vec1<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv")
vec1
## Temp Sex Beats
## 1 96.3 1 70
## 2 96.7 1 71
## 3 96.9 1 74
## 4 97.0 1 80
## 5 97.1 1 73
## 6 97.1 1 75
## 7 97.1 1 82
## 8 97.2 1 64
## 9 97.3 1 69
## 10 97.4 1 70
## 11 97.4 1 68
## 12 97.4 1 72
## 13 97.4 1 78
## 14 97.5 1 70
## 15 97.5 1 75
## 16 97.6 1 74
## 17 97.6 1 69
## 18 97.6 1 73
## 19 97.7 1 77
## 20 97.8 1 58
## 21 97.8 1 73
## 22 97.8 1 65
## 23 97.8 1 74
## 24 97.9 1 76
## 25 97.9 1 72
## 26 98.0 1 78
## 27 98.0 1 71
## 28 98.0 1 74
## 29 98.0 1 67
## 30 98.0 1 64
## 31 98.0 1 78
## 32 98.1 1 73
## 33 98.1 1 67
## 34 98.2 1 66
## 35 98.2 1 64
## 36 98.2 1 71
## 37 98.2 1 72
## 38 98.3 1 86
## 39 98.3 1 72
## 40 98.4 1 68
## 41 98.4 1 70
## 42 98.4 1 82
## 43 98.4 1 84
## 44 98.5 1 68
## 45 98.5 1 71
## 46 98.6 1 77
## 47 98.6 1 78
## 48 98.6 1 83
## 49 98.6 1 66
## 50 98.6 1 70
## 51 98.6 1 82
## 52 98.7 1 73
## 53 98.7 1 78
## 54 98.8 1 78
## 55 98.8 1 81
## 56 98.8 1 78
## 57 98.9 1 80
## 58 99.0 1 75
## 59 99.0 1 79
## 60 99.0 1 81
## 61 99.1 1 71
## 62 99.2 1 83
## 63 99.3 1 63
## 64 99.4 1 70
## 65 99.5 1 75
## 66 96.4 2 69
## 67 96.7 2 62
## 68 96.8 2 75
## 69 97.2 2 66
## 70 97.2 2 68
## 71 97.4 2 57
## 72 97.6 2 61
## 73 97.7 2 84
## 74 97.7 2 61
## 75 97.8 2 77
## 76 97.8 2 62
## 77 97.8 2 71
## 78 97.9 2 68
## 79 97.9 2 69
## 80 97.9 2 79
## 81 98.0 2 76
## 82 98.0 2 87
## 83 98.0 2 78
## 84 98.0 2 73
## 85 98.0 2 89
## 86 98.1 2 81
## 87 98.2 2 73
## 88 98.2 2 64
## 89 98.2 2 65
## 90 98.2 2 73
## 91 98.2 2 69
## 92 98.2 2 57
## 93 98.3 2 79
## 94 98.3 2 78
## 95 98.3 2 80
## 96 98.4 2 79
## 97 98.4 2 81
## 98 98.4 2 73
## 99 98.4 2 74
## 100 98.4 2 84
## 101 98.5 2 83
## 102 98.6 2 82
## 103 98.6 2 85
## 104 98.6 2 86
## 105 98.6 2 77
## 106 98.7 2 72
## 107 98.7 2 79
## 108 98.7 2 59
## 109 98.7 2 64
## 110 98.7 2 65
## 111 98.7 2 82
## 112 98.8 2 64
## 113 98.8 2 70
## 114 98.8 2 83
## 115 98.8 2 89
## 116 98.8 2 69
## 117 98.8 2 73
## 118 98.8 2 84
## 119 98.9 2 76
## 120 99.0 2 79
## 121 99.0 2 81
## 122 99.1 2 80
## 123 99.1 2 74
## 124 99.2 2 77
## 125 99.2 2 66
## 126 99.3 2 68
## 127 99.4 2 77
## 128 99.9 2 79
## 129 100.0 2 78
## 130 100.8 2 77
male1<-vec1[vec1$Sex==1,]
male1
## Temp Sex Beats
## 1 96.3 1 70
## 2 96.7 1 71
## 3 96.9 1 74
## 4 97.0 1 80
## 5 97.1 1 73
## 6 97.1 1 75
## 7 97.1 1 82
## 8 97.2 1 64
## 9 97.3 1 69
## 10 97.4 1 70
## 11 97.4 1 68
## 12 97.4 1 72
## 13 97.4 1 78
## 14 97.5 1 70
## 15 97.5 1 75
## 16 97.6 1 74
## 17 97.6 1 69
## 18 97.6 1 73
## 19 97.7 1 77
## 20 97.8 1 58
## 21 97.8 1 73
## 22 97.8 1 65
## 23 97.8 1 74
## 24 97.9 1 76
## 25 97.9 1 72
## 26 98.0 1 78
## 27 98.0 1 71
## 28 98.0 1 74
## 29 98.0 1 67
## 30 98.0 1 64
## 31 98.0 1 78
## 32 98.1 1 73
## 33 98.1 1 67
## 34 98.2 1 66
## 35 98.2 1 64
## 36 98.2 1 71
## 37 98.2 1 72
## 38 98.3 1 86
## 39 98.3 1 72
## 40 98.4 1 68
## 41 98.4 1 70
## 42 98.4 1 82
## 43 98.4 1 84
## 44 98.5 1 68
## 45 98.5 1 71
## 46 98.6 1 77
## 47 98.6 1 78
## 48 98.6 1 83
## 49 98.6 1 66
## 50 98.6 1 70
## 51 98.6 1 82
## 52 98.7 1 73
## 53 98.7 1 78
## 54 98.8 1 78
## 55 98.8 1 81
## 56 98.8 1 78
## 57 98.9 1 80
## 58 99.0 1 75
## 59 99.0 1 79
## 60 99.0 1 81
## 61 99.1 1 71
## 62 99.2 1 83
## 63 99.3 1 63
## 64 99.4 1 70
## 65 99.5 1 75
min(male1$Beats)
## [1] 58
max(male1$Beats)
## [1] 86
mean(male1$Beats)
## [1] 73.36923
median(male1$Beats)
## [1] 73
sd(male1$Beats)
## [1] 5.875184
quantile(male1$Beats)
## 0% 25% 50% 75% 100%
## 58 70 73 78 86
qqnorm(male1$Beats)
hist(male1$Beats, main = "Heart rate of males", xlab = "heart rates", col = "Blue")
In the histogram, the male heart rates form a roughly normal distribution centered around 70–75 bpm, with most values between 65–80 bpm and only a few at the extremes (about 55 or 85–90 bpm).
