Motion Analysis only

suppressPackageStartupMessages({
  library(tidyverse)
  library(readr)
  library(lme4)
  library(lmerTest)
  library(emmeans)
  library(dplyr)
  library(tidyr)
  library(ggplot2)
  library(patchwork) 
  library(car)       # Type II/III ANOVA
})

# Lighter-weight df method for emmeans on lmer (avoids huge memory from KR/Satt)
emm_options(lmer.df = "asymptotic")


options(
  dplyr.summarise.inform = FALSE,
  contrasts = c("contr.sum", "contr.poly")
)

# Axis labels helper
axis_labels <- c(x = "X", y = "Y", z = "Z")


data_dir <- "/Users/can/Documents/Uni/Thesis/Data/...v/merged/Cleaned"

# Step counts per block (nominal)
step_counts <- tibble(
  Block = c(1, 2, 3, 4, 5),
  Steps = c(6, 12, 18, 18, 18)
)

# binary Accuracy factor from trial.acc (1 -> 1, else -> 0)
mk_accuracy <- function(df) {
  df %>% mutate(Accuracy = factor(if_else(trial.acc == 1, 1L, 0L), levels = c(0, 1)))
}


normalize_ids <- function(df) {
  df %>%
    mutate(
      subject = if ("subject" %in% names(.)) subject else Subject,
      Block   = as.integer(Block),
      trial   = if ("trial" %in% names(.)) trial else Trial
    ) %>%
    mutate(trial_id = interaction(subject, Block, trial, drop = TRUE))
}


assign_steps_by_block <- function(df, steps_df = step_counts) {
  df %>%
    inner_join(steps_df, by = "Block") %>%
    group_by(subject, Block, trial) %>%
    mutate(Step = cut_number(row_number(), n = unique(Steps), labels = FALSE)) %>%
    ungroup()
}

# Tag trial phases using Marker.Text: start (27), end (26 or 25). Preparation = 1500 ms pre-start
# Requires columns: subject, Block, trial, ms, Marker.Text
tag_trial_phases <- function(df) {
  df %>%
    group_by(subject, Block, trial) %>%
    mutate(
      start_ms = ms[which(Marker.Text == 27)[1]],
      end_ms = {
        end_candidates <- which(Marker.Text %in% c(26, 25))
        if (length(end_candidates) > 0) ms[end_candidates[1]] else NA_real_
      },
      phase = case_when(
        !is.na(start_ms) & !is.na(end_ms) & ms >= start_ms & ms <= end_ms ~ "Execution",
        !is.na(start_ms) & ms >= (start_ms - 1500) & ms < start_ms ~ "Preparation",
        TRUE ~ NA_character_
      )
    ) %>%
    ungroup() %>%
    filter(!is.na(phase))
}

# Compute RMS per phase (Preparation / Execution) per subject × Block × trial
compute_phase_rms <- function(df) {
  df %>%
    group_by(subject, Block, trial, phase) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    )
}

# Detect per-step onsets (Marker.Text in {14,15,16,17}) and compute 7-sample window RMS (±3)
# Returns one row per detected step onset per trial with RMS per axis
compute_stepwise_rms <- function(tagged_exec_df, max_steps_keep = 18) {
  step_markers <- c(14L, 15L, 16L, 17L)

  # Keep only execution rows
  exec <- tagged_exec_df %>% filter(phase == "Execution") %>% arrange(subject, Block, trial, ms)

  # Detect step onset rows within each trial
  exec_mark <- exec %>%
    group_by(subject, Block, trial) %>%
    mutate(
      in_step = Marker.Text %in% step_markers,
      onset   = in_step & (is.na(lag(in_step)) | !lag(in_step) | (Marker.Text != lag(Marker.Text)))
    ) %>%
    filter(onset) %>%
    mutate(step_index = row_number()) %>%
    ungroup()

  # If there are no onsets, return empty tibble
  if (nrow(exec_mark) == 0) return(tibble())

  # Per-trial total step count
  step_counts_lookup <- exec_mark %>%
    group_by(subject, Block, trial) %>%
    summarise(step_count = max(step_index), .groups = "drop")

  # Join row indices to full exec to build windows
  exec_with_row <- exec %>% group_by(subject, Block, trial) %>% mutate(row_id = row_number()) %>% ungroup()
  onset_idx <- exec_mark %>% select(subject, Block, trial, ms, step_index) %>%
    left_join(exec_with_row %>% select(subject, Block, trial, ms, row_id), by = c("subject", "Block", "trial", "ms"))

  # Build ±3 row windows around each onset row and compute RMS
  win <- purrr::map_dfr(seq_len(nrow(onset_idx)), function(i) {
    r <- onset_idx$row_id[i]
    s <- onset_idx$step_index[i]
    grp <- onset_idx[i, c("subject", "Block", "trial")]

    tmp <- exec_with_row %>%
      dplyr::semi_join(grp, by = c("subject", "Block", "trial")) %>%
      dplyr::filter(row_id >= (r - 3), row_id <= (r + 3))

    if (nrow(tmp) == 0) return(NULL)

    tibble(
      subject = grp$subject, Block = grp$Block, trial = grp$trial,
      Step = s,
      RMS = c(
        sqrt(mean(tmp$CoM.acc.x^2, na.rm = TRUE)),
        sqrt(mean(tmp$CoM.acc.y^2, na.rm = TRUE)),
        sqrt(mean(tmp$CoM.acc.z^2, na.rm = TRUE))
      ),
      Axis = factor(c("x", "y", "z"), levels = c("x", "y", "z"))
    )
  })

  # Keep first N steps per trial and add step_count
  win %>%
    group_by(subject, Block, trial) %>%
    filter(Step <= max_steps_keep) %>%
    ungroup() %>%
    left_join(step_counts_lookup, by = c("subject", "Block", "trial"))
}

# Join trial-level Accuracy to a summary table (by subject × Block × trial)
add_accuracy_to <- function(df_core, df_lookup) {
  # Build accuracy lookup with consistent key types (character) to avoid factor/int join issues
  acc_tbl <- df_lookup %>%
    distinct(subject, Block, trial, trial.acc) %>%
    mk_accuracy() %>%
    transmute(
      subject = as.character(subject),
      Block   = as.character(Block),
      trial   = as.character(trial),
      Accuracy
    )

  df_core %>%
    mutate(
      subject = as.character(subject),
      Block   = as.character(Block),
      trial   = as.character(trial)
    ) %>%
    left_join(acc_tbl, by = c("subject", "Block", "trial")) %>%
    # Convert Block/trial back to numeric where appropriate
    mutate(
      Block = type.convert(Block, as.is = TRUE),
      trial = type.convert(trial, as.is = TRUE)
    )
}

# Generic LMM runner for phase × block per axis
run_phase_block_models <- function(rms_combined) {
  for (axis in c("x", "y", "z")) {
    cat("

=============================
")
    cat(paste("Axis:", toupper(axis), "
"))
    cat("=============================
")

    axis_col <- paste0("rms_", axis)

    # Trim to needed columns to reduce memory footprint
    df_axis <- rms_combined %>%
      dplyr::select(subject, Block, Trial, phase, Accuracy, !!sym(axis_col)) %>%
      droplevels()

    fml <- as.formula(paste(axis_col, "~ Block * phase + Accuracy + (1 | subject) + (1 | Trial)"))

    model <- lmer(fml, data = df_axis)
    cat("
Model Summary:
"); print(summary(model))

    emms <- emmeans(model, ~ Block * phase)
    cat("
Estimated Marginal Means (df=asymptotic):
"); print(summary(emms))

    cat("
Type II ANOVA (Chisq):
"); print(car::Anova(model, type = 2, test.statistic = "Chisq"))

    cat("
Pairwise (within phase; Tukey):
")
    pw <- contrast(emms, interaction = c("revpairwise"), by = "phase", adjust = "tukey")
    print(pw)

    rm(model, emms, df_axis); gc()
  }
}


# Generic LMM runner for stepwise RMS per block/axis with Accuracy
run_step_models <- function(step_df, block, n_steps) {
  d <- step_df %>% filter(Block == block, Step <= n_steps)
  for (ax in c("x", "y", "z")) {
    dd <- d %>% filter(Axis == ax)
    if (nrow(dd) == 0) next
    cat("\n\n--- Block", block, "Axis", toupper(ax), "---\n")
    m <- lmer(RMS ~ Step + Accuracy + (1 | subject) + (1 | trial_id), data = dd)
    print(car::Anova(m, type = 2, test.statistic = "Chisq"))
    e <- emmeans(m, ~ Step)
    cat("Estimated Marginal Means:\n"); print(summary(e))
    cat("Pairwise (Tukey):\n"); print(contrast(e, method = "pairwise", adjust = "tukey"))
  }
}

# Simple bar plot function: mean ± SE by Step × Block, faceted by Axis
plot_step_bars <- function(step_df, title_prefix = "") {
  se <- function(x) sd(x, na.rm = TRUE) / sqrt(sum(!is.na(x)))
  sum_df <- step_df %>% group_by(Block, Step, Axis) %>% summarise(mean_RMS = mean(RMS, na.rm = TRUE), se_RMS = se(RMS), .groups = "drop")
  ggplot(sum_df, aes(x = Step, y = mean_RMS, fill = factor(Block))) +
    geom_col(position = position_dodge(width = 0.8)) +
    geom_errorbar(aes(ymin = mean_RMS - se_RMS, ymax = mean_RMS + se_RMS), width = 0.2, position = position_dodge(width = 0.8)) +
    facet_wrap(~ Axis, nrow = 1, labeller = as_labeller(axis_labels)) +
    labs(title = paste0(title_prefix, " Step-wise RMS (mean ± SE)"), x = "Step", y = "RMS") +
    theme_minimal()
}
# Gather mixed files
mixed_files <- list.files("/Users/can/Documents/Uni/Thesis/Data/Xsens/cleaned_csv/merged/Cleaned", pattern = "_final\\.csv$", full.names = TRUE)
all_data_mixed <- map_dfr(mixed_files, read_csv)
Rows: 360534 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 379431 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 340045 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 342328 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 386760 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 355905 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 336982 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 434486 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 441207 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 368716 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 487396 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 435226 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 324591 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 372054 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 392294 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 412795 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 356869 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 350365 Columns: 21
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (21): Frame, CoM.pos.x, CoM.pos.y, CoM.pos.z, CoM.vel.x, CoM.vel.y, CoM....

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Merge
all_data_mixed <- map_dfr(mixed_files, read_csv, show_col_types = FALSE) %>% normalize_ids() %>% mk_accuracy()

# Trial phases once
tagged_data  <- tag_trial_phases(all_data_mixed) %>% mutate(DataType = "Mixed")
tagged_data2 <- tagged_data
#Build step-wise table  

# Helper: robust step-onset finder for Execution phase (uses Marker.Text)

.build_exec_step_onsets <- function(df) {
  exec <- df %>% dplyr::filter(phase == "Execution")

  exec_step <- exec %>%
    dplyr::filter(
      !is.na(Marker.Text),
      suppressWarnings(!is.na(as.integer(Marker.Text))),
      as.integer(Marker.Text) >= 1,
      as.integer(Marker.Text) <= 18
    ) %>%
    dplyr::mutate(
      Step = as.integer(Marker.Text),
      # create trial_id if missing
      trial_id = if ("trial_id" %in% names(.)) trial_id else interaction(subject, Block, trial, drop = TRUE)
    ) %>%
    # NOTE: do NOT select `Trial` (capital T); your data has `trial` (lowercase)
    dplyr::select(subject, Block, trial, phase, ms, Step, trial_id)

  exec_step
}


.assign_exec_steps_evenly <- function(df) {
  df %>%
    dplyr::filter(phase == "Execution") %>%
    assign_steps_by_block() %>%  # uses your existing helper + step_counts
    dplyr::mutate(
      trial_id = if ("trial_id" %in% names(.)) trial_id else interaction(subject, Block, trial, drop = TRUE)
    ) %>%
    dplyr::select(subject, Block, trial, phase, ms, Step, trial_id)
}

# Try onsets first, else fallback
sw_all <- .build_exec_step_onsets(tagged_data)
if (nrow(sw_all) == 0) {
  message("No explicit step-onset markers found; assigning steps evenly within trials.")
  sw_all <- .assign_exec_steps_evenly(tagged_data)
}

# Per-trial step count (for mixed lengths in Blocks 4–5)
sw_all <- sw_all %>%
  dplyr::group_by(subject, Block, trial) %>%
  dplyr::mutate(step_count = max(Step, na.rm = TRUE)) %>%
  dplyr::ungroup()


sw_all <- sw_all %>%
  dplyr::select(subject, Block, trial, phase, Step, step_count, trial_id)

data preprocessing and creating models

trial_acc_summary <- tagged_data %>%
  select(subject, Block, trial, trial.acc) %>%
  distinct() %>%
  filter(trial.acc == 1) %>%
  group_by(subject, Block) %>%
  summarise(n_trials_with_acc1 = n(), .groups = "drop") %>%
  group_by(Block) %>%
  summarise(
    mean_trials_with_acc1 = mean(n_trials_with_acc1),
    sd_trials_with_acc1   = sd(n_trials_with_acc1),
    n_subjects            = n()
  )
print(trial_acc_summary)
# A tibble: 5 × 4
  Block mean_trials_with_acc1 sd_trials_with_acc1 n_subjects
  <int>                 <dbl>               <dbl>      <int>
1     1                  40.2                3.13         18
2     2                  34.2                7.19         18
3     3                  27.8                9.85         18
4     4                  39.2                4.51         18
5     5                  28.9               10.0          18
# Phase RMS
rms_data <- compute_phase_rms(tagged_data)
exec_data <- rms_data %>% filter(phase == "Execution")

for (axis in c("x", "y", "z")) {
  axis_col <- paste0("rms_", axis)
  print(
    ggplot(exec_data, aes(x = factor(Block), y = .data[[axis_col]], fill = phase)) +
      geom_boxplot(alpha = 0.7, outlier.shape = NA) +
      geom_jitter(width = 0.2, alpha = 0.4, size = 0.6) +
      geom_vline(xintercept = 3.5, linetype = "dashed") +
      coord_cartesian(ylim = c(0, 2.5)) +
      labs(title = paste("Execution Phase:", toupper(axis), "Axis"), x = "Block", y = "RMS") +
      theme_minimal()
  )
}

prep_data <- tagged_data %>% filter(phase == "Preparation")
prep_rms <- compute_phase_rms(prep_data)

for (axis in c("x", "y", "z")) {
  axis_col <- paste0("rms_", axis)
  print(
    ggplot(prep_rms, aes(x = factor(Block), y = .data[[axis_col]], fill = phase)) +
      geom_boxplot(alpha = 0.7, outlier.shape = NA) +
      geom_jitter(width = 0.2, alpha = 0.4, size = 0.6) +
      geom_vline(xintercept = 3.5, linetype = "dashed") +
      coord_cartesian(ylim = c(0, 0.5)) +
      labs(title = paste("Preparation Phase:", toupper(axis), "Axis"), x = "Block", y = "RMS") +
      theme_minimal()
  )
}

# Combine prep + exec, join trial Accuracy, then model per axis
rms_combined <- bind_rows(prep_rms, exec_data) %>%
  # Join Accuracy before converting key columns to factors
  add_accuracy_to(all_data_mixed) %>%
  mutate(
    phase = factor(phase, levels = c("Preparation", "Execution")),
    Block = factor(Block),
    Trial = factor(trial)
  )
Warning in left_join(., acc_tbl, by = c("subject", "Block", "trial")): Detected an unexpected many-to-many relationship between `x` and `y`.
ℹ Row 1 of `x` matches multiple rows in `y`.
ℹ Row 3021 of `y` matches multiple rows in `x`.
ℹ If a many-to-many relationship is expected, set `relationship =
  "many-to-many"` to silence this warning.
run_phase_block_models(rms_combined)


=============================
Axis: X 
=============================

Model Summary:
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: fml
   Data: df_axis

REML criterion at convergence: 1156.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2686 -0.5173 -0.0979  0.3264  8.9700 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Trial    (Intercept) 0.0002199 0.01483 
 subject  (Intercept) 0.0170146 0.13044 
 Residual             0.0635587 0.25211 
Number of obs: 11552, groups:  Trial, 48; subject, 18

Fixed effects:
                Estimate Std. Error         df  t value Pr(>|t|)    
(Intercept)    4.028e-01  3.091e-02  1.718e+01   13.030 2.47e-10 ***
Block1         3.041e-02  5.062e-03  1.152e+04    6.007 1.95e-09 ***
Block2         1.660e-02  4.709e-03  1.150e+04    3.525 0.000426 ***
Block3        -2.104e-02  4.733e-03  1.147e+04   -4.446 8.84e-06 ***
Block4         2.224e-02  4.743e-03  1.150e+04    4.689 2.77e-06 ***
phase1        -2.881e-01  2.357e-03  1.149e+04 -122.230  < 2e-16 ***
Accuracy1     -1.782e-02  2.499e-03  1.086e+04   -7.132 1.05e-12 ***
Block1:phase1 -9.185e-02  4.974e-03  1.148e+04  -18.467  < 2e-16 ***
Block2:phase1 -1.717e-02  4.703e-03  1.147e+04   -3.651 0.000262 ***
Block3:phase1  6.341e-02  4.685e-03  1.147e+04   13.535  < 2e-16 ***
Block4:phase1 -1.417e-02  4.719e-03  1.147e+04   -3.003 0.002681 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) Block1 Block2 Block3 Block4 phase1 Accrc1 Blc1:1 Blc2:1
Block1       0.006                                                        
Block2       0.000 -0.268                                                 
Block3      -0.001 -0.285 -0.245                                          
Block4       0.001 -0.254 -0.248 -0.255                                   
phase1      -0.001 -0.013  0.002  0.003  0.003                            
Accuracy1    0.008  0.175 -0.001 -0.107  0.082 -0.005                     
Block1:phs1 -0.001 -0.033  0.009  0.009  0.008  0.072 -0.003              
Block2:phs1  0.000  0.009 -0.015  0.002  0.002 -0.002 -0.001 -0.272       
Block3:phs1  0.000  0.009  0.002 -0.014  0.002 -0.008  0.001 -0.271 -0.247
Block4:phs1  0.000  0.009  0.002  0.001 -0.012  0.002  0.003 -0.273 -0.250
            Blc3:1
Block1            
Block2            
Block3            
Block4            
phase1            
Accuracy1         
Block1:phs1       
Block2:phs1       
Block3:phs1       
Block4:phs1 -0.248

Estimated Marginal Means (df=asymptotic):
 Block phase       emmean     SE  df asymp.LCL asymp.UCL
 1     Preparation 0.0533 0.0318 Inf  -0.00911     0.116
 2     Preparation 0.1141 0.0317 Inf   0.05201     0.176
 3     Preparation 0.1571 0.0317 Inf   0.09496     0.219
 4     Preparation 0.1228 0.0317 Inf   0.06062     0.185
 5     Preparation 0.1263 0.0316 Inf   0.06436     0.188
 1     Execution   0.8131 0.0319 Inf   0.75060     0.876
 2     Execution   0.7246 0.0317 Inf   0.66248     0.787
 3     Execution   0.6064 0.0317 Inf   0.54426     0.669
 4     Execution   0.7273 0.0317 Inf   0.66510     0.789
 5     Execution   0.5829 0.0316 Inf   0.52094     0.645

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Type II ANOVA (Chisq):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_x
                Chisq Df Pr(>Chisq)    
Block         148.880  4  < 2.2e-16 ***
phase       14600.810  1  < 2.2e-16 ***
Accuracy       50.864  1  9.897e-13 ***
Block:phase   574.253  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise (within phase; Tukey):
phase = Preparation:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1              0.06087 0.0108 Inf   5.628  <.0001
 3 - 1              0.10381 0.0109 Inf   9.564  <.0001
 3 - 2              0.04295 0.0104 Inf   4.114  0.0004
 4 - 1              0.06951 0.0108 Inf   6.423  <.0001
 4 - 2              0.00865 0.0105 Inf   0.825  0.9231
 4 - 3             -0.03430 0.0105 Inf  -3.267  0.0096
 5 - 1              0.07301 0.0106 Inf   6.905  <.0001
 5 - 2              0.01214 0.0101 Inf   1.198  0.7524
 5 - 3             -0.03081 0.0101 Inf  -3.053  0.0192
 5 - 4              0.00349 0.0102 Inf   0.343  0.9970

phase = Execution:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1             -0.08848 0.0111 Inf  -7.966  <.0001
 3 - 1             -0.20671 0.0111 Inf -18.548  <.0001
 3 - 2             -0.11822 0.0106 Inf -11.174  <.0001
 4 - 1             -0.08584 0.0111 Inf  -7.733  <.0001
 4 - 2              0.00264 0.0106 Inf   0.249  0.9992
 4 - 3              0.12087 0.0106 Inf  11.377  <.0001
 5 - 1             -0.23025 0.0109 Inf -21.217  <.0001
 5 - 2             -0.14176 0.0103 Inf -13.821  <.0001
 5 - 3             -0.02354 0.0102 Inf  -2.305  0.1431
 5 - 4             -0.14441 0.0103 Inf -14.007  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 5 estimates 


=============================
Axis: Y 
=============================

Model Summary:
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: fml
   Data: df_axis

REML criterion at convergence: 4871.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.7322 -0.5187 -0.0835  0.3331 23.4331 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Trial    (Intercept) 0.0001537 0.0124  
 subject  (Intercept) 0.0214834 0.1466  
 Residual             0.0877958 0.2963  
Number of obs: 11552, groups:  Trial, 48; subject, 18

Fixed effects:
                Estimate Std. Error         df  t value Pr(>|t|)    
(Intercept)    4.218e-01  3.471e-02  1.710e+01   12.152 7.70e-10 ***
Block1         3.571e-02  5.948e-03  1.152e+04    6.005 1.97e-09 ***
Block2         2.512e-02  5.534e-03  1.151e+04    4.539 5.70e-06 ***
Block3        -2.054e-02  5.556e-03  1.142e+04   -3.697 0.000219 ***
Block4         1.555e-02  5.574e-03  1.151e+04    2.789 0.005290 ** 
phase1        -3.046e-01  2.770e-03  1.150e+04 -109.975  < 2e-16 ***
Accuracy1     -1.736e-02  2.929e-03  1.044e+04   -5.925 3.22e-09 ***
Block1:phase1 -9.992e-02  5.845e-03  1.148e+04  -17.094  < 2e-16 ***
Block2:phase1 -1.923e-02  5.528e-03  1.147e+04   -3.480 0.000504 ***
Block3:phase1  7.315e-02  5.506e-03  1.148e+04   13.284  < 2e-16 ***
Block4:phase1 -1.343e-02  5.547e-03  1.147e+04   -2.422 0.015466 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) Block1 Block2 Block3 Block4 phase1 Accrc1 Blc1:1 Blc2:1
Block1       0.007                                                        
Block2       0.000 -0.268                                                 
Block3      -0.001 -0.285 -0.245                                          
Block4       0.001 -0.254 -0.248 -0.255                                   
phase1      -0.002 -0.013  0.002  0.003  0.003                            
Accuracy1    0.008  0.175 -0.001 -0.108  0.082 -0.006                     
Block1:phs1 -0.001 -0.033  0.009  0.009  0.008  0.072 -0.004              
Block2:phs1  0.000  0.009 -0.015  0.002  0.002 -0.002 -0.001 -0.272       
Block3:phs1  0.000  0.009  0.002 -0.014  0.002 -0.008  0.001 -0.271 -0.247
Block4:phs1  0.000  0.009  0.002  0.001 -0.012  0.002  0.003 -0.273 -0.250
            Blc3:1
Block1            
Block2            
Block3            
Block4            
phase1            
Accuracy1         
Block1:phs1       
Block2:phs1       
Block3:phs1       
Block4:phs1 -0.248

