# Load required packages
library(tidyverse)
library(lubridate)
# Read data
data <- read.csv("C:\\Users\\Troy\\OneDrive\\Desktop\\pred_anal\\EIA_ng_ts.csv")
# Convert Date to Date format and extract Month and Year
data <- data %>%
mutate(Date = as.Date(Date, format = "%m/%d/%Y"),
Month = as.factor(month(Date)),
Year = year(Date))
# Rename consumption column
colnames(data)[2] <- "Consumption"
head (data) Date Consumption Month Year
1 1973-01-15 843900 1 1973
2 1973-02-15 747331 2 1973
3 1973-03-15 648504 3 1973
4 1973-04-15 465867 4 1973
5 1973-05-15 326313 5 1973
6 1973-06-15 207172 6 1973