  98.5   2    83
## 102  98.6   2    82
## 103  98.6   2    85
## 104  98.6   2    86
## 105  98.6   2    77
## 106  98.7   2    72
## 107  98.7   2    79
## 108  98.7   2    59
## 109  98.7   2    64
## 110  98.7   2    65
## 111  98.7   2    82
## 112  98.8   2    64
## 113  98.8   2    70
## 114  98.8   2    83
## 115  98.8   2    89
## 116  98.8   2    69
## 117  98.8   2    73
## 118  98.8   2    84
## 119  98.9   2    76
## 120  99.0   2    79
## 121  99.0   2    81
## 122  99.1   2    80
## 123  99.1   2    74
## 124  99.2   2    77
## 125  99.2   2    66
## 126  99.3   2    68
## 127  99.4   2    77
## 128  99.9   2    79
## 129 100.0   2    78
## 130 100.8   2    77
male1<-vec1[vec1$Sex==1,]
male1
##    Temp Sex Beats
## 1  96.3   1    70
## 2  96.7   1    71
## 3  96.9   1    74
## 4  97.0   1    80
## 5  97.1   1    73
## 6  97.1   1    75
## 7  97.1   1    82
## 8  97.2   1    64
## 9  97.3   1    69
## 10 97.4   1    70
## 11 97.4   1    68
## 12 97.4   1    72
## 13 97.4   1    78
## 14 97.5   1    70
## 15 97.5   1    75
## 16 97.6   1    74
## 17 97.6   1    69
## 18 97.6   1    73
## 19 97.7   1    77
## 20 97.8   1    58
## 21 97.8   1    73
## 22 97.8   1    65
## 23 97.8   1    74
## 24 97.9   1    76
## 25 97.9   1    72
## 26 98.0   1    78
## 27 98.0   1    71
## 28 98.0   1    74
## 29 98.0   1    67
## 30 98.0   1    64
## 31 98.0   1    78
## 32 98.1   1    73
## 33 98.1   1    67
## 34 98.2   1    66
## 35 98.2   1    64
## 36 98.2   1    71
## 37 98.2   1    72
## 38 98.3   1    86
## 39 98.3   1    72
## 40 98.4   1    68
## 41 98.4   1    70
## 42 98.4   1    82
## 43 98.4   1    84
## 44 98.5   1    68
## 45 98.5   1    71
## 46 98.6   1    77
## 47 98.6   1    78
## 48 98.6   1    83
## 49 98.6   1    66
## 50 98.6   1    70
## 51 98.6   1    82
## 52 98.7   1    73
## 53 98.7   1    78
## 54 98.8   1    78
## 55 98.8   1    81
## 56 98.8   1    78
## 57 98.9   1    80
## 58 99.0   1    75
## 59 99.0   1    79
## 60 99.0   1    81
## 61 99.1   1    71
## 62 99.2   1    83
## 63 99.3   1    63
## 64 99.4   1    70
## 65 99.5   1    75
min(male1$Beats)
## [1] 58
max(male1$Beats)
## [1] 86
mean(male1$Beats)
## [1] 73.36923
median(male1$Beats)
## [1] 73
sd(male1$Beats)
## [1] 5.875184
quantile(male1$Beats)
##   0%  25%  50%  75% 100% 
##   58   70   73   78   86
qqnorm(male1$Beats)

hist(male1$Beats, main = "Heart rate of males", xlab = "heart rates", col = "Blue")

Histogram analysis

In the histogram, the male heart rates form a roughly normal distribution centered around 70–75 bpm, with most values between 65–80 bpm and only a few at the extremes (about 55 or 85–90 bpm).