Estimated Marginal Means (df=asymptotic):
 Block phase       emmean     SE  df asymp.LCL asymp.UCL
 1     Preparation  0.053 0.0358 Inf   -0.0173     0.123
 2     Preparation  0.123 0.0357 Inf    0.0531     0.193
 3     Preparation  0.170 0.0357 Inf    0.0999     0.240
 4     Preparation  0.119 0.0357 Inf    0.0493     0.189
 5     Preparation  0.121 0.0355 Inf    0.0511     0.190
 1     Execution    0.862 0.0359 Inf    0.7916     0.932
 2     Execution    0.771 0.0357 Inf    0.7007     0.841
 3     Execution    0.633 0.0357 Inf    0.5627     0.703
 4     Execution    0.755 0.0357 Inf    0.6853     0.825
 5     Execution    0.611 0.0356 Inf    0.5414     0.681

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Type II ANOVA (Chisq):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_y
                Chisq Df Pr(>Chisq)    
Block         138.607  4  < 2.2e-16 ***
phase       11822.323  1  < 2.2e-16 ***
Accuracy       35.108  1   3.12e-09 ***
Block:phase   485.928  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise (within phase; Tukey):
phase = Preparation:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1              0.07009 0.0127 Inf   5.515  <.0001
 3 - 1              0.11681 0.0128 Inf   9.161  <.0001
 3 - 2              0.04672 0.0123 Inf   3.810  0.0013
 4 - 1              0.06632 0.0127 Inf   5.215  <.0001
 4 - 2             -0.00377 0.0123 Inf  -0.306  0.9981
 4 - 3             -0.05049 0.0123 Inf  -4.093  0.0004
 5 - 1              0.06780 0.0124 Inf   5.457  <.0001
 5 - 2             -0.00229 0.0119 Inf  -0.192  0.9997
 5 - 3             -0.04901 0.0119 Inf  -4.134  0.0003
 5 - 4              0.00148 0.0120 Inf   0.124  0.9999

phase = Execution:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1             -0.09128 0.0131 Inf  -6.992  <.0001
 3 - 1             -0.22932 0.0131 Inf -17.516  <.0001
 3 - 2             -0.13804 0.0124 Inf -11.105  <.0001
 4 - 1             -0.10665 0.0130 Inf  -8.176  <.0001
 4 - 2             -0.01537 0.0125 Inf  -1.233  0.7321
 4 - 3              0.12266 0.0125 Inf   9.828  <.0001
 5 - 1             -0.25091 0.0128 Inf -19.675  <.0001
 5 - 2             -0.15964 0.0121 Inf -13.243  <.0001
 5 - 3             -0.02160 0.0120 Inf  -1.800  0.3734
 5 - 4             -0.14426 0.0121 Inf -11.907  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 5 estimates 


=============================
Axis: Z 
=============================

Model Summary:
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: fml
   Data: df_axis

REML criterion at convergence: 16049.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.8020 -0.5578 -0.1423  0.3881 11.5638 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.000956 0.03092 
 subject  (Intercept) 0.061226 0.24744 
 Residual             0.230927 0.48055 
Number of obs: 11552, groups:  Trial, 48; subject, 18

Fixed effects:
                Estimate Std. Error         df  t value Pr(>|t|)    
(Intercept)    6.666e-01  5.867e-02  1.721e+01   11.362 2.01e-09 ***
Block1         2.016e-02  9.651e-03  1.152e+04    2.089  0.03674 *  
Block2         3.803e-02  8.977e-03  1.150e+04    4.237 2.29e-05 ***
Block3        -1.560e-02  9.024e-03  1.148e+04   -1.729  0.08389 .  
Block4         3.704e-02  9.042e-03  1.150e+04    4.097 4.22e-05 ***
phase1        -5.173e-01  4.493e-03  1.149e+04 -115.147  < 2e-16 ***
Accuracy1     -3.789e-02  4.767e-03  1.099e+04   -7.947 2.09e-15 ***
Block1:phase1 -1.277e-01  9.481e-03  1.148e+04  -13.470  < 2e-16 ***
Block2:phase1 -2.512e-02  8.965e-03  1.147e+04   -2.802  0.00509 ** 
Block3:phase1  1.002e-01  8.930e-03  1.147e+04   11.217  < 2e-16 ***
Block4:phase1 -3.600e-02  8.996e-03  1.147e+04   -4.002 6.31e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) Block1 Block2 Block3 Block4 phase1 Accrc1 Blc1:1 Blc2:1
Block1       0.006                                                        
Block2       0.000 -0.268                                                 
Block3      -0.001 -0.285 -0.245                                          
Block4       0.001 -0.254 -0.248 -0.255                                   
phase1      -0.001 -0.013  0.002  0.003  0.003                            
Accuracy1    0.008  0.175 -0.001 -0.107  0.081 -0.004                     
Block1:phs1 -0.001 -0.033  0.009  0.009  0.008  0.072 -0.003              
Block2:phs1  0.000  0.009 -0.015  0.002  0.002 -0.002 -0.001 -0.272       
Block3:phs1  0.000  0.009  0.002 -0.014  0.002 -0.008  0.001 -0.271 -0.247
Block4:phs1  0.000  0.009  0.002  0.001 -0.012  0.002  0.003 -0.273 -0.250
            Blc3:1
Block1            
Block2            
Block3            
Block4            
phase1            
Accuracy1         
Block1:phs1       
Block2:phs1       
Block3:phs1       
Block4:phs1 -0.248

Estimated Marginal Means (df=asymptotic):
 Block phase       emmean     SE  df asymp.LCL asymp.UCL
 1     Preparation 0.0418 0.0604 Inf   -0.0766     0.160
 2     Preparation 0.1622 0.0602 Inf    0.0443     0.280
 3     Preparation 0.2339 0.0602 Inf    0.1160     0.352
 4     Preparation 0.1504 0.0602 Inf    0.0324     0.268
 5     Preparation 0.1583 0.0600 Inf    0.0408     0.276
 1     Execution   1.3318 0.0606 Inf    1.2131     1.451
 2     Execution   1.2471 0.0602 Inf    1.1291     1.365
 3     Execution   1.0682 0.0602 Inf    0.9502     1.186
 4     Execution   1.2570 0.0602 Inf    1.1390     1.375
 5     Execution   1.0157 0.0600 Inf    0.8981     1.133

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Type II ANOVA (Chisq):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_z
                Chisq Df Pr(>Chisq)    
Block          97.924  4  < 2.2e-16 ***
phase       13038.956  1  < 2.2e-16 ***
Accuracy       63.158  1  1.908e-15 ***
Block:phase   348.635  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise (within phase; Tukey):
phase = Preparation:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1              0.12046 0.0206 Inf   5.843  <.0001
 3 - 1              0.19211 0.0207 Inf   9.284  <.0001
 3 - 2              0.07166 0.0199 Inf   3.601  0.0029
 4 - 1              0.10858 0.0206 Inf   5.263  <.0001
 4 - 2             -0.01188 0.0200 Inf  -0.594  0.9760
 4 - 3             -0.08353 0.0200 Inf  -4.173  0.0003
 5 - 1              0.11655 0.0202 Inf   5.783  <.0001
 5 - 2             -0.00391 0.0193 Inf  -0.202  0.9996
 5 - 3             -0.07556 0.0192 Inf  -3.928  0.0008
 5 - 4              0.00797 0.0195 Inf   0.410  0.9941

phase = Execution:
 Block_revpairwise estimate     SE  df z.ratio p.value
 2 - 1             -0.08471 0.0212 Inf  -4.001  0.0006
 3 - 1             -0.26363 0.0212 Inf -12.409  <.0001
 3 - 2             -0.17892 0.0202 Inf  -8.871  <.0001
 4 - 1             -0.07481 0.0212 Inf  -3.536  0.0037
 4 - 2              0.00990 0.0202 Inf   0.489  0.9884
 4 - 3              0.18882 0.0203 Inf   9.323  <.0001
 5 - 1             -0.31614 0.0207 Inf -15.283  <.0001
 5 - 2             -0.23143 0.0196 Inf -11.837  <.0001
 5 - 3             -0.05251 0.0195 Inf  -2.698  0.0543
 5 - 4             -0.24133 0.0197 Inf -12.281  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 5 estimates 
# Descriptive means/SDs by phase × block
rms_summary_blockwise <- rms_combined %>%
  group_by(phase, Block) %>%
  summarise(
    mean_rms_x = mean(rms_x, na.rm = TRUE), sd_rms_x = sd(rms_x, na.rm = TRUE),
    mean_rms_y = mean(rms_y, na.rm = TRUE), sd_rms_y = sd(rms_y, na.rm = TRUE),
    mean_rms_z = mean(rms_z, na.rm = TRUE), sd_rms_z = sd(rms_z, na.rm = TRUE),
    .groups = "drop"
  )
print(rbind(head(rms_summary_blockwise, 6)))
# A tibble: 6 × 8
  phase       Block mean_rms_x sd_rms_x mean_rms_y sd_rms_y mean_rms_z sd_rms_z
  <fct>       <fct>      <dbl>    <dbl>      <dbl>    <dbl>      <dbl>    <dbl>
1 Preparation 1         0.0642   0.0635     0.0635   0.0634     0.0616   0.0918
2 Preparation 2         0.117    0.266      0.125    0.302      0.167    0.493 
3 Preparation 3         0.150    0.241      0.161    0.269      0.220    0.456 
4 Preparation 4         0.127    0.223      0.121    0.220      0.160    0.376 
5 Preparation 5         0.119    0.172      0.113    0.163      0.145    0.302 
6 Execution   1         0.822    0.399      0.870    0.502      1.35     0.770 
# Collapsed across blocks (phase only)
rms_summary_phaseonly <- rms_combined %>%
  group_by(phase) %>%
  summarise(
    mean_rms_x = mean(rms_x, na.rm = TRUE), sd_rms_x = sd(rms_x, na.rm = TRUE),
    mean_rms_y = mean(rms_y, na.rm = TRUE), sd_rms_y = sd(rms_y, na.rm = TRUE),
    mean_rms_z = mean(rms_z, na.rm = TRUE), sd_rms_z = sd(rms_z, na.rm = TRUE),
    .groups = "drop"
  )
print(rms_summary_phaseonly)
# A tibble: 2 × 7
  phase       mean_rms_x sd_rms_x mean_rms_y sd_rms_y mean_rms_z sd_rms_z
  <fct>            <dbl>    <dbl>      <dbl>    <dbl>      <dbl>    <dbl>
1 Preparation      0.117    0.209      0.118    0.223      0.153    0.377
2 Execution        0.684    0.357      0.718    0.425      1.17     0.683
# Build a per-trial sequence length lookup from step-wise data if available; otherwise fall back to NA
if (exists("sw_all")) {
  seq_lookup <- sw_all %>%
    dplyr::filter(Block %in% c(4, 5) | Block %in% c("4","5")) %>%
    dplyr::group_by(subject, Block, trial) %>%
    dplyr::summarise(step_count = max(Step, na.rm = TRUE), .groups = "drop") %>%
    dplyr::mutate(
      SeqLen = dplyr::case_when(
        step_count == 6  ~ "6-step",
        step_count == 12 ~ "12-step",
        step_count == 18 ~ "18-step",
        TRUE ~ NA_character_
      )
    ) %>%
    dplyr::transmute(subject, Block, trial, SeqLen)
} else {
  
  seq_lookup <- rms_data %>%
    dplyr::filter(Block %in% c(4, 5) | Block %in% c("4","5")) %>%
    dplyr::distinct(subject, Block, trial) %>%
    dplyr::mutate(SeqLen = NA_character_)
}

prep_b45 <- rms_data %>%
  dplyr::filter(phase == "Preparation", Block %in% c(4, 5) | Block %in% c("4","5")) %>%
  dplyr::left_join(seq_lookup, by = c("subject","Block","trial")) %>%
  tidyr::pivot_longer(dplyr::starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
  dplyr::mutate(Axis = toupper(sub("^rms_", "", Axis)))

exec_b45 <- rms_data %>%
  dplyr::filter(phase == "Execution", Block %in% c(4, 5) | Block %in% c("4","5")) %>%
  dplyr::left_join(seq_lookup, by = c("subject","Block","trial")) %>%
  tidyr::pivot_longer(dplyr::starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
  dplyr::mutate(Axis = toupper(sub("^rms_", "", Axis)))

#1.1 Training phase comparison preparation and execution

# === TRAINING (Blocks 1–3) — Combined figure: Preparation (top) + Execution (bottom)
# Boxplots + jitter, no outliers, single X/Y/Z headers (top only), custom x labels


# Long-format data with Difficulty labels
exec_tr_long <- exec_data %>%
  dplyr::filter(Block %in% 1:3) %>%
  tidyr::pivot_longer(dplyr::starts_with("rms_"),
                      names_to = "Axis", values_to = "RMS") %>%
  dplyr::mutate(
    Axis       = toupper(sub("^rms_", "", Axis)),
    Difficulty = factor(Block, levels = c(1, 2, 3),
                        labels = c("6 steps", "12 steps", "18 steps"))
  )

prep_tr_long <- prep_rms %>%
  dplyr::filter(Block %in% 1:3) %>%
  tidyr::pivot_longer(dplyr::starts_with("rms_"),
                      names_to = "Axis", values_to = "RMS") %>%
  dplyr::mutate(
    Axis       = toupper(sub("^rms_", "", Axis)),
    Difficulty = factor(Block, levels = c(1, 2, 3),
                        labels = c("6 steps", "12 steps", "18 steps"))
  )

# Preparation (top) 
p_train_prep_box <- ggplot(prep_tr_long, aes(x = Difficulty, y = RMS, fill = Difficulty)) +
  geom_boxplot(width = 0.65, outlier.shape = NA) +
  geom_jitter(aes(color = Difficulty),
              width = 0.20, height = 0, size = 0.7, alpha = 0.35, shape = 16, stroke = 0) +
  facet_wrap(~ Axis, nrow = 1, strip.position = "top") +
  coord_cartesian(ylim = c(0, 0.4)) +
  labs(title = "Training Phase — Preparation",
       x = "Difficulty", y = "RMS") +
  theme_classic() +
  theme(strip.text.x = element_text(face = "bold")) +
  guides(fill = "none", color = "none")

# Execution (bottom) 
p_train_exec_box <- ggplot(exec_tr_long, aes(x = Difficulty, y = RMS, fill = Difficulty)) +
  geom_boxplot(width = 0.65, outlier.shape = NA) +
  geom_jitter(aes(color = Difficulty),
              width = 0.20, height = 0, size = 0.7, alpha = 0.35, shape = 16, stroke = 0) +
  facet_wrap(~ Axis, nrow = 1, strip.position = "top") +
  coord_cartesian(ylim = c(0, 2.5)) +
  labs(title = "Training Phase — Execution ",
       x = "Difficulty", y = "RMS") +
  theme_classic() +
  theme(strip.text.x = element_blank()) +
  guides(fill = "none", color = "none")

# Combine vertically
p_train_prep_box / p_train_exec_box

#1.2 Test phase comparison preparation and execution

# === TEST BLOCKS (4–5) 
# Preparation (top) + Execution (bottom), Condition = Familiar/Unfamiliar

library(dplyr)
library(tidyr)
library(ggplot2)
library(patchwork)

# Ensure Difficulty and Condition labels
prep_b45_plot <- prep_b45 %>%
  mutate(
    Difficulty = factor(SeqLen,
                        levels = c("6-step","12-step","18-step"),
                        labels = c("6 steps","12 steps","18 steps")),
    Condition  = factor(Block, levels = c("4","5"),
                        labels = c("Familiar","Unfamiliar"))
  )

exec_b45_plot <- exec_b45 %>%
  mutate(
    Difficulty = factor(SeqLen,
                        levels = c("6-step","12-step","18-step"),
                        labels = c("6 steps","12 steps","18 steps")),
    Condition  = factor(Block, levels = c("4","5"),
                        labels = c("Familiar","Unfamiliar"))
  )

dodge_w <- 0.65
jit_w   <- 0.15

# --- Preparation (top) ---
p_test_prep_combined <- ggplot(prep_b45_plot, aes(x = Difficulty, y = RMS, fill = Condition)) +
  geom_boxplot(outlier.shape = NA, width = 0.6,
               position = position_dodge(width = dodge_w)) +
  geom_point(aes(color = Condition),
             position = position_jitterdodge(jitter.width = jit_w, dodge.width = dodge_w),
             size = 0.6, alpha = 0.30, shape = 16, stroke = 0) +
  facet_wrap(~ Axis, nrow = 1, strip.position = "top") +
  coord_cartesian(ylim = c(0, 0.4)) +
  labs(title = "Preparation - Test Blocks (4–5)",
       x = "Difficulty", y = "RMS") +
  theme_classic() +
  theme(strip.text.x = element_text(face = "bold")) +
  scale_fill_manual(name = "Condition",
                    values = c(Familiar = "#F8766D", Unfamiliar = "#00BFC4")) +
  scale_color_manual(values = c(Familiar = "#F8766D", Unfamiliar = "#00BFC4"),
                     guide = "none")   # show only one legend (fill)

# --- Execution (bottom) ---
p_test_exec_combined <- ggplot(exec_b45_plot, aes(x = Difficulty, y = RMS, fill = Condition)) +
  geom_boxplot(outlier.shape = NA, width = 0.6,
               position = position_dodge(width = dodge_w)) +
  geom_point(aes(color = Condition),
             position = position_jitterdodge(jitter.width = jit_w, dodge.width = dodge_w),
             size = 0.6, alpha = 0.30, shape = 16, stroke = 0) +
  facet_wrap(~ Axis, nrow = 1, strip.position = "top") +
  coord_cartesian(ylim = c(0, 2.5)) +
  labs(title = "Execution",
       x = "Difficulty", y = "RMS") +
  theme_classic() +
  theme(strip.text.x = element_blank()) +   # X/Y/Z only on top row
  scale_fill_manual(name = "Condition",
                    values = c(Familiar = "#F8766D", Unfamiliar = "#00BFC4")) +
  scale_color_manual(values = c(Familiar = "#F8766D", Unfamiliar = "#00BFC4"),
                     guide = "none")   # keep one legend

# Combine vertically and show the legend at the bottom
(p_test_prep_combined / p_test_exec_combined) +
  plot_layout(guides = "collect") & theme(legend.position = "bottom")

# ==== #1.3 Complement: Pairwise Block comparisons matching the plots ====
# - TRAINING (Blocks 1–3): within-phase (Prep/Exec), per axis — Tukey among 1,2,3
# - TEST (Blocks 4–5): within-phase AND within SeqLen (6/12/18), per axis — Block 4 vs 5
# Model used in each subset: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)

suppressPackageStartupMessages({
  library(dplyr)
  library(lme4)
  library(emmeans)
})

emm_options(lmer.df = "asymptotic")

# -------- TRAINING: Blocks 1–3 (within-phase) --------
pairwise_training_blocks <- function(rms_combined) {
  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)

    # long-ish subset per phase
    for (ph in c("Preparation","Execution")) {
      d <- rms_combined %>%
        filter(phase == ph, Block %in% c("1","2","3")) %>%
        transmute(
          subject, Trial, phase,
          Block = factor(Block, levels = c("1","2","3")),
          Accuracy,
          RMS = .data[[axis_col]]
        ) %>%
        droplevels()

      if (nrow(d) == 0) next

      cat("\n\n====================\n",
          "TRAINING | Axis ", toupper(axis), " | Phase: ", ph,
          "\n====================\n", sep = "")

      m <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = d, REML = TRUE)

      em_blk <- emmeans(m, ~ Block)        # EMMs for Blocks 1–3 within this phase
      cat("\nEstimated Marginal Means (Blocks 1–3):\n")
      print(summary(em_blk))

      cat("\nPairwise (Tukey) among Blocks 1–3:\n")
      print(pairs(em_blk, adjust = "tukey"))

      rm(m, em_blk); invisible(gc())
    }
  }
}

# -------- TEST: Blocks 4–5 (within-phase AND within SeqLen) --------
pairwise_test_blocks_by_length <- function(rms_combined) {

  if (!exists("sw_all")) {
    stop("Test-phase length-specific comparisons require `sw_all` (from step-wise prep) to be available.")
  }

  # Build sequence-length lookup from sw_all (actual detected step_count per trial)
  seq_lookup <- sw_all %>%
    distinct(subject, Block, trial, step_count) %>%
    filter(Block %in% c(4,5)) %>%
    mutate(
      subject = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial),
      SeqLen = factor(paste0(step_count, " steps"),
                      levels = c("6 steps","12 steps","18 steps"))
    ) %>%
    select(subject, Block_chr, trial_chr, SeqLen)

  # Attach SeqLen to phase-level RMS for blocks 4–5
  rb45 <- rms_combined %>%
    filter(Block %in% c("4","5")) %>%
    mutate(
      subject = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial)
    ) %>%
    left_join(seq_lookup, by = c("subject","Block_chr","trial_chr")) %>%
    mutate(
      Block = factor(Block, levels = c("4","5")),
      SeqLen = droplevels(SeqLen)
    )

  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)

    for (ph in c("Preparation","Execution")) {
      for (sl in c("6 steps","12 steps","18 steps")) {

        dd <- rb45 %>%
          filter(phase == ph, SeqLen == sl) %>%
          transmute(
            subject, Trial, phase, SeqLen,
            Block, Accuracy,
            RMS = .data[[axis_col]]
          ) %>%
          droplevels()

        if (nrow(dd) == 0 || nlevels(dd$Block) < 2) next

        cat("\n\n--------------------\n",
            "TEST | Axis ", toupper(axis), " | Phase: ", ph, " | SeqLen: ", sl,
            "\n--------------------\n", sep = "")

        m <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = dd, REML = TRUE)

        em_blk <- emmeans(m, ~ Block)  # Block 4 vs 5 within this phase × SeqLen
        cat("\nEstimated Marginal Means (Block 4 vs 5):\n")
        print(summary(em_blk))

        cat("\nPairwise (Tukey) Block 4 vs 5:\n")
        print(pairs(em_blk, adjust = "tukey"))

        rm(m, em_blk); invisible(gc())
      }
    }
  }
}

# ---- Run both analyses ----
pairwise_training_blocks(rms_combined)


====================
TRAINING | Axis X | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0599 0.0141 Inf    0.0323    0.0875
 2     0.1208 0.0138 Inf    0.0938    0.1479
 3     0.1686 0.0139 Inf    0.1414    0.1958

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0609 0.00876 Inf  -6.953  <.0001
 Block1 - Block3  -0.1087 0.00897 Inf -12.120  <.0001
 Block2 - Block3  -0.0477 0.00846 Inf  -5.645  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis X | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.796 0.0657 Inf     0.667     0.925
 2      0.713 0.0656 Inf     0.584     0.842
 3      0.596 0.0656 Inf     0.467     0.724

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0829 0.0107 Inf   7.784  <.0001
 Block1 - Block3   0.2004 0.0109 Inf  18.394  <.0001
 Block2 - Block3   0.1175 0.0101 Inf  11.589  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0587 0.0150 Inf    0.0294     0.088
 2     0.1290 0.0147 Inf    0.1003     0.158
 3     0.1807 0.0147 Inf    0.1518     0.210

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0703 0.00993 Inf  -7.084  <.0001
 Block1 - Block3  -0.1220 0.01020 Inf -12.008  <.0001
 Block2 - Block3  -0.0516 0.00958 Inf  -5.388  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.846 0.0755 Inf     0.698     0.994
 2      0.758 0.0754 Inf     0.610     0.906
 3      0.624 0.0754 Inf     0.476     0.772

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0881 0.0124 Inf   7.120  <.0001
 Block1 - Block3   0.2222 0.0126 Inf  17.567  <.0001
 Block2 - Block3   0.1341 0.0118 Inf  11.391  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0534 0.0257 Inf   0.00307     0.104
 2     0.1728 0.0252 Inf   0.12348     0.222
 3     0.2521 0.0253 Inf   0.20262     0.302