female1<-vec1[vec1$Sex==2,]
female1
## Temp Sex Beats
## 66 96.4 2 69
## 67 96.7 2 62
## 68 96.8 2 75
## 69 97.2 2 66
## 70 97.2 2 68
## 71 97.4 2 57
## 72 97.6 2 61
## 73 97.7 2 84
## 74 97.7 2 61
## 75 97.8 2 77
## 76 97.8 2 62
## 77 97.8 2 71
## 78 97.9 2 68
## 79 97.9 2 69
## 80 97.9 2 79
## 81 98.0 2 76
## 82 98.0 2 87
## 83 98.0 2 78
## 84 98.0 2 73
## 85 98.0 2 89
## 86 98.1 2 81
## 87 98.2 2 73
## 88 98.2 2 64
## 89 98.2 2 65
## 90 98.2 2 73
## 91 98.2 2 69
## 92 98.2 2 57
## 93 98.3 2 79
## 94 98.3 2 78
## 95 98.3 2 80
## 96 98.4 2 79
## 97 98.4 2 81
## 98 98.4 2 73
## 99 98.4 2 74
## 100 98.4 2 84
## 101 98.5 2 83
## 102 98.6 2 82
## 103 98.6 2 85
## 104 98.6 2 86
## 105 98.6 2 77
## 106 98.7 2 72
## 107 98.7 2 79
## 108 98.7 2 59
## 109 98.7 2 64
## 110 98.7 2 65
## 111 98.7 2 82
## 112 98.8 2 64
## 113 98.8 2 70
## 114 98.8 2 83
## 115 98.8 2 89
## 116 98.8 2 69
## 117 98.8 2 73
## 118 98.8 2 84
## 119 98.9 2 76
## 120 99.0 2 79
## 121 99.0 2 81
## 122 99.1 2 80
## 123 99.1 2 74
## 124 99.2 2 77
## 125 99.2 2 66
## 126 99.3 2 68
## 127 99.4 2 77
## 128 99.9 2 79
## 129 100.0 2 78
## 130 100.8 2 77
min(female1$Beats)
## [1] 57
max(female1$Beats)
## [1] 89
mean(female1$Beats)
## [1] 74.15385
median(female1$Beats)
## [1] 76
sd(female1$Beats)
## [1] 8.105227
quantile(female1$Beats)
## 0% 25% 50% 75% 100%
## 57 68 76 80 89
qqnorm(female1$Beats)
hist(female1$Beats, main = "Heart rate of females", xlab = "heart rates", col = "Pink")
In the Normal Q-Q plot, there are no outliers, and the data shows almost exactly what is seen int he histogram.
boxplot(male1$Beats,female1$Beats,names = c("Males", "Females"), main = "Boxplot of Males and Females", ylab = "Heart rates")
This boxplot of Males and Females, shows that females generally have slightly higher and more variable heart rates than males, whose heart rates are lower and more tightly clustered.
vec1<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/normtemp.csv")
vec1
male1<-vec1[vec1$Sex==1,]
male1
min(male1$Beats)
max(male1$Beats)
mean(male1$Beats)
median(male1$Beats)
sd(male1$Beats)
quantile(male1$Beats)
qqnorm(male1$Beats)
hist(male1$Beats, main = "Heart rate of males", xlab = "heart rates", col = "Blue")
female1<-vec1[vec1$Sex==2,]
female1
min(female1$Beats)
max(female1$Beats)
mean(female1$Beats)
median(female1$Beats)
sd(female1$Beats)
quantile(female1$Beats)
qqnorm(female1$Beats)
hist(female1$Beats, main = "Heart rate of females", xlab = "heart rates", col = "Pink")
boxplot(male1$Beats,female1$Beats,names = c("Males", "Females"), main = "Boxplot of Males and Females", ylab = "Heart rates")
Males receive a median value of 73, while females receive a median value of 76, hence, it can be observed that the median value of males is lower than the median value of females.
Mean for males is 1.05 percent lower than the mean for females.
In this case, standard deviation for females is 31.9 % greater than the standard deviation for males. This indicates that the data for females is more variable.