female1<-vec1[vec1$Sex==2,]
female1
##      Temp Sex Beats
## 66   96.4   2    69
## 67   96.7   2    62
## 68   96.8   2    75
## 69   97.2   2    66
## 70   97.2   2    68
## 71   97.4   2    57
## 72   97.6   2    61
## 73   97.7   2    84
## 74   97.7   2    61
## 75   97.8   2    77
## 76   97.8   2    62
## 77   97.8   2    71
## 78   97.9   2    68
## 79   97.9   2    69
## 80   97.9   2    79
## 81   98.0   2    76
## 82   98.0   2    87
## 83   98.0   2    78
## 84   98.0   2    73
## 85   98.0   2    89
## 86   98.1   2    81
## 87   98.2   2    73
## 88   98.2   2    64
## 89   98.2   2    65
## 90   98.2   2    73
## 91   98.2   2    69
## 92   98.2   2    57
## 93   98.3   2    79
## 94   98.3   2    78
## 95   98.3   2    80
## 96   98.4   2    79
## 97   98.4   2    81
## 98   98.4   2    73
## 99   98.4   2    74
## 100  98.4   2    84
## 101  98.5   2    83
## 102  98.6   2    82
## 103  98.6   2    85
## 104  98.6   2    86
## 105  98.6   2    77
## 106  98.7   2    72
## 107  98.7   2    79
## 108  98.7   2    59
## 109  98.7   2    64
## 110  98.7   2    65
## 111  98.7   2    82
## 112  98.8   2    64
## 113  98.8   2    70
## 114  98.8   2    83
## 115  98.8   2    89
## 116  98.8   2    69
## 117  98.8   2    73
## 118  98.8   2    84
## 119  98.9   2    76
## 120  99.0   2    79
## 121  99.0   2    81
## 122  99.1   2    80
## 123  99.1   2    74
## 124  99.2   2    77
## 125  99.2   2    66
## 126  99.3   2    68
## 127  99.4   2    77
## 128  99.9   2    79
## 129 100.0   2    78
## 130 100.8   2    77
min(female1$Beats)
## [1] 57
max(female1$Beats)
## [1] 89
mean(female1$Beats)
## [1] 74.15385
median(female1$Beats)
## [1] 76
sd(female1$Beats)
## [1] 8.105227
quantile(female1$Beats)
##   0%  25%  50%  75% 100% 
##   57   68   76   80   89
qqnorm(female1$Beats)

hist(female1$Beats, main = "Heart rate of females", xlab = "heart rates", col = "Pink")

Normal Q-Q plot analysis

In the Normal Q-Q plot, there are no outliers, and the data shows almost exactly what is seen int he histogram.

boxplot(male1$Beats,female1$Beats,names = c("Males", "Females"), main = "Boxplot of Males and Females", ylab = "Heart rates")

Box plot analysis:-

This boxplot of Males and Females, shows that females generally have slightly higher and more variable heart rates than males, whose heart rates are lower and more tightly clustered.

Complete R code:-

vec1<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv")
vec1
male1<-vec1[vec1$Sex==1,]
male1
min(male1$Beats)
max(male1$Beats)
mean(male1$Beats)
median(male1$Beats)
sd(male1$Beats)
quantile(male1$Beats)
qqnorm(male1$Beats)
hist(male1$Beats, main = "Heart rate of males", xlab = "heart rates", col = "Blue")
female1<-vec1[vec1$Sex==2,]
female1
min(female1$Beats)
max(female1$Beats)
mean(female1$Beats)
median(female1$Beats)
sd(female1$Beats)
quantile(female1$Beats)
qqnorm(female1$Beats)
hist(female1$Beats, main = "Heart rate of females", xlab = "heart rates", col = "Pink")
boxplot(male1$Beats,female1$Beats,names = c("Males", "Females"), main = "Boxplot of Males and Females", ylab = "Heart rates")

General analysis:-

Males receive a median value of 73, while females receive a median value of 76, hence, it can be observed that the median value of males is lower than the median value of females.

Mean for males is 1.05 percent lower than the mean for females.

In this case, standard deviation for females is 31.9 % greater than the standard deviation for males. This indicates that the data for females is more variable.