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2  -0.1194 0.0164 Inf  -7.291  <.0001
 Block1 - Block3  -0.1988 0.0168 Inf -11.864  <.0001
 Block2 - Block3  -0.0794 0.0158 Inf  -5.022  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean    SE  df asymp.LCL asymp.UCL
 1       1.30 0.124 Inf     1.061      1.55
 2       1.23 0.124 Inf     0.986      1.47
 3       1.05 0.124 Inf     0.813      1.30

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0751 0.0210 Inf   3.583  0.0010
 Block1 - Block3   0.2486 0.0214 Inf  11.615  <.0001
 Block2 - Block3   0.1735 0.0199 Inf   8.710  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 
pairwise_test_blocks_by_length(rms_combined)
# ==== #1.3 Complement : Pairwise Block comparisons matching the plots ====
# - TRAINING (Blocks 1–3): within-phase (Prep/Exec), per axis — Tukey among 1,2,3
# - TEST (Blocks 4–5): within-phase AND within SeqLen (6/12/18), per axis — Block 4 vs 5
# Model in each subset: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)

suppressPackageStartupMessages({
  library(dplyr)
  library(lme4)
  library(lmerTest)  # for Satterthwaite tests in summary() and anova()
  library(emmeans)
  library(car)       # for Type II / III Wald χ²
})

emm_options(lmer.df = "asymptotic")

# -------- TRAINING: Blocks 1–3 (within-phase) --------
pairwise_training_blocks <- function(rms_combined) {
  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)

    for (ph in c("Preparation","Execution")) {
      d <- rms_combined %>%
        filter(phase == ph, Block %in% c("1","2","3")) %>%
        transmute(
          subject, Trial, phase,
          Block    = factor(Block, levels = c("1","2","3")),
          Accuracy,
          RMS      = .data[[axis_col]]
        ) %>%
        droplevels()

      if (nrow(d) == 0) next

      cat("\n\n====================\n",
          "TRAINING | Axis ", toupper(axis), " | Phase: ", ph,
          "\n====================\n", sep = "")

      m <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = d, REML = TRUE)

      cat("\n--- Model Summary (lmerTest; Satterthwaite t-tests) ---\n")
      print(summary(m))

      cat("\n--- lmerTest ANOVA (F-tests; Satterthwaite) ---\n")
      print(anova(m))  # Type I in order of terms; informative with full summary above

      cat("\n--- Type II Wald χ² (car::Anova) ---\n")
      print(car::Anova(m, type = 2, test.statistic = "Chisq"))

      cat("\n--- Type III Wald χ² (car::Anova; sum contrasts) ---\n")
      print(car::Anova(m, type = 3, test.statistic = "Chisq"))

      em_blk <- emmeans(m, ~ Block)
      cat("\n--- Estimated Marginal Means (Blocks 1–3) ---\n")
      print(summary(em_blk))

      cat("\n--- Pairwise (Tukey) among Blocks 1–3 ---\n")
      print(pairs(em_blk, adjust = "tukey"))

      rm(m, em_blk); invisible(gc())
    }
  }
}

# -------- TEST: Blocks 4–5 (within-phase AND within SeqLen) --------
pairwise_test_blocks_by_length <- function(rms_combined) {
  if (!exists("sw_all")) {
    stop("Test-phase length-specific comparisons require `sw_all` (from step-wise prep) to be available.")
  }

  # Sequence-length lookup (actual detected per trial)
  seq_lookup <- sw_all %>%
    distinct(subject, Block, trial, step_count) %>%
    filter(Block %in% c(4,5)) %>%
    mutate(
      subject   = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial),
      SeqLen    = factor(paste0(step_count, " steps"),
                         levels = c("6 steps","12 steps","18 steps"))
    ) %>%
    select(subject, Block_chr, trial_chr, SeqLen)

  # Attach SeqLen to phase-level RMS for Blocks 4–5
  rb45 <- rms_combined %>%
    filter(Block %in% c("4","5")) %>%
    mutate(
      subject   = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial)
    ) %>%
    left_join(seq_lookup, by = c("subject","Block_chr","trial_chr")) %>%
    mutate(
      Block = factor(Block, levels = c("4","5")),
      SeqLen = droplevels(SeqLen)
    )

  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)

    for (ph in c("Preparation","Execution")) {
      for (sl in c("6 steps","12 steps","18 steps")) {

        dd <- rb45 %>%
          filter(phase == ph, SeqLen == sl) %>%
          transmute(
            subject, Trial, phase, SeqLen,
            Block, Accuracy,
            RMS = .data[[axis_col]]
          ) %>%
          droplevels()

        if (nrow(dd) == 0 || nlevels(dd$Block) < 2) next

        cat("\n\n--------------------\n",
            "TEST | Axis ", toupper(axis), " | Phase: ", ph, " | SeqLen: ", sl,
            "\n--------------------\n", sep = "")

        m <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = dd, REML = TRUE)

        cat("\n--- Model Summary (lmerTest; Satterthwaite t-tests) ---\n")
        print(summary(m))

        cat("\n--- lmerTest ANOVA (F-tests; Satterthwaite) ---\n")
        print(anova(m))

        cat("\n--- Type II Wald χ² (car::Anova) ---\n")
        print(car::Anova(m, type = 2, test.statistic = "Chisq"))

        cat("\n--- Type III Wald χ² (car::Anova; sum contrasts) ---\n")
        print(car::Anova(m, type = 3, test.statistic = "Chisq"))

        em_blk <- emmeans(m, ~ Block)  # Block 4 vs 5 within this phase × SeqLen
        cat("\n--- Estimated Marginal Means (Block 4 vs 5) ---\n")
        print(summary(em_blk))

        cat("\n--- Pairwise (Tukey) Block 4 vs 5 ---\n")
        print(pairs(em_blk, adjust = "tukey"))

        rm(m, em_blk); invisible(gc())
      }
    }
  }
}

# ---- Run both analyses ----
pairwise_training_blocks(rms_combined)


====================
TRAINING | Axis X | Phase: Preparation
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: -1053.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.8161 -0.4221 -0.1614  0.1469 11.7183 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Trial    (Intercept) 0.0055881 0.07475 
 subject  (Intercept) 0.0006911 0.02629 
 Residual             0.0407934 0.20197 
Number of obs: 3378, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  1.164e-01  1.297e-02  5.473e+01   8.980 2.38e-12 ***
Block1      -5.654e-02  5.195e-03  3.325e+03 -10.883  < 2e-16 ***
Block2       4.397e-03  4.902e-03  3.321e+03   0.897   0.3698    
Accuracy1   -7.152e-03  3.781e-03  3.217e+03  -1.892   0.0586 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.021              
Block2    -0.013 -0.506       
Accuracy1  0.040  0.222 -0.041

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
         Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)    
Block    5.9995  2.9998     2 3327.5  73.535 < 2e-16 ***
Accuracy 0.1460  0.1460     1 3216.5   3.579 0.05861 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
Block    147.071  2    < 2e-16 ***
Accuracy   3.579  1    0.05852 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
(Intercept)  80.633  1    < 2e-16 ***
Block       147.071  2    < 2e-16 ***
Accuracy      3.579  1    0.05852 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0599 0.0141 Inf    0.0323    0.0875
 2     0.1208 0.0138 Inf    0.0938    0.1479
 3     0.1686 0.0139 Inf    0.1414    0.1958

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0609 0.00876 Inf  -6.953  <.0001
 Block1 - Block3  -0.1087 0.00897 Inf -12.120  <.0001
 Block2 - Block3  -0.0477 0.00846 Inf  -5.645  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis X | Phase: Execution
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: 120.9

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.8704 -0.4840 -0.0071  0.4510  5.0806 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.003956 0.06289 
 subject  (Intercept) 0.075076 0.27400 
 Residual             0.057055 0.23886 
Number of obs: 3241, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  7.015e-01  6.537e-02  1.769e+01  10.732 3.58e-09 ***
Block1       9.445e-02  6.339e-03  3.183e+03  14.899  < 2e-16 ***
Block2       1.152e-02  5.905e-03  3.176e+03   1.951   0.0512 .  
Accuracy1   -4.414e-02  4.608e-03  3.213e+03  -9.579  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.007              
Block2    -0.004 -0.514       
Accuracy1  0.011  0.222 -0.042

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
          Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
Block    19.8101  9.9050     2 3188.5 173.604 < 2.2e-16 ***
Accuracy  5.2351  5.2351     1 3213.2  91.755 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
Block    347.208  2  < 2.2e-16 ***
Accuracy  91.755  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
(Intercept) 115.167  1  < 2.2e-16 ***
Block       347.208  2  < 2.2e-16 ***
Accuracy     91.755  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.796 0.0657 Inf     0.667     0.925
 2      0.713 0.0656 Inf     0.584     0.842
 3      0.596 0.0656 Inf     0.467     0.724

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0829 0.0107 Inf   7.784  <.0001
 Block1 - Block3   0.2004 0.0109 Inf  18.394  <.0001
 Block2 - Block3   0.1175 0.0101 Inf  11.589  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Preparation
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: -218.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.5091 -0.4013 -0.1592  0.1394 24.5361 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Trial    (Intercept) 0.0062547 0.07909 
 subject  (Intercept) 0.0006933 0.02633 
 Residual             0.0523860 0.22888 
Number of obs: 3378, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  1.228e-01  1.363e-02  5.382e+01   9.007  2.5e-12 ***
Block1      -6.411e-02  5.886e-03  3.328e+03 -10.892  < 2e-16 ***
Block2       6.241e-03  5.554e-03  3.323e+03   1.124   0.2612    
Accuracy1   -7.212e-03  4.274e-03  3.147e+03  -1.687   0.0917 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.023              
Block2    -0.014 -0.507       
Accuracy1  0.043  0.222 -0.041

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
         Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)    
Block    7.5748  3.7874     2 3329.9 72.2978 < 2e-16 ***
Accuracy 0.1491  0.1491     1 3146.7  2.8468 0.09165 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
Block    144.5956  2    < 2e-16 ***
Accuracy   2.8468  1    0.09156 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
               Chisq Df Pr(>Chisq)    
(Intercept)  81.1175  1    < 2e-16 ***
Block       144.5956  2    < 2e-16 ***
Accuracy      2.8468  1    0.09156 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0587 0.0150 Inf    0.0294     0.088
 2     0.1290 0.0147 Inf    0.1003     0.158
 3     0.1807 0.0147 Inf    0.1518     0.210

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0703 0.00993 Inf  -7.084  <.0001
 Block1 - Block3  -0.1220 0.01020 Inf -12.008  <.0001
 Block2 - Block3  -0.0516 0.00958 Inf  -5.388  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Execution
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: 1078.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.6672 -0.4816  0.0024  0.4511  6.6133 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.003739 0.06115 
 subject  (Intercept) 0.099724 0.31579 
 Residual             0.077019 0.27752 
Number of obs: 3241, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  7.429e-01  7.513e-02  1.750e+01   9.888 1.39e-08 ***
Block1       1.034e-01  7.362e-03  3.189e+03  14.050  < 2e-16 ***
Block2       1.532e-02  6.859e-03  3.181e+03   2.233   0.0256 *  
Accuracy1   -4.498e-02  5.346e-03  3.219e+03  -8.413  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.007              
Block2    -0.004 -0.514       
Accuracy1  0.011  0.222 -0.042

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
          Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
Block    24.5699 12.2849     2 3195.2 159.505 < 2.2e-16 ***
Accuracy  5.4517  5.4517     1 3219.5  70.784 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
Block    319.010  2  < 2.2e-16 ***
Accuracy  70.784  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
(Intercept)  97.776  1  < 2.2e-16 ***
Block       319.010  2  < 2.2e-16 ***
Accuracy     70.784  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.846 0.0755 Inf     0.698     0.994
 2      0.758 0.0754 Inf     0.610     0.906
 3      0.624 0.0754 Inf     0.476     0.772

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0881 0.0124 Inf   7.120  <.0001
 Block1 - Block3   0.2222 0.0126 Inf  17.567  <.0001
 Block2 - Block3   0.1341 0.0118 Inf  11.391  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Preparation
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: 3162.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.4689 -0.3958 -0.1519  0.1488 14.4245 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.017764 0.13328 
 subject  (Intercept) 0.002477 0.04977 
 Residual             0.142476 0.37746 
Number of obs: 3378, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  1.594e-01  2.354e-02  5.443e+01   6.772 9.34e-09 ***
Block1      -1.061e-01  9.708e-03  3.326e+03 -10.925  < 2e-16 ***
Block2       1.335e-02  9.161e-03  3.322e+03   1.458   0.1450    
Accuracy1   -1.560e-02  7.065e-03  3.226e+03  -2.208   0.0273 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.022              
Block2    -0.013 -0.507       
Accuracy1  0.042  0.222 -0.041

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
          Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)    
Block    20.1906 10.0953     2 3328.6 70.8559 < 2e-16 ***
Accuracy  0.6949  0.6949     1 3225.8  4.8771 0.02729 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
Block    141.7119  2    < 2e-16 ***
Accuracy   4.8771  1    0.02722 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
               Chisq Df Pr(>Chisq)    
(Intercept)  45.8537  1  1.274e-11 ***
Block       141.7119  2  < 2.2e-16 ***
Accuracy      4.8771  1    0.02722 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0534 0.0257 Inf   0.00307     0.104
 2     0.1728 0.0252 Inf   0.12348     0.222
 3     0.2521 0.0253 Inf   0.20262     0.302

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2  -0.1194 0.0164 Inf  -7.291  <.0001
 Block1 - Block3  -0.1988 0.0168 Inf -11.864  <.0001
 Block2 - Block3  -0.0794 0.0158 Inf  -5.022  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Execution
====================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: d

REML criterion at convergence: 4479

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.5636 -0.4699 -0.0113  0.4195  5.9733 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.008101 0.09001 
 subject  (Intercept) 0.268090 0.51777 
 Residual             0.220928 0.47003 
Number of obs: 3241, groups:  Trial, 48; subject, 18

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)  1.196e+00  1.230e-01  1.741e+01   9.717 1.89e-08 ***
Block1       1.079e-01  1.246e-02  3.191e+03   8.658  < 2e-16 ***
Block2       3.280e-02  1.161e-02  3.180e+03   2.824  0.00477 ** 
Accuracy1   -8.618e-02  9.043e-03  3.222e+03  -9.530  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
          (Intr) Block1 Block2
Block1     0.007              
Block2    -0.004 -0.515       
Accuracy1  0.011  0.222 -0.042

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
         Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
Block    32.498  16.249     2 3197.0  73.549 < 2.2e-16 ***
Accuracy 20.065  20.065     1 3222.1  90.820 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
          Chisq Df Pr(>Chisq)    
Block    147.10  2  < 2.2e-16 ***
Accuracy  90.82  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
(Intercept)  94.426  1  < 2.2e-16 ***
Block       147.098  2  < 2.2e-16 ***
Accuracy     90.820  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Estimated Marginal Means (Blocks 1–3) ---
 Block emmean    SE  df asymp.LCL asymp.UCL
 1       1.30 0.124 Inf     1.061      1.55
 2       1.23 0.124 Inf     0.986      1.47
 3       1.05 0.124 Inf     0.813      1.30

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) among Blocks 1–3 ---
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0751 0.0210 Inf   3.583  0.0010
 Block1 - Block3   0.2486 0.0214 Inf  11.615  <.0001
 Block2 - Block3   0.1735 0.0199 Inf   8.710  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 
pairwise_test_blocks_by_length(rms_combined)

#2.1 comparison of sequence lengths training phase

# ==== TRAINING (Blocks 1–3): pairwise Block comparisons within each phase, per axis ====
# Uses the same family as plots: RMS ~ Block + Accuracy + (1|subject) + (1|Trial)


suppressPackageStartupMessages({
  library(dplyr)
  library(lme4)
  library(emmeans)
})
emm_options(lmer.df = "asymptotic")

pairwise_training_blocks <- function(rms_combined) {
  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)

    for (ph in c("Preparation","Execution")) {
      d <- rms_combined %>%
        filter(phase == ph, Block %in% c("1","2","3")) %>%
        transmute(
          subject, Trial, phase,
          Block = factor(Block, levels = c("1","2","3")),
          Accuracy,
          RMS = .data[[axis_col]]
        ) %>%
        droplevels()

      if (nrow(d) == 0 || nlevels(d$Block) < 2) next

      cat("\n\n====================\n",
          "TRAINING | Axis ", toupper(axis), " | Phase: ", ph,
          "\n====================\n", sep = "")

      m <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = d, REML = TRUE)

      em_blk <- emmeans(m, ~ Block)
      cat("\nEstimated Marginal Means (Blocks 1–3):\n"); print(summary(em_blk))
      cat("\nPairwise (Tukey) among Blocks 1–3:\n"); print(pairs(em_blk, adjust = "tukey"))

      rm(m, em_blk); invisible(gc())
    }
  }
}

# Run training comparisons
pairwise_training_blocks(rms_combined)


====================
TRAINING | Axis X | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0599 0.0141 Inf    0.0323    0.0875
 2     0.1208 0.0138 Inf    0.0938    0.1479
 3     0.1686 0.0139 Inf    0.1414    0.1958

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0609 0.00876 Inf  -6.953  <.0001
 Block1 - Block3  -0.1087 0.00897 Inf -12.120  <.0001
 Block2 - Block3  -0.0477 0.00846 Inf  -5.645  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis X | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.796 0.0657 Inf     0.667     0.925
 2      0.713 0.0656 Inf     0.584     0.842
 3      0.596 0.0656 Inf     0.467     0.724

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0829 0.0107 Inf   7.784  <.0001
 Block1 - Block3   0.2004 0.0109 Inf  18.394  <.0001
 Block2 - Block3   0.1175 0.0101 Inf  11.589  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0587 0.0150 Inf    0.0294     0.088
 2     0.1290 0.0147 Inf    0.1003     0.158
 3     0.1807 0.0147 Inf    0.1518     0.210

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate      SE  df z.ratio p.value
 Block1 - Block2  -0.0703 0.00993 Inf  -7.084  <.0001
 Block1 - Block3  -0.1220 0.01020 Inf -12.008  <.0001
 Block2 - Block3  -0.0516 0.00958 Inf  -5.388  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Y | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1      0.846 0.0755 Inf     0.698     0.994
 2      0.758 0.0754 Inf     0.610     0.906
 3      0.624 0.0754 Inf     0.476     0.772

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0881 0.0124 Inf   7.120  <.0001
 Block1 - Block3   0.2222 0.0126 Inf  17.567  <.0001
 Block2 - Block3   0.1341 0.0118 Inf  11.391  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Preparation
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean     SE  df asymp.LCL asymp.UCL
 1     0.0534 0.0257 Inf   0.00307     0.104
 2     0.1728 0.0252 Inf   0.12348     0.222
 3     0.2521 0.0253 Inf   0.20262     0.302

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2  -0.1194 0.0164 Inf  -7.291  <.0001
 Block1 - Block3  -0.1988 0.0168 Inf -11.864  <.0001
 Block2 - Block3  -0.0794 0.0158 Inf  -5.022  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


====================
TRAINING | Axis Z | Phase: Execution
====================

Estimated Marginal Means (Blocks 1–3):
 Block emmean    SE  df asymp.LCL asymp.UCL
 1       1.30 0.124 Inf     1.061      1.55
 2       1.23 0.124 Inf     0.986      1.47
 3       1.05 0.124 Inf     0.813      1.30

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

Pairwise (Tukey) among Blocks 1–3:
 contrast        estimate     SE  df z.ratio p.value
 Block1 - Block2   0.0751 0.0210 Inf   3.583  0.0010
 Block1 - Block3   0.2486 0.0214 Inf  11.615  <.0001
 Block2 - Block3   0.1735 0.0199 Inf   8.710  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 

#2.1 comparison of sequence lengths test phase, and comparison of familiar vs unfamiliar

# ==== TEST (Blocks 4–5): block-vs-block within each length AND within-block among lengths ====
# Models:
#  A) Block 4 vs 5 within phase & length:    RMS ~ Block  + Accuracy + (1|subject) + (1|Trial)
#  B) Lengths (6/12/18) within block & phase: RMS ~ SeqLen + Accuracy + (1|subject) + (1|Trial)

suppressPackageStartupMessages({
  library(dplyr)
  library(lme4)
  library(emmeans)
})
emm_options(lmer.df = "asymptotic")

pairwise_test_blocks_and_lengths <- function(rms_combined) {

  if (!exists("sw_all")) {
    stop("This analysis needs `sw_all` (step-wise table) to derive sequence lengths for Blocks 4–5.")
  }

  # Build a unique per-trial sequence length lookup (6/12/18 steps) from sw_all
  seq_lookup <- sw_all %>%
    group_by(subject, Block, trial) %>%
    summarise(step_count = max(step_count, na.rm = TRUE), .groups = "drop") %>%  # ensure unique per trial
    filter(Block %in% c(4, 5)) %>%
    transmute(
      subject = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial),
      SeqLen = factor(paste0(step_count, " steps"),
                      levels = c("6 steps","12 steps","18 steps"))
    )

  # Attach sequence length to the phase-level RMS rows for blocks 4–5
  rb45 <- rms_combined %>%
    filter(Block %in% c("4","5")) %>%
    mutate(
      subject  = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial)
    ) %>%
    left_join(seq_lookup, by = c("subject","Block_chr","trial_chr")) %>%
    mutate(
      Block  = factor(Block, levels = c("4","5")),
      SeqLen = droplevels(SeqLen)
    )

  # ---------- (A) Block 4 vs 5 within each length & phase ----------
  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)
    for (ph in c("Preparation","Execution")) {
      for (sl in c("6 steps","12 steps","18 steps")) {
        dd <- rb45 %>%
          filter(phase == ph, SeqLen == sl) %>%
          transmute(
            subject, Trial, phase, SeqLen,
            Block, Accuracy,
            RMS = .data[[axis_col]]
          ) %>% droplevels()

        if (nrow(dd) == 0 || nlevels(dd$Block) < 2) next

        cat("\n\n--------------------\n",
            "TEST (Between blocks) | Axis ", toupper(axis),
            " | Phase: ", ph, " | SeqLen: ", sl,
            "\n--------------------\n", sep = "")

        mA <- lmer(RMS ~ Block + Accuracy + (1 | subject) + (1 | Trial), data = dd, REML = TRUE)
        em_blk <- emmeans(mA, ~ Block)  # 4 vs 5
        cat("\nEstimated Marginal Means (Block 4 vs 5):\n"); print(summary(em_blk))
        cat("\nPairwise (Tukey) Block 4 vs 5:\n"); print(pairs(em_blk, adjust = "tukey"))

        rm(mA, em_blk); invisible(gc())
      }
    }
  }

  # ---------- (B) Within each block: compare sequence lengths (6 vs 12 vs 18) per phase ----------
  for (axis in c("x","y","z")) {
    axis_col <- paste0("rms_", axis)
    for (ph in c("Preparation","Execution")) {
      for (blk in c("4","5")) {
        dd <- rb45 %>%
          filter(phase == ph, Block == blk) %>%
          transmute(
            subject, Trial, phase,
            Block, SeqLen = factor(SeqLen, levels = c("6 steps","12 steps","18 steps")),
            Accuracy,
            RMS = .data[[axis_col]]
          ) %>% droplevels()

        # Need at least 2 lengths present to compare
        if (nrow(dd) == 0 || nlevels(dd$SeqLen) < 2) next

        cat("\n\n====================\n",
            "TEST (Within block) | Axis ", toupper(axis),
            " | Phase: ", ph, " | Block: ", blk,
            "\n====================\n", sep = "")

        mB <- lmer(RMS ~ SeqLen + Accuracy + (1 | subject) + (1 | Trial), data = dd, REML = TRUE)
        em_len <- emmeans(mB, ~ SeqLen)
        cat("\nEstimated Marginal Means (SeqLen within Block ", blk, "):\n", sep = ""); print(summary(em_len))
        cat("\nPairwise (Tukey) among 6/12/18 steps within Block ", blk, ":\n", sep = ""); print(pairs(em_len, adjust = "tukey"))

        rm(mB, em_len); invisible(gc())
      }
    }
  }
}

# Run test-phase comparisons
pairwise_test_blocks_and_lengths(rms_combined)
# ==== #2.1c: Execution-phase % difference — Block 4 vs Block 5 (per axis & overall) ====


suppressPackageStartupMessages({
  library(dplyr); library(tidyr); library(tibble)
  library(lme4);  library(lmerTest); library(emmeans)
})

emm_options(lmer.df = "asymptotic")

percent_table_exec_block4_vs5 <- function(rms_combined) {
  if (!exists("sw_all")) {
    stop("This analysis needs `sw_all` (step-wise table) to derive sequence lengths for Blocks 4–5).")
  }

  # Per-trial sequence length lookup (6/12/18)
  seq_lookup <- sw_all %>%
    group_by(subject, Block, trial) %>%
    summarise(step_count = max(step_count, na.rm = TRUE), .groups = "drop") %>%
    filter(Block %in% c(4, 5)) %>%
    transmute(
      subject   = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial),
      SeqLen    = factor(
        paste0(step_count, " steps"),
        levels = c("6 steps","12 steps","18 steps")
      )
    )

  # Execution-only rows for Blocks 4–5, joined with SeqLen
  rb45_exec <- rms_combined %>%
    filter(phase == "Execution", Block %in% c("4","5")) %>%
    mutate(
      subject   = as.character(subject),
      Block_chr = as.character(Block),
      trial_chr = as.character(trial)
    ) %>%
    left_join(seq_lookup, by = c("subject","Block_chr","trial_chr")) %>%
    mutate(
      Block = factor(Block, levels = c("4","5")),
      SeqLen = droplevels(SeqLen),
      Trial  = factor(Trial)
    )

  # ----- Per-axis models (adjusted for SeqLen) -----
  axis_rows <- lapply(c(x = "X", y = "Y", z = "Z"), function(ax_lab) {
    col <- paste0("rms_", tolower(ax_lab))
    dd <- rb45_exec %>%
      transmute(subject, Trial, Block, Accuracy, SeqLen, RMS = .data[[col]]) %>%
      tidyr::drop_na(subject, Trial, Block, Accuracy, SeqLen, RMS) %>%
      droplevels()

    if (nrow(dd) == 0 || nlevels(dd$Block) < 2) return(NULL)

    m <- lmer(
      RMS ~ Block + SeqLen + Accuracy + (1 | subject) + (1 | Trial),
      data = dd, REML = TRUE
    )

    em <- summary(emmeans(m, ~ Block)) %>% as_tibble()
    b4 <- em %>% filter(Block == "4") %>% pull(emmean)
    b5 <- em %>% filter(Block == "5") %>% pull(emmean)

    tibble(
      Scope = "Per Axis",
      Axis  = ax_lab,
      Block4_EMM = b4,
      Block5_EMM = b5,
      Diff_5_minus_4 = b5 - b4,
      Percent_Faster_B4_vs_B5 = 100 * (b5 - b4) / b5
    )
  })

  per_axis_tbl <- bind_rows(axis_rows)

  # ----- Overall across axes (adjusted for Axis and SeqLen) -----
  overall_dd <- rb45_exec %>%
    select(subject, Trial, Block, Accuracy, SeqLen, rms_x, rms_y, rms_z) %>%
    tidyr::drop_na(subject, Trial, Block, Accuracy, SeqLen, rms_x, rms_y, rms_z) %>%
    pivot_longer(c(rms_x, rms_y, rms_z), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = dplyr::recode(Axis, "rms_x" = "X", "rms_y" = "Y", "rms_z" = "Z"),
      Axis = factor(Axis, levels = c("X","Y","Z"))
    ) %>%
    drop_na(RMS) %>%
    droplevels()

  overall_row <- {
    if (nrow(overall_dd) > 0 && nlevels(overall_dd$Block) > 1) {
      m_all <- lmer(
        RMS ~ Block + Axis + SeqLen + Accuracy + (1 | subject) + (1 | Trial),
        data = overall_dd, REML = TRUE
      )
      em_all <- summary(emmeans(m_all, ~ Block)) %>% as_tibble()
      b4 <- em_all %>% filter(Block == "4") %>% pull(emmean)
      b5 <- em_all %>% filter(Block == "5") %>% pull(emmean)
      tibble(
        Scope = "Overall (All Axes)",
        Axis  = "All",
        Block4_EMM = b4,
        Block5_EMM = b5,
        Diff_5_minus_4 = b5 - b4,
        Percent_Faster_B4_vs_B5 = 100 * (b5 - b4) / b5
      )
    } else {
      NULL
    }
  }

  # If both parts are empty, return a well-formed empty table (prevents mutate errors)
  if ((is.null(per_axis_tbl) || nrow(per_axis_tbl) == 0) && is.null(overall_row)) {
    message("No valid data for Block 4 vs 5 percentage table after filtering; returning empty table.")
    return(tibble(
      Scope = character(),
      Axis  = character(),
      Block4_EMM = double(),
      Block5_EMM = double(),
      Diff_5_minus_4 = double(),
      Percent_Faster_B4_vs_B5 = double()
    ))
  }

  out_tbl <- bind_rows(
    per_axis_tbl,
    if (is.null(overall_row)) tibble(
      Scope = character(), Axis = character(),
      Block4_EMM = double(), Block5_EMM = double(),
      Diff_5_minus_4 = double(), Percent_Faster_B4_vs_B5 = double()
    ) else overall_row
  )

  if (nrow(out_tbl) == 0) {
    message("No rows in Block 4 vs 5 percentage table; returning empty table.")
    return(out_tbl)
  }

  out_tbl <- out_tbl %>%
    mutate(
      Block4_EMM = round(Block4_EMM, 3),
      Block5_EMM = round(Block5_EMM, 3),
      Diff_5_minus_4 = round(Diff_5_minus_4, 3),
      Percent_Faster_B4_vs_B5 = round(Percent_Faster_B4_vs_B5, 1)
    ) %>%
    arrange(match(Scope, c("Per Axis","Overall (All Axes)")), Axis)

  cat("\n\n==============================================\n")
  cat("Execution phase — % faster of Block 4 vs Block 5\n")
  cat("Percent = 100 * (Block5_EMM - Block4_EMM) / Block5_EMM\n")
  cat("EMMs are adjusted for SeqLen (per-axis) and for Axis + SeqLen (overall).\n")
  cat("==============================================\n")
  print(out_tbl)

  invisible(out_tbl)
}

# ---- Run it ----
percent_table_exec_block4_vs5(rms_combined)
No valid data for Block 4 vs 5 percentage table after filtering; returning empty table.
# A tibble: 0 × 6
# ℹ 6 variables: Scope <chr>, Axis <chr>, Block4_EMM <dbl>, Block5_EMM <dbl>,
#   Diff_5_minus_4 <dbl>, Percent_Faster_B4_vs_B5 <dbl>

#3.1 Concatenation analysis

# --- Build step-wise datasets for training (Blocks 1–3) and test (Blocks 4–5) ---

# Uses your earlier helper:
# compute_stepwise_rms(tagged_exec_df, max_steps_keep = 18)
# -> one row per detected step per trial: subject, Block, trial, Step, RMS (x/y/z), Axis ("x","y","z"), step_count
# And accuracy join helper:
# add_accuracy_to(df_core, df_lookup = all_data_mixed)

# 1) Compute all step-wise rows (up to 18) from tagged_data
stepwise_all <- compute_stepwise_rms(tagged_data, max_steps_keep = 18) %>%
  # Add trial-level Accuracy
  add_accuracy_to(., all_data_mixed) %>%
  # Ensure IDs/Axis are present in the expected format
  dplyr::mutate(
    trial_id = if ("trial_id" %in% names(.)) trial_id else interaction(subject, Block, trial, drop = TRUE),
    Axis     = factor(as.character(Axis), levels = c("x","y","z"))
  )
Warning in left_join(., acc_tbl, by = c("subject", "Block", "trial")): Detected an unexpected many-to-many relationship between `x` and `y`.
ℹ Row 1 of `x` matches multiple rows in `y`.
ℹ Row 3021 of `y` matches multiple rows in `x`.
ℹ If a many-to-many relationship is expected, set `relationship =
  "many-to-many"` to silence this warning.
# 2) TRAINING subsets used by .report_step_block(...)
# Block 1 -> 6 steps nominally
stepwise_6  <- stepwise_all %>% dplyr::filter(Block == 1)
# Block 2 -> 12 steps nominally
stepwise_12 <- stepwise_all %>% dplyr::filter(Block == 2)
# Block 3 -> 18 steps nominally
stepwise_18 <- stepwise_all %>% dplyr::filter(Block == 3)

# 3) TEST subsets by actual per-trial step_count (Blocks 4–5, mixed sequence lengths)
# Block 4
sw_b4_6  <- stepwise_all %>% dplyr::filter(Block == 4, step_count == 6)
sw_b4_12 <- stepwise_all %>% dplyr::filter(Block == 4, step_count == 12)
sw_b4_18 <- stepwise_all %>% dplyr::filter(Block == 4, step_count == 18)

# Block 5
sw_b5_6  <- stepwise_all %>% dplyr::filter(Block == 5, step_count == 6)
sw_b5_12 <- stepwise_all %>% dplyr::filter(Block == 5, step_count == 12)
sw_b5_18 <- stepwise_all %>% dplyr::filter(Block == 5, step_count == 18)
# ==== TRAINING (Blocks 1–3): stepwise LMM + χ² + EMMs + all-pairs + adjacent (per block × axis) ====

suppressPackageStartupMessages({
  library(dplyr); library(lme4); library(lmerTest); library(emmeans); library(car)
})
emm_options(lmer.df = "asymptotic")

.report_step_block <- function(df_block, block_label) {
  for (ax in c("x","y","z")) {
    dd <- df_block %>% filter(Axis == ax)
    if (nrow(dd) == 0) next

    dd <- dd %>%
      mutate(
        StepF    = factor(Step, levels = sort(unique(Step))),
        subject  = factor(subject),
        trial_id = factor(trial_id),
        Accuracy = droplevels(Accuracy)
      )

    cat("\n\n==============================\n",
        "TRAINING | Block ", block_label, " | Axis ", toupper(ax),
        "\n==============================\n", sep = "")

    m <- suppressWarnings(lmer(RMS ~ StepF + Accuracy + (1|subject) + (1|trial_id),
                               data = dd, REML = TRUE))

    cat("\nType II Wald χ² (StepF & Accuracy):\n")
    print(car::Anova(m, type = 2, test.statistic = "Chisq"))

    if (nlevels(dd$Accuracy) >= 2) {
      # EMMs by Accuracy
      em <- emmeans(m, ~ StepF | Accuracy)
      cat("\nEMMs per step | Accuracy:\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps | Accuracy:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm) | Accuracy:\n")
      print(contrast(em, method = "consec", by = "Accuracy", adjust = "holm"))
    } else {
      # Collapsed over Accuracy
      em <- emmeans(m, ~ StepF)
      cat("\nEMMs per step:\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm):\n")
      print(contrast(em, method = "consec", adjust = "holm"))
    }

    rm(m, em); invisible(gc())
  }
}

# Run training (Blocks 1,2,3)
.report_step_block(stepwise_6,  "1 (6 steps)")


==============================
TRAINING | Block 1 (6 steps) | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    250.9866  5  < 2.2e-16 ***
Accuracy   8.0839  1   0.004466 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.670 0.113 Inf     0.449     0.891
 2      0.866 0.113 Inf     0.645     1.087
 3      0.984 0.113 Inf     0.762     1.205
 4      0.877 0.113 Inf     0.656     1.099
 5      0.860 0.113 Inf     0.639     1.082
 6      0.719 0.113 Inf     0.497     0.940

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.719 0.112 Inf     0.499     0.939
 2      0.915 0.112 Inf     0.695     1.135
 3      1.033 0.112 Inf     0.813     1.253
 4      0.926 0.112 Inf     0.706     1.146
 5      0.909 0.112 Inf     0.689     1.129
 6      0.768 0.112 Inf     0.548     0.988

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.19596 0.0229 Inf  -8.558  <.0001
 StepF1 - StepF3 -0.31377 0.0229 Inf -13.703  <.0001
 StepF1 - StepF4 -0.20733 0.0229 Inf  -9.055  <.0001
 StepF1 - StepF5 -0.19010 0.0229 Inf  -8.290  <.0001
 StepF1 - StepF6 -0.04867 0.0230 Inf  -2.113  0.2803
 StepF2 - StepF3 -0.11781 0.0229 Inf  -5.145  <.0001
 StepF2 - StepF4 -0.01137 0.0229 Inf  -0.497  0.9963
 StepF2 - StepF5  0.00586 0.0229 Inf   0.256  0.9999
 StepF2 - StepF6  0.14729 0.0230 Inf   6.396  <.0001
 StepF3 - StepF4  0.10644 0.0229 Inf   4.649  <.0001
 StepF3 - StepF5  0.12367 0.0229 Inf   5.393  <.0001
 StepF3 - StepF6  0.26511 0.0230 Inf  11.511  <.0001
 StepF4 - StepF5  0.01723 0.0229 Inf   0.752  0.9753
 StepF4 - StepF6  0.15867 0.0230 Inf   6.889  <.0001
 StepF5 - StepF6  0.14143 0.0231 Inf   6.134  <.0001

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.19596 0.0229 Inf  -8.558  <.0001
 StepF1 - StepF3 -0.31377 0.0229 Inf -13.703  <.0001
 StepF1 - StepF4 -0.20733 0.0229 Inf  -9.055  <.0001
 StepF1 - StepF5 -0.19010 0.0229 Inf  -8.290  <.0001
 StepF1 - StepF6 -0.04867 0.0230 Inf  -2.113  0.2803
 StepF2 - StepF3 -0.11781 0.0229 Inf  -5.145  <.0001
 StepF2 - StepF4 -0.01137 0.0229 Inf  -0.497  0.9963
 StepF2 - StepF5  0.00586 0.0229 Inf   0.256  0.9999
 StepF2 - StepF6  0.14729 0.0230 Inf   6.396  <.0001
 StepF3 - StepF4  0.10644 0.0229 Inf   4.649  <.0001
 StepF3 - StepF5  0.12367 0.0229 Inf   5.393  <.0001
 StepF3 - StepF6  0.26511 0.0230 Inf  11.511  <.0001
 StepF4 - StepF5  0.01723 0.0229 Inf   0.752  0.9753
 StepF4 - StepF6  0.15867 0.0230 Inf   6.889  <.0001
 StepF5 - StepF6  0.14143 0.0231 Inf   6.134  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1960 0.0229 Inf   8.558  <.0001
 StepF3 - StepF2   0.1178 0.0229 Inf   5.145  <.0001
 StepF4 - StepF3  -0.1064 0.0229 Inf  -4.649  <.0001
 StepF5 - StepF4  -0.0172 0.0229 Inf  -0.752  0.4523
 StepF6 - StepF5  -0.1414 0.0231 Inf  -6.134  <.0001

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.1960 0.0229 Inf   8.558  <.0001
 StepF3 - StepF2   0.1178 0.0229 Inf   5.145  <.0001
 StepF4 - StepF3  -0.1064 0.0229 Inf  -4.649  <.0001
 StepF5 - StepF4  -0.0172 0.0229 Inf  -0.752  0.4523
 StepF6 - StepF5  -0.1414 0.0231 Inf  -6.134  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TRAINING | Block 1 (6 steps) | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    99.9658  5  < 2.2e-16 ***
Accuracy  7.5932  1   0.005859 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.796 0.135 Inf     0.530      1.06
 2      0.887 0.135 Inf     0.621      1.15
 3      1.002 0.135 Inf     0.736      1.27
 4      0.893 0.135 Inf     0.628      1.16
 5      0.815 0.135 Inf     0.550      1.08
 6      0.826 0.136 Inf     0.560      1.09

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      0.847 0.135 Inf     0.582      1.11
 2      0.938 0.135 Inf     0.674      1.20
 3      1.053 0.135 Inf     0.789      1.32
 4      0.944 0.135 Inf     0.680      1.21
 5      0.866 0.135 Inf     0.602      1.13
 6      0.877 0.135 Inf     0.612      1.14

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.09114 0.0239 Inf  -3.810  0.0019
 StepF1 - StepF3 -0.20603 0.0239 Inf  -8.613  <.0001
 StepF1 - StepF4 -0.09766 0.0239 Inf  -4.082  0.0006
 StepF1 - StepF5 -0.01955 0.0240 Inf  -0.816  0.9647
 StepF1 - StepF6 -0.02995 0.0241 Inf  -1.245  0.8147
 StepF2 - StepF3 -0.11489 0.0239 Inf  -4.803  <.0001
 StepF2 - StepF4 -0.00651 0.0239 Inf  -0.272  0.9998
 StepF2 - StepF5  0.07159 0.0240 Inf   2.988  0.0334
 StepF2 - StepF6  0.06119 0.0241 Inf   2.543  0.1118
 StepF3 - StepF4  0.10838 0.0239 Inf   4.531  0.0001
 StepF3 - StepF5  0.18648 0.0240 Inf   7.784  <.0001
 StepF3 - StepF6  0.17608 0.0241 Inf   7.318  <.0001
 StepF4 - StepF5  0.07810 0.0240 Inf   3.260  0.0142
 StepF4 - StepF6  0.06770 0.0241 Inf   2.814  0.0553
 StepF5 - StepF6 -0.01040 0.0241 Inf  -0.432  0.9981

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.09114 0.0239 Inf  -3.810  0.0019
 StepF1 - StepF3 -0.20603 0.0239 Inf  -8.613  <.0001
 StepF1 - StepF4 -0.09766 0.0239 Inf  -4.082  0.0006
 StepF1 - StepF5 -0.01955 0.0240 Inf  -0.816  0.9647
 StepF1 - StepF6 -0.02995 0.0241 Inf  -1.245  0.8147
 StepF2 - StepF3 -0.11489 0.0239 Inf  -4.803  <.0001
 StepF2 - StepF4 -0.00651 0.0239 Inf  -0.272  0.9998
 StepF2 - StepF5  0.07159 0.0240 Inf   2.988  0.0334
 StepF2 - StepF6  0.06119 0.0241 Inf   2.543  0.1118
 StepF3 - StepF4  0.10838 0.0239 Inf   4.531  0.0001
 StepF3 - StepF5  0.18648 0.0240 Inf   7.784  <.0001
 StepF3 - StepF6  0.17608 0.0241 Inf   7.318  <.0001
 StepF4 - StepF5  0.07810 0.0240 Inf   3.260  0.0142
 StepF4 - StepF6  0.06770 0.0241 Inf   2.814  0.0553
 StepF5 - StepF6 -0.01040 0.0241 Inf  -0.432  0.9981

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.0911 0.0239 Inf   3.810  0.0004
 StepF3 - StepF2   0.1149 0.0239 Inf   4.803  <.0001
 StepF4 - StepF3  -0.1084 0.0239 Inf  -4.531  <.0001
 StepF5 - StepF4  -0.0781 0.0240 Inf  -3.260  0.0022
 StepF6 - StepF5   0.0104 0.0241 Inf   0.432  0.6660

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.0911 0.0239 Inf   3.810  0.0004
 StepF3 - StepF2   0.1149 0.0239 Inf   4.803  <.0001
 StepF4 - StepF3  -0.1084 0.0239 Inf  -4.531  <.0001
 StepF5 - StepF4  -0.0781 0.0240 Inf  -3.260  0.0022
 StepF6 - StepF5   0.0104 0.0241 Inf   0.432  0.6660

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TRAINING | Block 1 (6 steps) | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    163.3760  5     <2e-16 ***
Accuracy   2.2879  1     0.1304    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.50 0.210 Inf      1.09      1.91
 2       1.79 0.210 Inf      1.38      2.20
 3       1.92 0.210 Inf      1.50      2.33
 4       1.81 0.210 Inf      1.40      2.22
 5       1.82 0.210 Inf      1.41      2.23
 6       1.52 0.210 Inf      1.11      1.93

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.55 0.208 Inf      1.14      1.96
 2       1.84 0.208 Inf      1.43      2.25
 3       1.97 0.208 Inf      1.56      2.37
 4       1.86 0.208 Inf      1.45      2.27
 5       1.87 0.208 Inf      1.46      2.28
 6       1.57 0.208 Inf      1.17      1.98

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2907 0.0426 Inf  -6.830  <.0001
 StepF1 - StepF3  -0.4175 0.0426 Inf  -9.809  <.0001
 StepF1 - StepF4  -0.3103 0.0426 Inf  -7.291  <.0001
 StepF1 - StepF5  -0.3213 0.0426 Inf  -7.538  <.0001
 StepF1 - StepF6  -0.0238 0.0428 Inf  -0.556  0.9937
 StepF2 - StepF3  -0.1268 0.0426 Inf  -2.979  0.0344
 StepF2 - StepF4  -0.0196 0.0426 Inf  -0.461  0.9974
 StepF2 - StepF5  -0.0306 0.0426 Inf  -0.719  0.9798
 StepF2 - StepF6   0.2668 0.0428 Inf   6.233  <.0001
 StepF3 - StepF4   0.1072 0.0426 Inf   2.518  0.1187
 StepF3 - StepF5   0.0962 0.0426 Inf   2.256  0.2123
 StepF3 - StepF6   0.3936 0.0428 Inf   9.194  <.0001
 StepF4 - StepF5  -0.0110 0.0426 Inf  -0.258  0.9998
 StepF4 - StepF6   0.2865 0.0428 Inf   6.691  <.0001
 StepF5 - StepF6   0.2975 0.0429 Inf   6.940  <.0001

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2907 0.0426 Inf  -6.830  <.0001
 StepF1 - StepF3  -0.4175 0.0426 Inf  -9.809  <.0001
 StepF1 - StepF4  -0.3103 0.0426 Inf  -7.291  <.0001
 StepF1 - StepF5  -0.3213 0.0426 Inf  -7.538  <.0001
 StepF1 - StepF6  -0.0238 0.0428 Inf  -0.556  0.9937
 StepF2 - StepF3  -0.1268 0.0426 Inf  -2.979  0.0344
 StepF2 - StepF4  -0.0196 0.0426 Inf  -0.461  0.9974
 StepF2 - StepF5  -0.0306 0.0426 Inf  -0.719  0.9798
 StepF2 - StepF6   0.2668 0.0428 Inf   6.233  <.0001
 StepF3 - StepF4   0.1072 0.0426 Inf   2.518  0.1187
 StepF3 - StepF5   0.0962 0.0426 Inf   2.256  0.2123
 StepF3 - StepF6   0.3936 0.0428 Inf   9.194  <.0001
 StepF4 - StepF5  -0.0110 0.0426 Inf  -0.258  0.9998
 StepF4 - StepF6   0.2865 0.0428 Inf   6.691  <.0001
 StepF5 - StepF6   0.2975 0.0429 Inf   6.940  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.291 0.0426 Inf   6.830  <.0001
 StepF3 - StepF2    0.127 0.0426 Inf   2.979  0.0087
 StepF4 - StepF3   -0.107 0.0426 Inf  -2.518  0.0236
 StepF5 - StepF4    0.011 0.0426 Inf   0.258  0.7962
 StepF6 - StepF5   -0.297 0.0429 Inf  -6.940  <.0001

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.291 0.0426 Inf   6.830  <.0001
 StepF3 - StepF2    0.127 0.0426 Inf   2.979  0.0087
 StepF4 - StepF3   -0.107 0.0426 Inf  -2.518  0.0236
 StepF5 - StepF4    0.011 0.0426 Inf   0.258  0.7962
 StepF6 - StepF5   -0.297 0.0429 Inf  -6.940  <.0001

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 
.report_step_block(stepwise_12, "2 (12 steps)")


==============================
TRAINING | Block 2 (12 steps) | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    318.7298 11     <2e-16 ***
Accuracy   0.9562  1     0.3281    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.636 0.0715 Inf     0.496     0.776
 2      0.831 0.0715 Inf     0.691     0.971
 3      0.821 0.0715 Inf     0.680     0.961
 4      0.707 0.0715 Inf     0.566     0.847
 5      0.702 0.0715 Inf     0.562     0.842
 6      0.690 0.0715 Inf     0.550     0.830
 7      0.648 0.0715 Inf     0.508     0.789
 8      0.641 0.0715 Inf     0.501     0.781
 9      0.666 0.0715 Inf     0.526     0.806
 10     0.668 0.0715 Inf     0.528     0.808
 11     0.616 0.0715 Inf     0.476     0.756
 12     0.559 0.0715 Inf     0.419     0.699

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.648 0.0712 Inf     0.508     0.787
 2      0.843 0.0712 Inf     0.703     0.983
 3      0.832 0.0712 Inf     0.692     0.972
 4      0.718 0.0712 Inf     0.578     0.858
 5      0.714 0.0712 Inf     0.574     0.853
 6      0.701 0.0712 Inf     0.562     0.841
 7      0.660 0.0712 Inf     0.520     0.800
 8      0.653 0.0712 Inf     0.513     0.792
 9      0.677 0.0712 Inf     0.538     0.817
 10     0.680 0.0712 Inf     0.540     0.819
 11     0.628 0.0712 Inf     0.488     0.767
 12     0.571 0.0712 Inf     0.431     0.710

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.19518 0.0206 Inf  -9.496  <.0001
 StepF1 - StepF3   -0.18430 0.0206 Inf  -8.966  <.0001
 StepF1 - StepF4   -0.07037 0.0206 Inf  -3.423  0.0305
 StepF1 - StepF5   -0.06585 0.0206 Inf  -3.204  0.0608
 StepF1 - StepF6   -0.05362 0.0206 Inf  -2.609  0.2744
 StepF1 - StepF7   -0.01229 0.0206 Inf  -0.598  1.0000
 StepF1 - StepF8   -0.00490 0.0206 Inf  -0.238  1.0000
 StepF1 - StepF9   -0.02950 0.0206 Inf  -1.435  0.9567
 StepF1 - StepF10  -0.03182 0.0206 Inf  -1.548  0.9270
 StepF1 - StepF11   0.02016 0.0206 Inf   0.981  0.9981
 StepF1 - StepF12   0.07722 0.0206 Inf   3.752  0.0096
 StepF2 - StepF3    0.01088 0.0206 Inf   0.529  1.0000
 StepF2 - StepF4    0.12481 0.0206 Inf   6.072  <.0001
 StepF2 - StepF5    0.12933 0.0206 Inf   6.292  <.0001
 StepF2 - StepF6    0.14155 0.0206 Inf   6.887  <.0001
 StepF2 - StepF7    0.18289 0.0206 Inf   8.898  <.0001
 StepF2 - StepF8    0.19028 0.0206 Inf   9.257  <.0001
 StepF2 - StepF9    0.16567 0.0206 Inf   8.060  <.0001
 StepF2 - StepF10   0.16335 0.0206 Inf   7.947  <.0001
 StepF2 - StepF11   0.21533 0.0206 Inf  10.476  <.0001
 StepF2 - StepF12   0.27240 0.0206 Inf  13.237  <.0001
 StepF3 - StepF4    0.11393 0.0206 Inf   5.543  <.0001
 StepF3 - StepF5    0.11845 0.0206 Inf   5.763  <.0001
 StepF3 - StepF6    0.13067 0.0206 Inf   6.357  <.0001
 StepF3 - StepF7    0.17201 0.0206 Inf   8.369  <.0001
 StepF3 - StepF8    0.17940 0.0206 Inf   8.728  <.0001
 StepF3 - StepF9    0.15479 0.0206 Inf   7.531  <.0001
 StepF3 - StepF10   0.15248 0.0206 Inf   7.418  <.0001
 StepF3 - StepF11   0.20445 0.0206 Inf   9.947  <.0001
 StepF3 - StepF12   0.26152 0.0206 Inf  12.708  <.0001
 StepF4 - StepF5    0.00452 0.0206 Inf   0.220  1.0000
 StepF4 - StepF6    0.01674 0.0206 Inf   0.815  0.9997
 StepF4 - StepF7    0.05808 0.0206 Inf   2.826  0.1691
 StepF4 - StepF8    0.06547 0.0206 Inf   3.185  0.0642
 StepF4 - StepF9    0.04086 0.0206 Inf   1.988  0.7019
 StepF4 - StepF10   0.03855 0.0206 Inf   1.875  0.7749
 StepF4 - StepF11   0.09052 0.0206 Inf   4.404  0.0007
 StepF4 - StepF12   0.14759 0.0206 Inf   7.172  <.0001
 StepF5 - StepF6    0.01223 0.0206 Inf   0.595  1.0000
 StepF5 - StepF7    0.05356 0.0206 Inf   2.606  0.2760
 StepF5 - StepF8    0.06095 0.0206 Inf   2.965  0.1188
 StepF5 - StepF9    0.03635 0.0206 Inf   1.768  0.8354
 StepF5 - StepF10   0.03403 0.0206 Inf   1.656  0.8881
 StepF5 - StepF11   0.08601 0.0206 Inf   4.184  0.0017
 StepF5 - StepF12   0.14307 0.0206 Inf   6.952  <.0001
 StepF6 - StepF7    0.04134 0.0206 Inf   2.011  0.6860
 StepF6 - StepF8    0.04873 0.0206 Inf   2.371  0.4262
 StepF6 - StepF9    0.02412 0.0206 Inf   1.173  0.9909
 StepF6 - StepF10   0.02180 0.0206 Inf   1.061  0.9962
 StepF6 - StepF11   0.07378 0.0206 Inf   3.590  0.0173
 StepF6 - StepF12   0.13085 0.0206 Inf   6.358  <.0001
 StepF7 - StepF8    0.00739 0.0206 Inf   0.359  1.0000
 StepF7 - StepF9   -0.01722 0.0206 Inf  -0.838  0.9996
 StepF7 - StepF10  -0.01953 0.0206 Inf  -0.950  0.9986
 StepF7 - StepF11   0.03244 0.0206 Inf   1.578  0.9171
 StepF7 - StepF12   0.08951 0.0206 Inf   4.350  0.0008
 StepF8 - StepF9   -0.02461 0.0206 Inf  -1.197  0.9893
 StepF8 - StepF10  -0.02692 0.0206 Inf  -1.310  0.9781
 StepF8 - StepF11   0.02505 0.0206 Inf   1.219  0.9876
 StepF8 - StepF12   0.08212 0.0206 Inf   3.990  0.0038
 StepF9 - StepF10  -0.00232 0.0206 Inf  -0.113  1.0000
 StepF9 - StepF11   0.04966 0.0206 Inf   2.416  0.3948
 StepF9 - StepF12   0.10673 0.0206 Inf   5.186  <.0001
 StepF10 - StepF11  0.05198 0.0206 Inf   2.529  0.3217
 StepF10 - StepF12  0.10904 0.0206 Inf   5.299  <.0001
 StepF11 - StepF12  0.05706 0.0206 Inf   2.773  0.1915

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.19518 0.0206 Inf  -9.496  <.0001
 StepF1 - StepF3   -0.18430 0.0206 Inf  -8.966  <.0001
 StepF1 - StepF4   -0.07037 0.0206 Inf  -3.423  0.0305
 StepF1 - StepF5   -0.06585 0.0206 Inf  -3.204  0.0608
 StepF1 - StepF6   -0.05362 0.0206 Inf  -2.609  0.2744
 StepF1 - StepF7   -0.01229 0.0206 Inf  -0.598  1.0000
 StepF1 - StepF8   -0.00490 0.0206 Inf  -0.238  1.0000
 StepF1 - StepF9   -0.02950 0.0206 Inf  -1.435  0.9567
 StepF1 - StepF10  -0.03182 0.0206 Inf  -1.548  0.9270
 StepF1 - StepF11   0.02016 0.0206 Inf   0.981  0.9981
 StepF1 - StepF12   0.07722 0.0206 Inf   3.752  0.0096
 StepF2 - StepF3    0.01088 0.0206 Inf   0.529  1.0000
 StepF2 - StepF4    0.12481 0.0206 Inf   6.072  <.0001
 StepF2 - StepF5    0.12933 0.0206 Inf   6.292  <.0001
 StepF2 - StepF6    0.14155 0.0206 Inf   6.887  <.0001
 StepF2 - StepF7    0.18289 0.0206 Inf   8.898  <.0001
 StepF2 - StepF8    0.19028 0.0206 Inf   9.257  <.0001
 StepF2 - StepF9    0.16567 0.0206 Inf   8.060  <.0001
 StepF2 - StepF10   0.16335 0.0206 Inf   7.947  <.0001
 StepF2 - StepF11   0.21533 0.0206 Inf  10.476  <.0001
 StepF2 - StepF12   0.27240 0.0206 Inf  13.237  <.0001
 StepF3 - StepF4    0.11393 0.0206 Inf   5.543  <.0001
 StepF3 - StepF5    0.11845 0.0206 Inf   5.763  <.0001
 StepF3 - StepF6    0.13067 0.0206 Inf   6.357  <.0001
 StepF3 - StepF7    0.17201 0.0206 Inf   8.369  <.0001
 StepF3 - StepF8    0.17940 0.0206 Inf   8.728  <.0001
 StepF3 - StepF9    0.15479 0.0206 Inf   7.531  <.0001
 StepF3 - StepF10   0.15248 0.0206 Inf   7.418  <.0001
 StepF3 - StepF11   0.20445 0.0206 Inf   9.947  <.0001
 StepF3 - StepF12   0.26152 0.0206 Inf  12.708  <.0001
 StepF4 - StepF5    0.00452 0.0206 Inf   0.220  1.0000
 StepF4 - StepF6    0.01674 0.0206 Inf   0.815  0.9997
 StepF4 - StepF7    0.05808 0.0206 Inf   2.826  0.1691
 StepF4 - StepF8    0.06547 0.0206 Inf   3.185  0.0642
 StepF4 - StepF9    0.04086 0.0206 Inf   1.988  0.7019
 StepF4 - StepF10   0.03855 0.0206 Inf   1.875  0.7749
 StepF4 - StepF11   0.09052 0.0206 Inf   4.404  0.0007
 StepF4 - StepF12   0.14759 0.0206 Inf   7.172  <.0001
 StepF5 - StepF6    0.01223 0.0206 Inf   0.595  1.0000
 StepF5 - StepF7    0.05356 0.0206 Inf   2.606  0.2760
 StepF5 - StepF8    0.06095 0.0206 Inf   2.965  0.1188
 StepF5 - StepF9    0.03635 0.0206 Inf   1.768  0.8354
 StepF5 - StepF10   0.03403 0.0206 Inf   1.656  0.8881
 StepF5 - StepF11   0.08601 0.0206 Inf   4.184  0.0017
 StepF5 - StepF12   0.14307 0.0206 Inf   6.952  <.0001
 StepF6 - StepF7    0.04134 0.0206 Inf   2.011  0.6860
 StepF6 - StepF8    0.04873 0.0206 Inf   2.371  0.4262
 StepF6 - StepF9    0.02412 0.0206 Inf   1.173  0.9909
 StepF6 - StepF10   0.02180 0.0206 Inf   1.061  0.9962
 StepF6 - StepF11   0.07378 0.0206 Inf   3.590  0.0173
 StepF6 - StepF12   0.13085 0.0206 Inf   6.358  <.0001
 StepF7 - StepF8    0.00739 0.0206 Inf   0.359  1.0000
 StepF7 - StepF9   -0.01722 0.0206 Inf  -0.838  0.9996
 StepF7 - StepF10  -0.01953 0.0206 Inf  -0.950  0.9986
 StepF7 - StepF11   0.03244 0.0206 Inf   1.578  0.9171
 StepF7 - StepF12   0.08951 0.0206 Inf   4.350  0.0008
 StepF8 - StepF9   -0.02461 0.0206 Inf  -1.197  0.9893
 StepF8 - StepF10  -0.02692 0.0206 Inf  -1.310  0.9781
 StepF8 - StepF11   0.02505 0.0206 Inf   1.219  0.9876
 StepF8 - StepF12   0.08212 0.0206 Inf   3.990  0.0038
 StepF9 - StepF10  -0.00232 0.0206 Inf  -0.113  1.0000
 StepF9 - StepF11   0.04966 0.0206 Inf   2.416  0.3948
 StepF9 - StepF12   0.10673 0.0206 Inf   5.186  <.0001
 StepF10 - StepF11  0.05198 0.0206 Inf   2.529  0.3217
 StepF10 - StepF12  0.10904 0.0206 Inf   5.299  <.0001
 StepF11 - StepF12  0.05706 0.0206 Inf   2.773  0.1915

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.19518 0.0206 Inf   9.496  <.0001
 StepF3 - StepF2   -0.01088 0.0206 Inf  -0.529  1.0000
 StepF4 - StepF3   -0.11393 0.0206 Inf  -5.543  <.0001
 StepF5 - StepF4   -0.00452 0.0206 Inf  -0.220  1.0000
 StepF6 - StepF5   -0.01223 0.0206 Inf  -0.595  1.0000
 StepF7 - StepF6   -0.04134 0.0206 Inf  -2.011  0.3102
 StepF8 - StepF7   -0.00739 0.0206 Inf  -0.359  1.0000
 StepF9 - StepF8    0.02461 0.0206 Inf   1.197  1.0000
 StepF10 - StepF9   0.00232 0.0206 Inf   0.113  1.0000
 StepF11 - StepF10 -0.05198 0.0206 Inf  -2.529  0.0916
 StepF12 - StepF11 -0.05706 0.0206 Inf  -2.773  0.0500

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.19518 0.0206 Inf   9.496  <.0001
 StepF3 - StepF2   -0.01088 0.0206 Inf  -0.529  1.0000
 StepF4 - StepF3   -0.11393 0.0206 Inf  -5.543  <.0001
 StepF5 - StepF4   -0.00452 0.0206 Inf  -0.220  1.0000
 StepF6 - StepF5   -0.01223 0.0206 Inf  -0.595  1.0000
 StepF7 - StepF6   -0.04134 0.0206 Inf  -2.011  0.3102
 StepF8 - StepF7   -0.00739 0.0206 Inf  -0.359  1.0000
 StepF9 - StepF8    0.02461 0.0206 Inf   1.197  1.0000
 StepF10 - StepF9   0.00232 0.0206 Inf   0.113  1.0000
 StepF11 - StepF10 -0.05198 0.0206 Inf  -2.529  0.0916
 StepF12 - StepF11 -0.05706 0.0206 Inf  -2.773  0.0500

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TRAINING | Block 2 (12 steps) | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    194.8659 11     <2e-16 ***
Accuracy   1.9438  1     0.1633    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.806 0.0840 Inf     0.641     0.970
 2      0.793 0.0840 Inf     0.628     0.957
 3      0.886 0.0840 Inf     0.721     1.050
 4      0.789 0.0840 Inf     0.625     0.954
 5      0.714 0.0840 Inf     0.550     0.879
 6      0.739 0.0840 Inf     0.574     0.904
 7      0.817 0.0840 Inf     0.653     0.982
 8      0.702 0.0840 Inf     0.537     0.866
 9      0.720 0.0840 Inf     0.555     0.884
 10     0.719 0.0840 Inf     0.554     0.883
 11     0.686 0.0840 Inf     0.521     0.851
 12     0.633 0.0840 Inf     0.469     0.798

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.824 0.0837 Inf     0.660     0.988
 2      0.811 0.0837 Inf     0.647     0.975
 3      0.904 0.0837 Inf     0.740     1.068
 4      0.808 0.0837 Inf     0.644     0.972
 5      0.733 0.0837 Inf     0.569     0.897
 6      0.757 0.0837 Inf     0.593     0.922
 7      0.836 0.0837 Inf     0.672     1.000
 8      0.720 0.0837 Inf     0.556     0.884
 9      0.738 0.0837 Inf     0.574     0.902
 10     0.737 0.0837 Inf     0.573     0.901
 11     0.704 0.0837 Inf     0.540     0.868
 12     0.652 0.0837 Inf     0.488     0.816

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.01283 0.0232 Inf   0.552  1.0000
 StepF1 - StepF3   -0.08001 0.0232 Inf  -3.444  0.0285
 StepF1 - StepF4    0.01641 0.0232 Inf   0.706  0.9999
 StepF1 - StepF5    0.09111 0.0232 Inf   3.922  0.0050
 StepF1 - StepF6    0.06651 0.0232 Inf   2.863  0.1544
 StepF1 - StepF7   -0.01179 0.0232 Inf  -0.507  1.0000
 StepF1 - StepF8    0.10382 0.0232 Inf   4.469  0.0005
 StepF1 - StepF9    0.08569 0.0232 Inf   3.689  0.0121
 StepF1 - StepF10   0.08685 0.0232 Inf   3.738  0.0101
 StepF1 - StepF11   0.11963 0.0232 Inf   5.149  <.0001
 StepF1 - StepF12   0.17213 0.0233 Inf   7.400  <.0001
 StepF2 - StepF3   -0.09284 0.0232 Inf  -3.996  0.0037
 StepF2 - StepF4    0.00357 0.0232 Inf   0.154  1.0000
 StepF2 - StepF5    0.07828 0.0232 Inf   3.369  0.0363
 StepF2 - StepF6    0.05367 0.0232 Inf   2.310  0.4690
 StepF2 - StepF7   -0.02462 0.0232 Inf  -1.060  0.9962
 StepF2 - StepF8    0.09098 0.0232 Inf   3.916  0.0051
 StepF2 - StepF9    0.07286 0.0232 Inf   3.136  0.0741
 StepF2 - StepF10   0.07401 0.0232 Inf   3.186  0.0641
 StepF2 - StepF11   0.10680 0.0232 Inf   4.597  0.0003
 StepF2 - StepF12   0.15930 0.0233 Inf   6.849  <.0001
 StepF3 - StepF4    0.09642 0.0232 Inf   4.150  0.0020
 StepF3 - StepF5    0.17112 0.0232 Inf   7.366  <.0001
 StepF3 - StepF6    0.14652 0.0232 Inf   6.307  <.0001
 StepF3 - StepF7    0.06822 0.0232 Inf   2.937  0.1281
 StepF3 - StepF8    0.18382 0.0232 Inf   7.913  <.0001
 StepF3 - StepF9    0.16570 0.0232 Inf   7.133  <.0001
 StepF3 - StepF10   0.16685 0.0232 Inf   7.182  <.0001
 StepF3 - StepF11   0.19964 0.0232 Inf   8.593  <.0001
 StepF3 - StepF12   0.25214 0.0233 Inf  10.840  <.0001
 StepF4 - StepF5    0.07471 0.0232 Inf   3.216  0.0586
 StepF4 - StepF6    0.05010 0.0232 Inf   2.157  0.5816
 StepF4 - StepF7   -0.02819 0.0232 Inf  -1.214  0.9880
 StepF4 - StepF8    0.08741 0.0232 Inf   3.762  0.0092
 StepF4 - StepF9    0.06929 0.0232 Inf   2.982  0.1136
 StepF4 - StepF10   0.07044 0.0232 Inf   3.032  0.0994
 StepF4 - StepF11   0.10322 0.0232 Inf   4.443  0.0005
 StepF4 - StepF12   0.15572 0.0233 Inf   6.695  <.0001
 StepF5 - StepF6   -0.02461 0.0232 Inf  -1.059  0.9962
 StepF5 - StepF7   -0.10290 0.0232 Inf  -4.429  0.0006
 StepF5 - StepF8    0.01270 0.0232 Inf   0.547  1.0000
 StepF5 - StepF9   -0.00542 0.0232 Inf  -0.233  1.0000
 StepF5 - StepF10  -0.00427 0.0232 Inf  -0.184  1.0000
 StepF5 - StepF11   0.02852 0.0232 Inf   1.227  0.9869
 StepF5 - StepF12   0.08102 0.0233 Inf   3.483  0.0249
 StepF6 - StepF7   -0.07829 0.0232 Inf  -3.370  0.0362
 StepF6 - StepF8    0.03731 0.0232 Inf   1.606  0.9074
 StepF6 - StepF9    0.01919 0.0232 Inf   0.826  0.9996
 StepF6 - StepF10   0.02034 0.0232 Inf   0.875  0.9993
 StepF6 - StepF11   0.05312 0.0232 Inf   2.287  0.4862
 StepF6 - StepF12   0.10562 0.0233 Inf   4.541  0.0003
 StepF7 - StepF8    0.11560 0.0232 Inf   4.976  <.0001
 StepF7 - StepF9    0.09748 0.0232 Inf   4.196  0.0016
 StepF7 - StepF10   0.09863 0.0232 Inf   4.246  0.0013
 StepF7 - StepF11   0.13141 0.0232 Inf   5.657  <.0001
 StepF7 - StepF12   0.18392 0.0233 Inf   7.907  <.0001
 StepF8 - StepF9   -0.01812 0.0232 Inf  -0.780  0.9998
 StepF8 - StepF10  -0.01697 0.0232 Inf  -0.730  0.9999
 StepF8 - StepF11   0.01581 0.0232 Inf   0.681  0.9999
 StepF8 - StepF12   0.06832 0.0233 Inf   2.937  0.1279
 StepF9 - StepF10   0.00115 0.0232 Inf   0.050  1.0000
 StepF9 - StepF11   0.03393 0.0232 Inf   1.461  0.9510
 StepF9 - StepF12   0.08644 0.0233 Inf   3.716  0.0110
 StepF10 - StepF11  0.03278 0.0232 Inf   1.411  0.9617
 StepF10 - StepF12  0.08529 0.0233 Inf   3.667  0.0131
 StepF11 - StepF12  0.05250 0.0233 Inf   2.257  0.5075

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.01283 0.0232 Inf   0.552  1.0000
 StepF1 - StepF3   -0.08001 0.0232 Inf  -3.444  0.0285
 StepF1 - StepF4    0.01641 0.0232 Inf   0.706  0.9999
 StepF1 - StepF5    0.09111 0.0232 Inf   3.922  0.0050
 StepF1 - StepF6    0.06651 0.0232 Inf   2.863  0.1544
 StepF1 - StepF7   -0.01179 0.0232 Inf  -0.507  1.0000
 StepF1 - StepF8    0.10382 0.0232 Inf   4.469  0.0005
 StepF1 - StepF9    0.08569 0.0232 Inf   3.689  0.0121
 StepF1 - StepF10   0.08685 0.0232 Inf   3.738  0.0101
 StepF1 - StepF11   0.11963 0.0232 Inf   5.149  <.0001
 StepF1 - StepF12   0.17213 0.0233 Inf   7.400  <.0001
 StepF2 - StepF3   -0.09284 0.0232 Inf  -3.996  0.0037
 StepF2 - StepF4    0.00357 0.0232 Inf   0.154  1.0000
 StepF2 - StepF5    0.07828 0.0232 Inf   3.369  0.0363
 StepF2 - StepF6    0.05367 0.0232 Inf   2.310  0.4690
 StepF2 - StepF7   -0.02462 0.0232 Inf  -1.060  0.9962
 StepF2 - StepF8    0.09098 0.0232 Inf   3.916  0.0051
 StepF2 - StepF9    0.07286 0.0232 Inf   3.136  0.0741
 StepF2 - StepF10   0.07401 0.0232 Inf   3.186  0.0641
 StepF2 - StepF11   0.10680 0.0232 Inf   4.597  0.0003
 StepF2 - StepF12   0.15930 0.0233 Inf   6.849  <.0001
 StepF3 - StepF4    0.09642 0.0232 Inf   4.150  0.0020
 StepF3 - StepF5    0.17112 0.0232 Inf   7.366  <.0001
 StepF3 - StepF6    0.14652 0.0232 Inf   6.307  <.0001
 StepF3 - StepF7    0.06822 0.0232 Inf   2.937  0.1281
 StepF3 - StepF8    0.18382 0.0232 Inf   7.913  <.0001
 StepF3 - StepF9    0.16570 0.0232 Inf   7.133  <.0001
 StepF3 - StepF10   0.16685 0.0232 Inf   7.182  <.0001
 StepF3 - StepF11   0.19964 0.0232 Inf   8.593  <.0001
 StepF3 - StepF12   0.25214 0.0233 Inf  10.840  <.0001
 StepF4 - StepF5    0.07471 0.0232 Inf   3.216  0.0586
 StepF4 - StepF6    0.05010 0.0232 Inf   2.157  0.5816
 StepF4 - StepF7   -0.02819 0.0232 Inf  -1.214  0.9880
 StepF4 - StepF8    0.08741 0.0232 Inf   3.762  0.0092
 StepF4 - StepF9    0.06929 0.0232 Inf   2.982  0.1136
 StepF4 - StepF10   0.07044 0.0232 Inf   3.032  0.0994
 StepF4 - StepF11   0.10322 0.0232 Inf   4.443  0.0005
 StepF4 - StepF12   0.15572 0.0233 Inf   6.695  <.0001
 StepF5 - StepF6   -0.02461 0.0232 Inf  -1.059  0.9962
 StepF5 - StepF7   -0.10290 0.0232 Inf  -4.429  0.0006
 StepF5 - StepF8    0.01270 0.0232 Inf   0.547  1.0000
 StepF5 - StepF9   -0.00542 0.0232 Inf  -0.233  1.0000
 StepF5 - StepF10  -0.00427 0.0232 Inf  -0.184  1.0000
 StepF5 - StepF11   0.02852 0.0232 Inf   1.227  0.9869
 StepF5 - StepF12   0.08102 0.0233 Inf   3.483  0.0249
 StepF6 - StepF7   -0.07829 0.0232 Inf  -3.370  0.0362
 StepF6 - StepF8    0.03731 0.0232 Inf   1.606  0.9074
 StepF6 - StepF9    0.01919 0.0232 Inf   0.826  0.9996
 StepF6 - StepF10   0.02034 0.0232 Inf   0.875  0.9993
 StepF6 - StepF11   0.05312 0.0232 Inf   2.287  0.4862
 StepF6 - StepF12   0.10562 0.0233 Inf   4.541  0.0003
 StepF7 - StepF8    0.11560 0.0232 Inf   4.976  <.0001
 StepF7 - StepF9    0.09748 0.0232 Inf   4.196  0.0016
 StepF7 - StepF10   0.09863 0.0232 Inf   4.246  0.0013
 StepF7 - StepF11   0.13141 0.0232 Inf   5.657  <.0001
 StepF7 - StepF12   0.18392 0.0233 Inf   7.907  <.0001
 StepF8 - StepF9   -0.01812 0.0232 Inf  -0.780  0.9998
 StepF8 - StepF10  -0.01697 0.0232 Inf  -0.730  0.9999
 StepF8 - StepF11   0.01581 0.0232 Inf   0.681  0.9999
 StepF8 - StepF12   0.06832 0.0233 Inf   2.937  0.1279
 StepF9 - StepF10   0.00115 0.0232 Inf   0.050  1.0000
 StepF9 - StepF11   0.03393 0.0232 Inf   1.461  0.9510
 StepF9 - StepF12   0.08644 0.0233 Inf   3.716  0.0110
 StepF10 - StepF11  0.03278 0.0232 Inf   1.411  0.9617
 StepF10 - StepF12  0.08529 0.0233 Inf   3.667  0.0131
 StepF11 - StepF12  0.05250 0.0233 Inf   2.257  0.5075

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.01283 0.0232 Inf  -0.552  1.0000
 StepF3 - StepF2    0.09284 0.0232 Inf   3.996  0.0006
 StepF4 - StepF3   -0.09642 0.0232 Inf  -4.150  0.0003
 StepF5 - StepF4   -0.07471 0.0232 Inf  -3.216  0.0091
 StepF6 - StepF5    0.02461 0.0232 Inf   1.059  1.0000
 StepF7 - StepF6    0.07829 0.0232 Inf   3.370  0.0060
 StepF8 - StepF7   -0.11560 0.0232 Inf  -4.976  <.0001
 StepF9 - StepF8    0.01812 0.0232 Inf   0.780  1.0000
 StepF10 - StepF9  -0.00115 0.0232 Inf  -0.050  1.0000
 StepF11 - StepF10 -0.03278 0.0232 Inf  -1.411  0.7911
 StepF12 - StepF11 -0.05250 0.0233 Inf  -2.257  0.1440

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.01283 0.0232 Inf  -0.552  1.0000
 StepF3 - StepF2    0.09284 0.0232 Inf   3.996  0.0006
 StepF4 - StepF3   -0.09642 0.0232 Inf  -4.150  0.0003
 StepF5 - StepF4   -0.07471 0.0232 Inf  -3.216  0.0091
 StepF6 - StepF5    0.02461 0.0232 Inf   1.059  1.0000
 StepF7 - StepF6    0.07829 0.0232 Inf   3.370  0.0060
 StepF8 - StepF7   -0.11560 0.0232 Inf  -4.976  <.0001
 StepF9 - StepF8    0.01812 0.0232 Inf   0.780  1.0000
 StepF10 - StepF9  -0.00115 0.0232 Inf  -0.050  1.0000
 StepF11 - StepF10 -0.03278 0.0232 Inf  -1.411  0.7911
 StepF12 - StepF11 -0.05250 0.0233 Inf  -2.257  0.1440

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TRAINING | Block 2 (12 steps) | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    228.3268 11     <2e-16 ***
Accuracy   1.0719  1     0.3005    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.41 0.138 Inf     1.141      1.68
 2       1.66 0.138 Inf     1.386      1.93
 3       1.64 0.138 Inf     1.367      1.91
 4       1.52 0.138 Inf     1.247      1.79
 5       1.51 0.138 Inf     1.241      1.78
 6       1.38 0.138 Inf     1.109      1.65
 7       1.47 0.138 Inf     1.199      1.74
 8       1.38 0.138 Inf     1.108      1.65
 9       1.39 0.138 Inf     1.117      1.66
 10      1.39 0.138 Inf     1.117      1.66
 11      1.35 0.138 Inf     1.081      1.62
 12      1.18 0.138 Inf     0.910      1.45

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.44 0.138 Inf     1.167      1.71
 2       1.68 0.138 Inf     1.411      1.95
 3       1.66 0.138 Inf     1.392      1.93
 4       1.54 0.138 Inf     1.272      1.81
 5       1.54 0.138 Inf     1.267      1.81
 6       1.40 0.138 Inf     1.135      1.68
 7       1.49 0.138 Inf     1.225      1.77
 8       1.40 0.138 Inf     1.133      1.67
 9       1.41 0.138 Inf     1.142      1.68
 10      1.41 0.138 Inf     1.143      1.68
 11      1.38 0.138 Inf     1.106      1.65
 12      1.21 0.138 Inf     0.936      1.48

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.244382 0.0404 Inf  -6.051  <.0001
 StepF1 - StepF3   -0.225688 0.0404 Inf  -5.588  <.0001
 StepF1 - StepF4   -0.105241 0.0404 Inf  -2.606  0.2760
 StepF1 - StepF5   -0.100001 0.0404 Inf  -2.476  0.3549
 StepF1 - StepF6    0.032041 0.0404 Inf   0.793  0.9997
 StepF1 - StepF7   -0.057797 0.0404 Inf  -1.431  0.9576
 StepF1 - StepF8    0.033679 0.0404 Inf   0.834  0.9996
 StepF1 - StepF9    0.024347 0.0404 Inf   0.603  1.0000
 StepF1 - StepF10   0.024180 0.0404 Inf   0.599  1.0000
 StepF1 - StepF11   0.060822 0.0404 Inf   1.506  0.9394
 StepF1 - StepF12   0.230900 0.0404 Inf   5.711  <.0001
 StepF2 - StepF3    0.018694 0.0404 Inf   0.463  1.0000
 StepF2 - StepF4    0.139141 0.0404 Inf   3.445  0.0283
 StepF2 - StepF5    0.144381 0.0404 Inf   3.575  0.0182
 StepF2 - StepF6    0.276422 0.0404 Inf   6.845  <.0001
 StepF2 - StepF7    0.186584 0.0404 Inf   4.620  0.0002
 StepF2 - StepF8    0.278061 0.0404 Inf   6.885  <.0001
 StepF2 - StepF9    0.268728 0.0404 Inf   6.654  <.0001
 StepF2 - StepF10   0.268562 0.0404 Inf   6.650  <.0001
 StepF2 - StepF11   0.305203 0.0404 Inf   7.557  <.0001
 StepF2 - StepF12   0.475282 0.0404 Inf  11.755  <.0001
 StepF3 - StepF4    0.120447 0.0404 Inf   2.983  0.1136
 StepF3 - StepF5    0.125687 0.0404 Inf   3.112  0.0794
 StepF3 - StepF6    0.257729 0.0404 Inf   6.382  <.0001
 StepF3 - StepF7    0.167891 0.0404 Inf   4.157  0.0019
 StepF3 - StepF8    0.259367 0.0404 Inf   6.422  <.0001
 StepF3 - StepF9    0.250034 0.0404 Inf   6.191  <.0001
 StepF3 - StepF10   0.249868 0.0404 Inf   6.187  <.0001
 StepF3 - StepF11   0.286509 0.0404 Inf   7.095  <.0001
 StepF3 - StepF12   0.456588 0.0404 Inf  11.293  <.0001
 StepF4 - StepF5    0.005240 0.0404 Inf   0.130  1.0000
 StepF4 - StepF6    0.137281 0.0404 Inf   3.399  0.0330
 StepF4 - StepF7    0.047443 0.0404 Inf   1.175  0.9908
 StepF4 - StepF8    0.138920 0.0404 Inf   3.440  0.0288
 StepF4 - StepF9    0.129587 0.0404 Inf   3.209  0.0599
 StepF4 - StepF10   0.129421 0.0404 Inf   3.205  0.0606
 StepF4 - StepF11   0.166062 0.0404 Inf   4.112  0.0023
 StepF4 - StepF12   0.336141 0.0404 Inf   8.314  <.0001
 StepF5 - StepF6    0.132041 0.0404 Inf   3.270  0.0498
 StepF5 - StepF7    0.042203 0.0404 Inf   1.045  0.9966
 StepF5 - StepF8    0.133680 0.0404 Inf   3.310  0.0439
 StepF5 - StepF9    0.124347 0.0404 Inf   3.079  0.0872
 StepF5 - StepF10   0.124181 0.0404 Inf   3.075  0.0882
 StepF5 - StepF11   0.160822 0.0404 Inf   3.982  0.0039
 StepF5 - StepF12   0.330901 0.0404 Inf   8.184  <.0001
 StepF6 - StepF7   -0.089838 0.0404 Inf  -2.225  0.5315
 StepF6 - StepF8    0.001638 0.0404 Inf   0.041  1.0000
 StepF6 - StepF9   -0.007694 0.0404 Inf  -0.191  1.0000
 StepF6 - StepF10  -0.007861 0.0404 Inf  -0.195  1.0000
 StepF6 - StepF11   0.028781 0.0404 Inf   0.713  0.9999
 StepF6 - StepF12   0.198859 0.0404 Inf   4.918  0.0001
 StepF7 - StepF8    0.091477 0.0404 Inf   2.265  0.5018
 StepF7 - StepF9    0.082144 0.0404 Inf   2.034  0.6700
 StepF7 - StepF10   0.081977 0.0404 Inf   2.030  0.6729
 StepF7 - StepF11   0.118619 0.0404 Inf   2.937  0.1279
 StepF7 - StepF12   0.288697 0.0404 Inf   7.140  <.0001
 StepF8 - StepF9   -0.009333 0.0404 Inf  -0.231  1.0000
 StepF8 - StepF10  -0.009499 0.0404 Inf  -0.235  1.0000
 StepF8 - StepF11   0.027142 0.0404 Inf   0.672  0.9999
 StepF8 - StepF12   0.197221 0.0404 Inf   4.878  0.0001
 StepF9 - StepF10  -0.000166 0.0404 Inf  -0.004  1.0000
 StepF9 - StepF11   0.036475 0.0404 Inf   0.903  0.9991
 StepF9 - StepF12   0.206554 0.0404 Inf   5.109  <.0001
 StepF10 - StepF11  0.036641 0.0404 Inf   0.907  0.9991
 StepF10 - StepF12  0.206720 0.0404 Inf   5.113  <.0001
 StepF11 - StepF12  0.170078 0.0404 Inf   4.206  0.0016

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.244382 0.0404 Inf  -6.051  <.0001
 StepF1 - StepF3   -0.225688 0.0404 Inf  -5.588  <.0001
 StepF1 - StepF4   -0.105241 0.0404 Inf  -2.606  0.2760
 StepF1 - StepF5   -0.100001 0.0404 Inf  -2.476  0.3549
 StepF1 - StepF6    0.032041 0.0404 Inf   0.793  0.9997
 StepF1 - StepF7   -0.057797 0.0404 Inf  -1.431  0.9576
 StepF1 - StepF8    0.033679 0.0404 Inf   0.834  0.9996
 StepF1 - StepF9    0.024347 0.0404 Inf   0.603  1.0000
 StepF1 - StepF10   0.024180 0.0404 Inf   0.599  1.0000
 StepF1 - StepF11   0.060822 0.0404 Inf   1.506  0.9394
 StepF1 - StepF12   0.230900 0.0404 Inf   5.711  <.0001
 StepF2 - StepF3    0.018694 0.0404 Inf   0.463  1.0000
 StepF2 - StepF4    0.139141 0.0404 Inf   3.445  0.0283
 StepF2 - StepF5    0.144381 0.0404 Inf   3.575  0.0182
 StepF2 - StepF6    0.276422 0.0404 Inf   6.845  <.0001
 StepF2 - StepF7    0.186584 0.0404 Inf   4.620  0.0002
 StepF2 - StepF8    0.278061 0.0404 Inf   6.885  <.0001
 StepF2 - StepF9    0.268728 0.0404 Inf   6.654  <.0001
 StepF2 - StepF10   0.268562 0.0404 Inf   6.650  <.0001
 StepF2 - StepF11   0.305203 0.0404 Inf   7.557  <.0001
 StepF2 - StepF12   0.475282 0.0404 Inf  11.755  <.0001
 StepF3 - StepF4    0.120447 0.0404 Inf   2.983  0.1136
 StepF3 - StepF5    0.125687 0.0404 Inf   3.112  0.0794
 StepF3 - StepF6    0.257729 0.0404 Inf   6.382  <.0001
 StepF3 - StepF7    0.167891 0.0404 Inf   4.157  0.0019
 StepF3 - StepF8    0.259367 0.0404 Inf   6.422  <.0001
 StepF3 - StepF9    0.250034 0.0404 Inf   6.191  <.0001
 StepF3 - StepF10   0.249868 0.0404 Inf   6.187  <.0001
 StepF3 - StepF11   0.286509 0.0404 Inf   7.095  <.0001
 StepF3 - StepF12   0.456588 0.0404 Inf  11.293  <.0001
 StepF4 - StepF5    0.005240 0.0404 Inf   0.130  1.0000
 StepF4 - StepF6    0.137281 0.0404 Inf   3.399  0.0330
 StepF4 - StepF7    0.047443 0.0404 Inf   1.175  0.9908
 StepF4 - StepF8    0.138920 0.0404 Inf   3.440  0.0288
 StepF4 - StepF9    0.129587 0.0404 Inf   3.209  0.0599
 StepF4 - StepF10   0.129421 0.0404 Inf   3.205  0.0606
 StepF4 - StepF11   0.166062 0.0404 Inf   4.112  0.0023
 StepF4 - StepF12   0.336141 0.0404 Inf   8.314  <.0001
 StepF5 - StepF6    0.132041 0.0404 Inf   3.270  0.0498
 StepF5 - StepF7    0.042203 0.0404 Inf   1.045  0.9966
 StepF5 - StepF8    0.133680 0.0404 Inf   3.310  0.0439
 StepF5 - StepF9    0.124347 0.0404 Inf   3.079  0.0872
 StepF5 - StepF10   0.124181 0.0404 Inf   3.075  0.0882
 StepF5 - StepF11   0.160822 0.0404 Inf   3.982  0.0039
 StepF5 - StepF12   0.330901 0.0404 Inf   8.184  <.0001
 StepF6 - StepF7   -0.089838 0.0404 Inf  -2.225  0.5315
 StepF6 - StepF8    0.001638 0.0404 Inf   0.041  1.0000
 StepF6 - StepF9   -0.007694 0.0404 Inf  -0.191  1.0000
 StepF6 - StepF10  -0.007861 0.0404 Inf  -0.195  1.0000
 StepF6 - StepF11   0.028781 0.0404 Inf   0.713  0.9999
 StepF6 - StepF12   0.198859 0.0404 Inf   4.918  0.0001
 StepF7 - StepF8    0.091477 0.0404 Inf   2.265  0.5018
 StepF7 - StepF9    0.082144 0.0404 Inf   2.034  0.6700
 StepF7 - StepF10   0.081977 0.0404 Inf   2.030  0.6729
 StepF7 - StepF11   0.118619 0.0404 Inf   2.937  0.1279
 StepF7 - StepF12   0.288697 0.0404 Inf   7.140  <.0001
 StepF8 - StepF9   -0.009333 0.0404 Inf  -0.231  1.0000
 StepF8 - StepF10  -0.009499 0.0404 Inf  -0.235  1.0000
 StepF8 - StepF11   0.027142 0.0404 Inf   0.672  0.9999
 StepF8 - StepF12   0.197221 0.0404 Inf   4.878  0.0001
 StepF9 - StepF10  -0.000166 0.0404 Inf  -0.004  1.0000
 StepF9 - StepF11   0.036475 0.0404 Inf   0.903  0.9991
 StepF9 - StepF12   0.206554 0.0404 Inf   5.109  <.0001
 StepF10 - StepF11  0.036641 0.0404 Inf   0.907  0.9991
 StepF10 - StepF12  0.206720 0.0404 Inf   5.113  <.0001
 StepF11 - StepF12  0.170078 0.0404 Inf   4.206  0.0016

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.244381 0.0404 Inf   6.051  <.0001
 StepF3 - StepF2   -0.018694 0.0404 Inf  -0.463  1.0000
 StepF4 - StepF3   -0.120447 0.0404 Inf  -2.983  0.0229
 StepF5 - StepF4   -0.005240 0.0404 Inf  -0.130  1.0000
 StepF6 - StepF5   -0.132041 0.0404 Inf  -3.270  0.0097
 StepF7 - StepF6    0.089838 0.0404 Inf   2.225  0.1645
 StepF8 - StepF7   -0.091477 0.0404 Inf  -2.265  0.1645
 StepF9 - StepF8    0.009333 0.0404 Inf   0.231  1.0000
 StepF10 - StepF9   0.000166 0.0404 Inf   0.004  1.0000
 StepF11 - StepF10 -0.036641 0.0404 Inf  -0.907  1.0000
 StepF12 - StepF11 -0.170079 0.0404 Inf  -4.206  0.0003

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.244381 0.0404 Inf   6.051  <.0001
 StepF3 - StepF2   -0.018694 0.0404 Inf  -0.463  1.0000
 StepF4 - StepF3   -0.120447 0.0404 Inf  -2.983  0.0229
 StepF5 - StepF4   -0.005240 0.0404 Inf  -0.130  1.0000
 StepF6 - StepF5   -0.132041 0.0404 Inf  -3.270  0.0097
 StepF7 - StepF6    0.089838 0.0404 Inf   2.225  0.1645
 StepF8 - StepF7   -0.091477 0.0404 Inf  -2.265  0.1645
 StepF9 - StepF8    0.009333 0.0404 Inf   0.231  1.0000
 StepF10 - StepF9   0.000166 0.0404 Inf   0.004  1.0000
 StepF11 - StepF10 -0.036641 0.0404 Inf  -0.907  1.0000
 StepF12 - StepF11 -0.170079 0.0404 Inf  -4.206  0.0003

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 
.report_step_block(stepwise_18, "3 (18 steps)")


==============================
TRAINING | Block 3 (18 steps) | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    164.7997 17     <2e-16 ***
Accuracy   0.1116  1     0.7384    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.568 0.0477 Inf     0.475     0.662
 2      0.605 0.0477 Inf     0.511     0.698
 3      0.618 0.0477 Inf     0.524     0.711
 4      0.584 0.0477 Inf     0.490     0.678
 5      0.575 0.0477 Inf     0.481     0.668
 6      0.588 0.0477 Inf     0.494     0.681
 7      0.585 0.0477 Inf     0.491     0.678
 8      0.559 0.0477 Inf     0.466     0.653
 9      0.562 0.0477 Inf     0.469     0.656
 10     0.562 0.0477 Inf     0.469     0.656
 11     0.535 0.0477 Inf     0.442     0.629
 12     0.498 0.0477 Inf     0.405     0.592
 13     0.491 0.0477 Inf     0.397     0.584
 14     0.541 0.0477 Inf     0.448     0.635
 15     0.529 0.0477 Inf     0.435     0.622
 16     0.534 0.0477 Inf     0.440     0.627
 17     0.514 0.0477 Inf     0.420     0.607
 18     0.513 0.0477 Inf     0.420     0.607

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.566 0.0477 Inf     0.472     0.659
 2      0.602 0.0477 Inf     0.509     0.696
 3      0.615 0.0477 Inf     0.522     0.709
 4      0.581 0.0477 Inf     0.488     0.675
 5      0.572 0.0477 Inf     0.479     0.666
 6      0.585 0.0477 Inf     0.492     0.678
 7      0.582 0.0477 Inf     0.488     0.675
 8      0.557 0.0477 Inf     0.463     0.650
 9      0.560 0.0477 Inf     0.466     0.653
 10     0.560 0.0477 Inf     0.466     0.653
 11     0.533 0.0477 Inf     0.439     0.626
 12     0.496 0.0477 Inf     0.402     0.589
 13     0.488 0.0477 Inf     0.394     0.581
 14     0.539 0.0477 Inf     0.445     0.632
 15     0.526 0.0477 Inf     0.433     0.620
 16     0.531 0.0477 Inf     0.438     0.624
 17     0.511 0.0477 Inf     0.417     0.604
 18     0.511 0.0477 Inf     0.417     0.604

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.036708 0.0165 Inf  -2.230  0.7338
 StepF1 - StepF3   -0.049497 0.0165 Inf  -3.006  0.1967
 StepF1 - StepF4   -0.015775 0.0165 Inf  -0.958  1.0000
 StepF1 - StepF5   -0.006471 0.0165 Inf  -0.393  1.0000
 StepF1 - StepF6   -0.019362 0.0165 Inf  -1.176  0.9995
 StepF1 - StepF7   -0.016356 0.0165 Inf  -0.993  0.9999
 StepF1 - StepF8    0.009001 0.0165 Inf   0.547  1.0000
 StepF1 - StepF9    0.005877 0.0165 Inf   0.357  1.0000
 StepF1 - StepF10   0.005905 0.0165 Inf   0.359  1.0000
 StepF1 - StepF11   0.032871 0.0165 Inf   1.997  0.8715
 StepF1 - StepF12   0.069725 0.0165 Inf   4.235  0.0030
 StepF1 - StepF13   0.077649 0.0165 Inf   4.716  0.0003
 StepF1 - StepF14   0.026770 0.0165 Inf   1.626  0.9786
 StepF1 - StepF15   0.039230 0.0165 Inf   2.383  0.6212
 StepF1 - StepF16   0.034602 0.0165 Inf   2.102  0.8158
 StepF1 - StepF17   0.054680 0.0165 Inf   3.321  0.0840
 StepF1 - StepF18   0.054816 0.0165 Inf   3.326  0.0827
 StepF2 - StepF3   -0.012789 0.0165 Inf  -0.777  1.0000
 StepF2 - StepF4    0.020934 0.0165 Inf   1.271  0.9987
 StepF2 - StepF5    0.030238 0.0165 Inf   1.837  0.9338
 StepF2 - StepF6    0.017346 0.0165 Inf   1.054  0.9999
 StepF2 - StepF7    0.020352 0.0165 Inf   1.236  0.9991
 StepF2 - StepF8    0.045709 0.0165 Inf   2.776  0.3280
 StepF2 - StepF9    0.042585 0.0165 Inf   2.587  0.4635
 StepF2 - StepF10   0.042613 0.0165 Inf   2.588  0.4623
 StepF2 - StepF11   0.069579 0.0165 Inf   4.226  0.0032
 StepF2 - StepF12   0.106434 0.0165 Inf   6.465  <.0001
 StepF2 - StepF13   0.114357 0.0165 Inf   6.946  <.0001
 StepF2 - StepF14   0.063478 0.0165 Inf   3.856  0.0139
 StepF2 - StepF15   0.075939 0.0165 Inf   4.612  0.0006
 StepF2 - StepF16   0.071310 0.0165 Inf   4.331  0.0020
 StepF2 - StepF17   0.091388 0.0165 Inf   5.551  <.0001
 StepF2 - StepF18   0.091525 0.0165 Inf   5.554  <.0001
 StepF3 - StepF4    0.033723 0.0165 Inf   2.048  0.8455
 StepF3 - StepF5    0.043027 0.0165 Inf   2.613  0.4433
 StepF3 - StepF6    0.030135 0.0165 Inf   1.830  0.9357
 StepF3 - StepF7    0.033141 0.0165 Inf   2.013  0.8635
 StepF3 - StepF8    0.058498 0.0165 Inf   3.553  0.0405
 StepF3 - StepF9    0.055374 0.0165 Inf   3.363  0.0740
 StepF3 - StepF10   0.055402 0.0165 Inf   3.365  0.0736
 StepF3 - StepF11   0.082368 0.0165 Inf   5.003  0.0001
 StepF3 - StepF12   0.119223 0.0165 Inf   7.241  <.0001
 StepF3 - StepF13   0.127146 0.0165 Inf   7.723  <.0001
 StepF3 - StepF14   0.076267 0.0165 Inf   4.632  0.0005
 StepF3 - StepF15   0.088727 0.0165 Inf   5.389  <.0001
 StepF3 - StepF16   0.084099 0.0165 Inf   5.108  <.0001
 StepF3 - StepF17   0.104177 0.0165 Inf   6.328  <.0001
 StepF3 - StepF18   0.104314 0.0165 Inf   6.330  <.0001
 StepF4 - StepF5    0.009304 0.0165 Inf   0.565  1.0000
 StepF4 - StepF6   -0.003588 0.0165 Inf  -0.218  1.0000
 StepF4 - StepF7   -0.000582 0.0165 Inf  -0.035  1.0000
 StepF4 - StepF8    0.024775 0.0165 Inf   1.505  0.9905
 StepF4 - StepF9    0.021651 0.0165 Inf   1.315  0.9980
 StepF4 - StepF10   0.021679 0.0165 Inf   1.317  0.9979
 StepF4 - StepF11   0.048645 0.0165 Inf   2.955  0.2226
 StepF4 - StepF12   0.085500 0.0165 Inf   5.193  <.0001
 StepF4 - StepF13   0.093424 0.0165 Inf   5.674  <.0001
 StepF4 - StepF14   0.042544 0.0165 Inf   2.584  0.4654
 StepF4 - StepF15   0.055005 0.0165 Inf   3.341  0.0792
 StepF4 - StepF16   0.050376 0.0165 Inf   3.060  0.1724
 StepF4 - StepF17   0.070455 0.0165 Inf   4.279  0.0025
 StepF4 - StepF18   0.070591 0.0165 Inf   4.284  0.0025
 StepF5 - StepF6   -0.012892 0.0165 Inf  -0.783  1.0000
 StepF5 - StepF7   -0.009885 0.0165 Inf  -0.600  1.0000
 StepF5 - StepF8    0.015471 0.0165 Inf   0.940  1.0000
 StepF5 - StepF9    0.012347 0.0165 Inf   0.750  1.0000
 StepF5 - StepF10   0.012375 0.0165 Inf   0.752  1.0000
 StepF5 - StepF11   0.039341 0.0165 Inf   2.390  0.6160
 StepF5 - StepF12   0.076196 0.0165 Inf   4.628  0.0005
 StepF5 - StepF13   0.084120 0.0165 Inf   5.109  <.0001
 StepF5 - StepF14   0.033240 0.0165 Inf   2.019  0.8606
 StepF5 - StepF15   0.045701 0.0165 Inf   2.776  0.3283
 StepF5 - StepF16   0.041072 0.0165 Inf   2.495  0.5343
 StepF5 - StepF17   0.061151 0.0165 Inf   3.714  0.0233
 StepF5 - StepF18   0.061287 0.0165 Inf   3.719  0.0229
 StepF6 - StepF7    0.003006 0.0165 Inf   0.183  1.0000
 StepF6 - StepF8    0.028363 0.0165 Inf   1.723  0.9626
 StepF6 - StepF9    0.025239 0.0165 Inf   1.533  0.9884
 StepF6 - StepF10   0.025267 0.0165 Inf   1.535  0.9882
 StepF6 - StepF11   0.052233 0.0165 Inf   3.173  0.1282
 StepF6 - StepF12   0.089088 0.0165 Inf   5.411  <.0001
 StepF6 - StepF13   0.097011 0.0165 Inf   5.892  <.0001
 StepF6 - StepF14   0.046132 0.0165 Inf   2.802  0.3113
 StepF6 - StepF15   0.058593 0.0165 Inf   3.559  0.0397
 StepF6 - StepF16   0.053964 0.0165 Inf   3.278  0.0954
 StepF6 - StepF17   0.074042 0.0165 Inf   4.497  0.0010
 StepF6 - StepF18   0.074179 0.0165 Inf   4.501  0.0009
 StepF7 - StepF8    0.025357 0.0165 Inf   1.540  0.9878
 StepF7 - StepF9    0.022233 0.0165 Inf   1.350  0.9972
 StepF7 - StepF10   0.022261 0.0165 Inf   1.352  0.9972
 StepF7 - StepF11   0.049227 0.0165 Inf   2.990  0.2047
 StepF7 - StepF12   0.086082 0.0165 Inf   5.229  <.0001
 StepF7 - StepF13   0.094005 0.0165 Inf   5.710  <.0001
 StepF7 - StepF14   0.043126 0.0165 Inf   2.619  0.4388
 StepF7 - StepF15   0.055586 0.0165 Inf   3.376  0.0712
 StepF7 - StepF16   0.050958 0.0165 Inf   3.095  0.1575
 StepF7 - StepF17   0.071036 0.0165 Inf   4.315  0.0022
 StepF7 - StepF18   0.071173 0.0165 Inf   4.319  0.0021
 StepF8 - StepF9   -0.003124 0.0165 Inf  -0.190  1.0000
 StepF8 - StepF10  -0.003096 0.0165 Inf  -0.188  1.0000
 StepF8 - StepF11   0.023870 0.0165 Inf   1.450  0.9937
 StepF8 - StepF12   0.060725 0.0165 Inf   3.688  0.0255
 StepF8 - StepF13   0.068648 0.0165 Inf   4.170  0.0040
 StepF8 - StepF14   0.017769 0.0165 Inf   1.079  0.9998
 StepF8 - StepF15   0.030229 0.0165 Inf   1.836  0.9340
 StepF8 - StepF16   0.025601 0.0165 Inf   1.555  0.9865
 StepF8 - StepF17   0.045679 0.0165 Inf   2.775  0.3292
 StepF8 - StepF18   0.045816 0.0165 Inf   2.780  0.3254
 StepF9 - StepF10   0.000028 0.0165 Inf   0.002  1.0000
 StepF9 - StepF11   0.026994 0.0165 Inf   1.640  0.9768
 StepF9 - StepF12   0.063849 0.0165 Inf   3.878  0.0127
 StepF9 - StepF13   0.071772 0.0165 Inf   4.359  0.0018
 StepF9 - StepF14   0.020893 0.0165 Inf   1.269  0.9987
 StepF9 - StepF15   0.033353 0.0165 Inf   2.026  0.8571
 StepF9 - StepF16   0.028725 0.0165 Inf   1.745  0.9579
 StepF9 - StepF17   0.048803 0.0165 Inf   2.964  0.2176
 StepF9 - StepF18   0.048940 0.0165 Inf   2.970  0.2148
 StepF10 - StepF11  0.026966 0.0165 Inf   1.638  0.9770
 StepF10 - StepF12  0.063821 0.0165 Inf   3.876  0.0128
 StepF10 - StepF13  0.071744 0.0165 Inf   4.358  0.0018
 StepF10 - StepF14  0.020865 0.0165 Inf   1.267  0.9987
 StepF10 - StepF15  0.033325 0.0165 Inf   2.024  0.8580
 StepF10 - StepF16  0.028697 0.0165 Inf   1.743  0.9583
 StepF10 - StepF17  0.048775 0.0165 Inf   2.963  0.2185
 StepF10 - StepF18  0.048912 0.0165 Inf   2.968  0.2157
 StepF11 - StepF12  0.036855 0.0165 Inf   2.239  0.7277
 StepF11 - StepF13  0.044779 0.0165 Inf   2.720  0.3663
 StepF11 - StepF14 -0.006101 0.0165 Inf  -0.371  1.0000
 StepF11 - StepF15  0.006360 0.0165 Inf   0.386  1.0000
 StepF11 - StepF16  0.001731 0.0165 Inf   0.105  1.0000
 StepF11 - StepF17  0.021809 0.0165 Inf   1.325  0.9978
 StepF11 - StepF18  0.021946 0.0165 Inf   1.332  0.9976
 StepF12 - StepF13  0.007924 0.0165 Inf   0.481  1.0000
 StepF12 - StepF14 -0.042956 0.0165 Inf  -2.609  0.4465
 StepF12 - StepF15 -0.030495 0.0165 Inf  -1.852  0.9289
 StepF12 - StepF16 -0.035124 0.0165 Inf  -2.133  0.7968
 StepF12 - StepF17 -0.015045 0.0165 Inf  -0.914  1.0000
 StepF12 - StepF18 -0.014909 0.0165 Inf  -0.905  1.0000
 StepF13 - StepF14 -0.050880 0.0165 Inf  -3.090  0.1594
 StepF13 - StepF15 -0.038419 0.0165 Inf  -2.334  0.6586
 StepF13 - StepF16 -0.043048 0.0165 Inf  -2.615  0.4424
 StepF13 - StepF17 -0.022969 0.0165 Inf  -1.395  0.9959
 StepF13 - StepF18 -0.022833 0.0165 Inf  -1.386  0.9962
 StepF14 - StepF15  0.012461 0.0165 Inf   0.757  1.0000
 StepF14 - StepF16  0.007832 0.0165 Inf   0.476  1.0000
 StepF14 - StepF17  0.027910 0.0165 Inf   1.695  0.9679
 StepF14 - StepF18  0.028047 0.0165 Inf   1.702  0.9666
 StepF15 - StepF16 -0.004629 0.0165 Inf  -0.281  1.0000
 StepF15 - StepF17  0.015450 0.0165 Inf   0.938  1.0000
 StepF15 - StepF18  0.015586 0.0165 Inf   0.946  1.0000
 StepF16 - StepF17  0.020078 0.0165 Inf   1.220  0.9992
 StepF16 - StepF18  0.020215 0.0165 Inf   1.227  0.9991
 StepF17 - StepF18  0.000137 0.0165 Inf   0.008  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.036708 0.0165 Inf  -2.230  0.7338
 StepF1 - StepF3   -0.049497 0.0165 Inf  -3.006  0.1967
 StepF1 - StepF4   -0.015775 0.0165 Inf  -0.958  1.0000
 StepF1 - StepF5   -0.006471 0.0165 Inf  -0.393  1.0000
 StepF1 - StepF6   -0.019362 0.0165 Inf  -1.176  0.9995
 StepF1 - StepF7   -0.016356 0.0165 Inf  -0.993  0.9999
 StepF1 - StepF8    0.009001 0.0165 Inf   0.547  1.0000
 StepF1 - StepF9    0.005877 0.0165 Inf   0.357  1.0000
 StepF1 - StepF10   0.005905 0.0165 Inf   0.359  1.0000
 StepF1 - StepF11   0.032871 0.0165 Inf   1.997  0.8715
 StepF1 - StepF12   0.069725 0.0165 Inf   4.235  0.0030
 StepF1 - StepF13   0.077649 0.0165 Inf   4.716  0.0003
 StepF1 - StepF14   0.026770 0.0165 Inf   1.626  0.9786
 StepF1 - StepF15   0.039230 0.0165 Inf   2.383  0.6212
 StepF1 - StepF16   0.034602 0.0165 Inf   2.102  0.8158
 StepF1 - StepF17   0.054680 0.0165 Inf   3.321  0.0840
 StepF1 - StepF18   0.054816 0.0165 Inf   3.326  0.0827
 StepF2 - StepF3   -0.012789 0.0165 Inf  -0.777  1.0000
 StepF2 - StepF4    0.020934 0.0165 Inf   1.271  0.9987
 StepF2 - StepF5    0.030238 0.0165 Inf   1.837  0.9338
 StepF2 - StepF6    0.017346 0.0165 Inf   1.054  0.9999
 StepF2 - StepF7    0.020352 0.0165 Inf   1.236  0.9991
 StepF2 - StepF8    0.045709 0.0165 Inf   2.776  0.3280
 StepF2 - StepF9    0.042585 0.0165 Inf   2.587  0.4635
 StepF2 - StepF10   0.042613 0.0165 Inf   2.588  0.4623
 StepF2 - StepF11   0.069579 0.0165 Inf   4.226  0.0032
 StepF2 - StepF12   0.106434 0.0165 Inf   6.465  <.0001
 StepF2 - StepF13   0.114357 0.0165 Inf   6.946  <.0001
 StepF2 - StepF14   0.063478 0.0165 Inf   3.856  0.0139
 StepF2 - StepF15   0.075939 0.0165 Inf   4.612  0.0006
 StepF2 - StepF16   0.071310 0.0165 Inf   4.331  0.0020
 StepF2 - StepF17   0.091388 0.0165 Inf   5.551  <.0001
 StepF2 - StepF18   0.091525 0.0165 Inf   5.554  <.0001
 StepF3 - StepF4    0.033723 0.0165 Inf   2.048  0.8455
 StepF3 - StepF5    0.043027 0.0165 Inf   2.613  0.4433
 StepF3 - StepF6    0.030135 0.0165 Inf   1.830  0.9357
 StepF3 - StepF7    0.033141 0.0165 Inf   2.013  0.8635
 StepF3 - StepF8    0.058498 0.0165 Inf   3.553  0.0405
 StepF3 - StepF9    0.055374 0.0165 Inf   3.363  0.0740
 StepF3 - StepF10   0.055402 0.0165 Inf   3.365  0.0736
 StepF3 - StepF11   0.082368 0.0165 Inf   5.003  0.0001
 StepF3 - StepF12   0.119223 0.0165 Inf   7.241  <.0001
 StepF3 - StepF13   0.127146 0.0165 Inf   7.723  <.0001
 StepF3 - StepF14   0.076267 0.0165 Inf   4.632  0.0005
 StepF3 - StepF15   0.088727 0.0165 Inf   5.389  <.0001
 StepF3 - StepF16   0.084099 0.0165 Inf   5.108  <.0001
 StepF3 - StepF17   0.104177 0.0165 Inf   6.328  <.0001
 StepF3 - StepF18   0.104314 0.0165 Inf   6.330  <.0001
 StepF4 - StepF5    0.009304 0.0165 Inf   0.565  1.0000
 StepF4 - StepF6   -0.003588 0.0165 Inf  -0.218  1.0000
 StepF4 - StepF7   -0.000582 0.0165 Inf  -0.035  1.0000
 StepF4 - StepF8    0.024775 0.0165 Inf   1.505  0.9905
 StepF4 - StepF9    0.021651 0.0165 Inf   1.315  0.9980
 StepF4 - StepF10   0.021679 0.0165 Inf   1.317  0.9979
 StepF4 - StepF11   0.048645 0.0165 Inf   2.955  0.2226
 StepF4 - StepF12   0.085500 0.0165 Inf   5.193  <.0001
 StepF4 - StepF13   0.093424 0.0165 Inf   5.674  <.0001
 StepF4 - StepF14   0.042544 0.0165 Inf   2.584  0.4654
 StepF4 - StepF15   0.055005 0.0165 Inf   3.341  0.0792
 StepF4 - StepF16   0.050376 0.0165 Inf   3.060  0.1724
 StepF4 - StepF17   0.070455 0.0165 Inf   4.279  0.0025
 StepF4 - StepF18   0.070591 0.0165 Inf   4.284  0.0025
 StepF5 - StepF6   -0.012892 0.0165 Inf  -0.783  1.0000
 StepF5 - StepF7   -0.009885 0.0165 Inf  -0.600  1.0000
 StepF5 - StepF8    0.015471 0.0165 Inf   0.940  1.0000
 StepF5 - StepF9    0.012347 0.0165 Inf   0.750  1.0000
 StepF5 - StepF10   0.012375 0.0165 Inf   0.752  1.0000
 StepF5 - StepF11   0.039341 0.0165 Inf   2.390  0.6160
 StepF5 - StepF12   0.076196 0.0165 Inf   4.628  0.0005
 StepF5 - StepF13   0.084120 0.0165 Inf   5.109  <.0001
 StepF5 - StepF14   0.033240 0.0165 Inf   2.019  0.8606
 StepF5 - StepF15   0.045701 0.0165 Inf   2.776  0.3283
 StepF5 - StepF16   0.041072 0.0165 Inf   2.495  0.5343
 StepF5 - StepF17   0.061151 0.0165 Inf   3.714  0.0233
 StepF5 - StepF18   0.061287 0.0165 Inf   3.719  0.0229
 StepF6 - StepF7    0.003006 0.0165 Inf   0.183  1.0000
 StepF6 - StepF8    0.028363 0.0165 Inf   1.723  0.9626
 StepF6 - StepF9    0.025239 0.0165 Inf   1.533  0.9884
 StepF6 - StepF10   0.025267 0.0165 Inf   1.535  0.9882
 StepF6 - StepF11   0.052233 0.0165 Inf   3.173  0.1282
 StepF6 - StepF12   0.089088 0.0165 Inf   5.411  <.0001
 StepF6 - StepF13   0.097011 0.0165 Inf   5.892  <.0001
 StepF6 - StepF14   0.046132 0.0165 Inf   2.802  0.3113
 StepF6 - StepF15   0.058593 0.0165 Inf   3.559  0.0397
 StepF6 - StepF16   0.053964 0.0165 Inf   3.278  0.0954
 StepF6 - StepF17   0.074042 0.0165 Inf   4.497  0.0010
 StepF6 - StepF18   0.074179 0.0165 Inf   4.501  0.0009
 StepF7 - StepF8    0.025357 0.0165 Inf   1.540  0.9878
 StepF7 - StepF9    0.022233 0.0165 Inf   1.350  0.9972
 StepF7 - StepF10   0.022261 0.0165 Inf   1.352  0.9972
 StepF7 - StepF11   0.049227 0.0165 Inf   2.990  0.2047
 StepF7 - StepF12   0.086082 0.0165 Inf   5.229  <.0001
 StepF7 - StepF13   0.094005 0.0165 Inf   5.710  <.0001
 StepF7 - StepF14   0.043126 0.0165 Inf   2.619  0.4388
 StepF7 - StepF15   0.055586 0.0165 Inf   3.376  0.0712
 StepF7 - StepF16   0.050958 0.0165 Inf   3.095  0.1575
 StepF7 - StepF17   0.071036 0.0165 Inf   4.315  0.0022
 StepF7 - StepF18   0.071173 0.0165 Inf   4.319  0.0021
 StepF8 - StepF9   -0.003124 0.0165 Inf  -0.190  1.0000
 StepF8 - StepF10  -0.003096 0.0165 Inf  -0.188  1.0000
 StepF8 - StepF11   0.023870 0.0165 Inf   1.450  0.9937
 StepF8 - StepF12   0.060725 0.0165 Inf   3.688  0.0255
 StepF8 - StepF13   0.068648 0.0165 Inf   4.170  0.0040
 StepF8 - StepF14   0.017769 0.0165 Inf   1.079  0.9998
 StepF8 - StepF15   0.030229 0.0165 Inf   1.836  0.9340
 StepF8 - StepF16   0.025601 0.0165 Inf   1.555  0.9865
 StepF8 - StepF17   0.045679 0.0165 Inf   2.775  0.3292
 StepF8 - StepF18   0.045816 0.0165 Inf   2.780  0.3254
 StepF9 - StepF10   0.000028 0.0165 Inf   0.002  1.0000
 StepF9 - StepF11   0.026994 0.0165 Inf   1.640  0.9768
 StepF9 - StepF12   0.063849 0.0165 Inf   3.878  0.0127
 StepF9 - StepF13   0.071772 0.0165 Inf   4.359  0.0018
 StepF9 - StepF14   0.020893 0.0165 Inf   1.269  0.9987
 StepF9 - StepF15   0.033353 0.0165 Inf   2.026  0.8571
 StepF9 - StepF16   0.028725 0.0165 Inf   1.745  0.9579
 StepF9 - StepF17   0.048803 0.0165 Inf   2.964  0.2176
 StepF9 - StepF18   0.048940 0.0165 Inf   2.970  0.2148
 StepF10 - StepF11  0.026966 0.0165 Inf   1.638  0.9770
 StepF10 - StepF12  0.063821 0.0165 Inf   3.876  0.0128
 StepF10 - StepF13  0.071744 0.0165 Inf   4.358  0.0018
 StepF10 - StepF14  0.020865 0.0165 Inf   1.267  0.9987
 StepF10 - StepF15  0.033325 0.0165 Inf   2.024  0.8580
 StepF10 - StepF16  0.028697 0.0165 Inf   1.743  0.9583
 StepF10 - StepF17  0.048775 0.0165 Inf   2.963  0.2185
 StepF10 - StepF18  0.048912 0.0165 Inf   2.968  0.2157
 StepF11 - StepF12  0.036855 0.0165 Inf   2.239  0.7277
 StepF11 - StepF13  0.044779 0.0165 Inf   2.720  0.3663
 StepF11 - StepF14 -0.006101 0.0165 Inf  -0.371  1.0000
 StepF11 - StepF15  0.006360 0.0165 Inf   0.386  1.0000
 StepF11 - StepF16  0.001731 0.0165 Inf   0.105  1.0000
 StepF11 - StepF17  0.021809 0.0165 Inf   1.325  0.9978
 StepF11 - StepF18  0.021946 0.0165 Inf   1.332  0.9976
 StepF12 - StepF13  0.007924 0.0165 Inf   0.481  1.0000
 StepF12 - StepF14 -0.042956 0.0165 Inf  -2.609  0.4465
 StepF12 - StepF15 -0.030495 0.0165 Inf  -1.852  0.9289
 StepF12 - StepF16 -0.035124 0.0165 Inf  -2.133  0.7968
 StepF12 - StepF17 -0.015045 0.0165 Inf  -0.914  1.0000
 StepF12 - StepF18 -0.014909 0.0165 Inf  -0.905  1.0000
 StepF13 - StepF14 -0.050880 0.0165 Inf  -3.090  0.1594
 StepF13 - StepF15 -0.038419 0.0165 Inf  -2.334  0.6586
 StepF13 - StepF16 -0.043048 0.0165 Inf  -2.615  0.4424
 StepF13 - StepF17 -0.022969 0.0165 Inf  -1.395  0.9959
 StepF13 - StepF18 -0.022833 0.0165 Inf  -1.386  0.9962
 StepF14 - StepF15  0.012461 0.0165 Inf   0.757  1.0000
 StepF14 - StepF16  0.007832 0.0165 Inf   0.476  1.0000
 StepF14 - StepF17  0.027910 0.0165 Inf   1.695  0.9679
 StepF14 - StepF18  0.028047 0.0165 Inf   1.702  0.9666
 StepF15 - StepF16 -0.004629 0.0165 Inf  -0.281  1.0000
 StepF15 - StepF17  0.015450 0.0165 Inf   0.938  1.0000
 StepF15 - StepF18  0.015586 0.0165 Inf   0.946  1.0000
 StepF16 - StepF17  0.020078 0.0165 Inf   1.220  0.9992
 StepF16 - StepF18  0.020215 0.0165 Inf   1.227  0.9991
 StepF17 - StepF18  0.000137 0.0165 Inf   0.008  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.036708 0.0165 Inf   2.230  0.4030
 StepF3 - StepF2    0.012789 0.0165 Inf   0.777  1.0000
 StepF4 - StepF3   -0.033723 0.0165 Inf  -2.048  0.5675
 StepF5 - StepF4   -0.009304 0.0165 Inf  -0.565  1.0000
 StepF6 - StepF5    0.012892 0.0165 Inf   0.783  1.0000
 StepF7 - StepF6   -0.003006 0.0165 Inf  -0.183  1.0000
 StepF8 - StepF7   -0.025357 0.0165 Inf  -1.540  1.0000
 StepF9 - StepF8    0.003124 0.0165 Inf   0.190  1.0000
 StepF10 - StepF9  -0.000028 0.0165 Inf  -0.002  1.0000
 StepF11 - StepF10 -0.026966 0.0165 Inf  -1.638  1.0000
 StepF12 - StepF11 -0.036855 0.0165 Inf  -2.239  0.4030
 StepF13 - StepF12 -0.007924 0.0165 Inf  -0.481  1.0000
 StepF14 - StepF13  0.050880 0.0165 Inf   3.090  0.0340
 StepF15 - StepF14 -0.012461 0.0165 Inf  -0.757  1.0000
 StepF16 - StepF15  0.004629 0.0165 Inf   0.281  1.0000
 StepF17 - StepF16 -0.020078 0.0165 Inf  -1.220  1.0000
 StepF18 - StepF17 -0.000137 0.0165 Inf  -0.008  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.036708 0.0165 Inf   2.230  0.4030
 StepF3 - StepF2    0.012789 0.0165 Inf   0.777  1.0000
 StepF4 - StepF3   -0.033723 0.0165 Inf  -2.048  0.5675
 StepF5 - StepF4   -0.009304 0.0165 Inf  -0.565  1.0000
 StepF6 - StepF5    0.012892 0.0165 Inf   0.783  1.0000
 StepF7 - StepF6   -0.003006 0.0165 Inf  -0.183  1.0000
 StepF8 - StepF7   -0.025357 0.0165 Inf  -1.540  1.0000
 StepF9 - StepF8    0.003124 0.0165 Inf   0.190  1.0000
 StepF10 - StepF9  -0.000028 0.0165 Inf  -0.002  1.0000
 StepF11 - StepF10 -0.026966 0.0165 Inf  -1.638  1.0000
 StepF12 - StepF11 -0.036855 0.0165 Inf  -2.239  0.4030
 StepF13 - StepF12 -0.007924 0.0165 Inf  -0.481  1.0000
 StepF14 - StepF13  0.050880 0.0165 Inf   3.090  0.0340
 StepF15 - StepF14 -0.012461 0.0165 Inf  -0.757  1.0000
 StepF16 - StepF15  0.004629 0.0165 Inf   0.281  1.0000
 StepF17 - StepF16 -0.020078 0.0165 Inf  -1.220  1.0000
 StepF18 - StepF17 -0.000137 0.0165 Inf  -0.008  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TRAINING | Block 3 (18 steps) | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    262.1257 17     <2e-16 ***
Accuracy   0.1535  1     0.6952    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.587 0.0520 Inf     0.485     0.689
 2      0.677 0.0520 Inf     0.576     0.779
 3      0.695 0.0520 Inf     0.593     0.797
 4      0.589 0.0520 Inf     0.487     0.691
 5      0.597 0.0520 Inf     0.495     0.699
 6      0.626 0.0520 Inf     0.524     0.728
 7      0.647 0.0520 Inf     0.545     0.749
 8      0.572 0.0520 Inf     0.470     0.674
 9      0.591 0.0520 Inf     0.489     0.693
 10     0.640 0.0520 Inf     0.538     0.741
 11     0.643 0.0520 Inf     0.541     0.745
 12     0.531 0.0520 Inf     0.429     0.633
 13     0.543 0.0520 Inf     0.441     0.644
 14     0.556 0.0520 Inf     0.454     0.658
 15     0.589 0.0520 Inf     0.487     0.691
 16     0.554 0.0520 Inf     0.452     0.656
 17     0.558 0.0520 Inf     0.456     0.660
 18     0.532 0.0520 Inf     0.431     0.634

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.584 0.0519 Inf     0.482     0.686
 2      0.674 0.0519 Inf     0.572     0.776
 3      0.692 0.0519 Inf     0.590     0.794
 4      0.586 0.0519 Inf     0.484     0.687
 5      0.594 0.0519 Inf     0.492     0.695
 6      0.623 0.0519 Inf     0.521     0.724
 7      0.644 0.0519 Inf     0.542     0.746
 8      0.569 0.0519 Inf     0.467     0.671
 9      0.588 0.0519 Inf     0.486     0.690
 10     0.636 0.0519 Inf     0.534     0.738
 11     0.639 0.0519 Inf     0.538     0.741
 12     0.528 0.0519 Inf     0.426     0.629
 13     0.539 0.0519 Inf     0.437     0.641
 14     0.553 0.0519 Inf     0.451     0.654
 15     0.586 0.0519 Inf     0.484     0.687
 16     0.550 0.0519 Inf     0.449     0.652
 17     0.555 0.0519 Inf     0.453     0.657
 18     0.529 0.0519 Inf     0.427     0.631

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -9.02e-02 0.0176 Inf  -5.110  <.0001
 StepF1 - StepF3   -1.08e-01 0.0176 Inf  -6.128  <.0001
 StepF1 - StepF4   -1.71e-03 0.0176 Inf  -0.097  1.0000
 StepF1 - StepF5   -9.67e-03 0.0176 Inf  -0.548  1.0000
 StepF1 - StepF6   -3.88e-02 0.0176 Inf  -2.198  0.7556
 StepF1 - StepF7   -6.00e-02 0.0176 Inf  -3.402  0.0658
 StepF1 - StepF8    1.51e-02 0.0176 Inf   0.853  1.0000
 StepF1 - StepF9   -3.90e-03 0.0176 Inf  -0.221  1.0000
 StepF1 - StepF10  -5.24e-02 0.0176 Inf  -2.968  0.2156
 StepF1 - StepF11  -5.56e-02 0.0176 Inf  -3.150  0.1362
 StepF1 - StepF12   5.62e-02 0.0176 Inf   3.187  0.1232
 StepF1 - StepF13   4.47e-02 0.0176 Inf   2.531  0.5061
 StepF1 - StepF14   3.13e-02 0.0176 Inf   1.775  0.9509
 StepF1 - StepF15  -1.69e-03 0.0176 Inf  -0.096  1.0000
 StepF1 - StepF16   3.35e-02 0.0176 Inf   1.899  0.9128
 StepF1 - StepF17   2.89e-02 0.0176 Inf   1.639  0.9768
 StepF1 - StepF18   5.48e-02 0.0177 Inf   3.101  0.1552
 StepF2 - StepF3   -1.80e-02 0.0176 Inf  -1.018  0.9999
 StepF2 - StepF4    8.85e-02 0.0176 Inf   5.013  0.0001
 StepF2 - StepF5    8.05e-02 0.0176 Inf   4.562  0.0007
 StepF2 - StepF6    5.14e-02 0.0176 Inf   2.913  0.2452
 StepF2 - StepF7    3.01e-02 0.0176 Inf   1.708  0.9654
 StepF2 - StepF8    1.05e-01 0.0176 Inf   5.963  <.0001
 StepF2 - StepF9    8.63e-02 0.0176 Inf   4.889  0.0001
 StepF2 - StepF10   3.78e-02 0.0176 Inf   2.142  0.7915
 StepF2 - StepF11   3.46e-02 0.0176 Inf   1.960  0.8882
 StepF2 - StepF12   1.46e-01 0.0176 Inf   8.297  <.0001
 StepF2 - StepF13   1.35e-01 0.0176 Inf   7.641  <.0001
 StepF2 - StepF14   1.21e-01 0.0176 Inf   6.885  <.0001
 StepF2 - StepF15   8.85e-02 0.0176 Inf   5.014  0.0001
 StepF2 - StepF16   1.24e-01 0.0176 Inf   7.009  <.0001
 StepF2 - StepF17   1.19e-01 0.0176 Inf   6.749  <.0001
 StepF2 - StepF18   1.45e-01 0.0177 Inf   8.206  <.0001
 StepF3 - StepF4    1.06e-01 0.0176 Inf   6.031  <.0001
 StepF3 - StepF5    9.85e-02 0.0176 Inf   5.580  <.0001
 StepF3 - StepF6    6.94e-02 0.0176 Inf   3.931  0.0104
 StepF3 - StepF7    4.81e-02 0.0176 Inf   2.726  0.3617
 StepF3 - StepF8    1.23e-01 0.0176 Inf   6.981  <.0001
 StepF3 - StepF9    1.04e-01 0.0176 Inf   5.907  <.0001
 StepF3 - StepF10   5.58e-02 0.0176 Inf   3.160  0.1327
 StepF3 - StepF11   5.25e-02 0.0176 Inf   2.978  0.2107
 StepF3 - StepF12   1.64e-01 0.0176 Inf   9.315  <.0001
 StepF3 - StepF13   1.53e-01 0.0176 Inf   8.659  <.0001
 StepF3 - StepF14   1.39e-01 0.0176 Inf   7.903  <.0001
 StepF3 - StepF15   1.06e-01 0.0176 Inf   6.032  <.0001
 StepF3 - StepF16   1.42e-01 0.0176 Inf   8.027  <.0001
 StepF3 - StepF17   1.37e-01 0.0176 Inf   7.767  <.0001
 StepF3 - StepF18   1.63e-01 0.0177 Inf   9.223  <.0001
 StepF4 - StepF5   -7.96e-03 0.0176 Inf  -0.451  1.0000
 StepF4 - StepF6   -3.71e-02 0.0176 Inf  -2.101  0.8164
 StepF4 - StepF7   -5.83e-02 0.0176 Inf  -3.305  0.0882
 StepF4 - StepF8    1.68e-02 0.0176 Inf   0.950  1.0000
 StepF4 - StepF9   -2.19e-03 0.0176 Inf  -0.124  1.0000
 StepF4 - StepF10  -5.07e-02 0.0176 Inf  -2.871  0.2688
 StepF4 - StepF11  -5.39e-02 0.0176 Inf  -3.053  0.1752
 StepF4 - StepF12   5.79e-02 0.0176 Inf   3.284  0.0937
 StepF4 - StepF13   4.64e-02 0.0176 Inf   2.628  0.4323
 StepF4 - StepF14   3.30e-02 0.0176 Inf   1.872  0.9223
 StepF4 - StepF15   2.13e-05 0.0176 Inf   0.001  1.0000
 StepF4 - StepF16   3.52e-02 0.0176 Inf   1.996  0.8718
 StepF4 - StepF17   3.06e-02 0.0176 Inf   1.736  0.9598
 StepF4 - StepF18   5.65e-02 0.0177 Inf   3.198  0.1197
 StepF5 - StepF6   -2.91e-02 0.0176 Inf  -1.650  0.9753
 StepF5 - StepF7   -5.04e-02 0.0176 Inf  -2.854  0.2792
 StepF5 - StepF8    2.47e-02 0.0176 Inf   1.401  0.9957
 StepF5 - StepF9    5.76e-03 0.0176 Inf   0.327  1.0000
 StepF5 - StepF10  -4.27e-02 0.0176 Inf  -2.420  0.5922
 StepF5 - StepF11  -4.59e-02 0.0176 Inf  -2.602  0.4516
 StepF5 - StepF12   6.59e-02 0.0176 Inf   3.735  0.0216
 StepF5 - StepF13   5.43e-02 0.0176 Inf   3.079  0.1641
 StepF5 - StepF14   4.10e-02 0.0176 Inf   2.323  0.6665
 StepF5 - StepF15   7.98e-03 0.0176 Inf   0.452  1.0000
 StepF5 - StepF16   4.32e-02 0.0176 Inf   2.447  0.5716
 StepF5 - StepF17   3.86e-02 0.0176 Inf   2.187  0.7626
 StepF5 - StepF18   6.44e-02 0.0177 Inf   3.648  0.0293
 StepF6 - StepF7   -2.12e-02 0.0176 Inf  -1.204  0.9993
 StepF6 - StepF8    5.38e-02 0.0176 Inf   3.051  0.1763
 StepF6 - StepF9    3.49e-02 0.0176 Inf   1.976  0.8808
 StepF6 - StepF10  -1.36e-02 0.0176 Inf  -0.771  1.0000
 StepF6 - StepF11  -1.68e-02 0.0176 Inf  -0.953  1.0000
 StepF6 - StepF12   9.50e-02 0.0176 Inf   5.385  <.0001
 StepF6 - StepF13   8.34e-02 0.0176 Inf   4.729  0.0003
 StepF6 - StepF14   7.01e-02 0.0176 Inf   3.973  0.0089
 StepF6 - StepF15   3.71e-02 0.0176 Inf   2.102  0.8157
 StepF6 - StepF16   7.23e-02 0.0176 Inf   4.097  0.0054
 StepF6 - StepF17   6.77e-02 0.0176 Inf   3.837  0.0149
 StepF6 - StepF18   9.35e-02 0.0177 Inf   5.296  <.0001
 StepF7 - StepF8    7.51e-02 0.0176 Inf   4.255  0.0028
 StepF7 - StepF9    5.61e-02 0.0176 Inf   3.181  0.1255
 StepF7 - StepF10   7.65e-03 0.0176 Inf   0.433  1.0000
 StepF7 - StepF11   4.44e-03 0.0176 Inf   0.251  1.0000
 StepF7 - StepF12   1.16e-01 0.0176 Inf   6.589  <.0001
 StepF7 - StepF13   1.05e-01 0.0176 Inf   5.933  <.0001
 StepF7 - StepF14   9.13e-02 0.0176 Inf   5.177  <.0001
 StepF7 - StepF15   5.83e-02 0.0176 Inf   3.306  0.0879
 StepF7 - StepF16   9.35e-02 0.0176 Inf   5.301  <.0001
 StepF7 - StepF17   8.89e-02 0.0176 Inf   5.041  0.0001
 StepF7 - StepF18   1.15e-01 0.0177 Inf   6.499  <.0001
 StepF8 - StepF9   -1.90e-02 0.0176 Inf  -1.074  0.9999
 StepF8 - StepF10  -6.74e-02 0.0176 Inf  -3.821  0.0158
 StepF8 - StepF11  -7.06e-02 0.0176 Inf  -4.003  0.0078
 StepF8 - StepF12   4.12e-02 0.0176 Inf   2.334  0.6583
 StepF8 - StepF13   2.96e-02 0.0176 Inf   1.678  0.9709
 StepF8 - StepF14   1.63e-02 0.0176 Inf   0.922  1.0000
 StepF8 - StepF15  -1.67e-02 0.0176 Inf  -0.949  1.0000
 StepF8 - StepF16   1.85e-02 0.0176 Inf   1.046  0.9999
 StepF8 - StepF17   1.39e-02 0.0176 Inf   0.786  1.0000
 StepF8 - StepF18   3.97e-02 0.0177 Inf   2.248  0.7208
 StepF9 - StepF10  -4.85e-02 0.0176 Inf  -2.747  0.3476
 StepF9 - StepF11  -5.17e-02 0.0176 Inf  -2.929  0.2362
 StepF9 - StepF12   6.01e-02 0.0176 Inf   3.408  0.0645
 StepF9 - StepF13   4.86e-02 0.0176 Inf   2.752  0.3440
 StepF9 - StepF14   3.52e-02 0.0176 Inf   1.996  0.8716
 StepF9 - StepF15   2.21e-03 0.0176 Inf   0.125  1.0000
 StepF9 - StepF16   3.74e-02 0.0176 Inf   2.120  0.8049
 StepF9 - StepF17   3.28e-02 0.0176 Inf   1.860  0.9262
 StepF9 - StepF18   5.87e-02 0.0177 Inf   3.322  0.0839
 StepF10 - StepF11 -3.21e-03 0.0176 Inf  -0.182  1.0000
 StepF10 - StepF12  1.09e-01 0.0176 Inf   6.155  <.0001
 StepF10 - StepF13  9.70e-02 0.0176 Inf   5.499  <.0001
 StepF10 - StepF14  8.37e-02 0.0176 Inf   4.743  0.0003
 StepF10 - StepF15  5.07e-02 0.0176 Inf   2.872  0.2681
 StepF10 - StepF16  8.59e-02 0.0176 Inf   4.867  0.0002
 StepF10 - StepF17  8.13e-02 0.0176 Inf   4.607  0.0006
 StepF10 - StepF18  1.07e-01 0.0177 Inf   6.066  <.0001
 StepF11 - StepF12  1.12e-01 0.0176 Inf   6.337  <.0001
 StepF11 - StepF13  1.00e-01 0.0176 Inf   5.681  <.0001
 StepF11 - StepF14  8.69e-02 0.0176 Inf   4.925  0.0001
 StepF11 - StepF15  5.39e-02 0.0176 Inf   3.054  0.1747
 StepF11 - StepF16  8.91e-02 0.0176 Inf   5.049  0.0001
 StepF11 - StepF17  8.45e-02 0.0176 Inf   4.789  0.0002
 StepF11 - StepF18  1.10e-01 0.0177 Inf   6.248  <.0001
 StepF12 - StepF13 -1.16e-02 0.0176 Inf  -0.656  1.0000
 StepF12 - StepF14 -2.49e-02 0.0176 Inf  -1.412  0.9953
 StepF12 - StepF15 -5.79e-02 0.0176 Inf  -3.283  0.0940
 StepF12 - StepF16 -2.27e-02 0.0176 Inf  -1.288  0.9984
 StepF12 - StepF17 -2.73e-02 0.0176 Inf  -1.548  0.9871
 StepF12 - StepF18 -1.47e-03 0.0177 Inf  -0.083  1.0000
 StepF13 - StepF14 -1.33e-02 0.0176 Inf  -0.756  1.0000
 StepF13 - StepF15 -4.64e-02 0.0176 Inf  -2.627  0.4332
 StepF13 - StepF16 -1.12e-02 0.0176 Inf  -0.632  1.0000
 StepF13 - StepF17 -1.57e-02 0.0176 Inf  -0.892  1.0000
 StepF13 - StepF18  1.01e-02 0.0177 Inf   0.572  1.0000
 StepF14 - StepF15 -3.30e-02 0.0176 Inf  -1.871  0.9227
 StepF14 - StepF16  2.19e-03 0.0176 Inf   0.124  1.0000
 StepF14 - StepF17 -2.40e-03 0.0176 Inf  -0.136  1.0000
 StepF14 - StepF18  2.34e-02 0.0177 Inf   1.327  0.9977
 StepF15 - StepF16  3.52e-02 0.0176 Inf   1.995  0.8724
 StepF15 - StepF17  3.06e-02 0.0176 Inf   1.735  0.9601
 StepF15 - StepF18  5.65e-02 0.0177 Inf   3.196  0.1201
 StepF16 - StepF17 -4.58e-03 0.0176 Inf  -0.260  1.0000
 StepF16 - StepF18  2.13e-02 0.0177 Inf   1.204  0.9993
 StepF17 - StepF18  2.58e-02 0.0177 Inf   1.463  0.9930

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -9.02e-02 0.0176 Inf  -5.110  <.0001
 StepF1 - StepF3   -1.08e-01 0.0176 Inf  -6.128  <.0001
 StepF1 - StepF4   -1.71e-03 0.0176 Inf  -0.097  1.0000
 StepF1 - StepF5   -9.67e-03 0.0176 Inf  -0.548  1.0000
 StepF1 - StepF6   -3.88e-02 0.0176 Inf  -2.198  0.7556
 StepF1 - StepF7   -6.00e-02 0.0176 Inf  -3.402  0.0658
 StepF1 - StepF8    1.51e-02 0.0176 Inf   0.853  1.0000
 StepF1 - StepF9   -3.90e-03 0.0176 Inf  -0.221  1.0000
 StepF1 - StepF10  -5.24e-02 0.0176 Inf  -2.968  0.2156
 StepF1 - StepF11  -5.56e-02 0.0176 Inf  -3.150  0.1362
 StepF1 - StepF12   5.62e-02 0.0176 Inf   3.187  0.1232
 StepF1 - StepF13   4.47e-02 0.0176 Inf   2.531  0.5061
 StepF1 - StepF14   3.13e-02 0.0176 Inf   1.775  0.9509
 StepF1 - StepF15  -1.69e-03 0.0176 Inf  -0.096  1.0000
 StepF1 - StepF16   3.35e-02 0.0176 Inf   1.899  0.9128
 StepF1 - StepF17   2.89e-02 0.0176 Inf   1.639  0.9768
 StepF1 - StepF18   5.48e-02 0.0177 Inf   3.101  0.1552
 StepF2 - StepF3   -1.80e-02 0.0176 Inf  -1.018  0.9999
 StepF2 - StepF4    8.85e-02 0.0176 Inf   5.013  0.0001
 StepF2 - StepF5    8.05e-02 0.0176 Inf   4.562  0.0007
 StepF2 - StepF6    5.14e-02 0.0176 Inf   2.913  0.2452
 StepF2 - StepF7    3.01e-02 0.0176 Inf   1.708  0.9654
 StepF2 - StepF8    1.05e-01 0.0176 Inf   5.963  <.0001
 StepF2 - StepF9    8.63e-02 0.0176 Inf   4.889  0.0001
 StepF2 - StepF10   3.78e-02 0.0176 Inf   2.142  0.7915
 StepF2 - StepF11   3.46e-02 0.0176 Inf   1.960  0.8882
 StepF2 - StepF12   1.46e-01 0.0176 Inf   8.297  <.0001
 StepF2 - StepF13   1.35e-01 0.0176 Inf   7.641  <.0001
 StepF2 - StepF14   1.21e-01 0.0176 Inf   6.885  <.0001
 StepF2 - StepF15   8.85e-02 0.0176 Inf   5.014  0.0001
 StepF2 - StepF16   1.24e-01 0.0176 Inf   7.009  <.0001
 StepF2 - StepF17   1.19e-01 0.0176 Inf   6.749  <.0001
 StepF2 - StepF18   1.45e-01 0.0177 Inf   8.206  <.0001
 StepF3 - StepF4    1.06e-01 0.0176 Inf   6.031  <.0001
 StepF3 - StepF5    9.85e-02 0.0176 Inf   5.580  <.0001
 StepF3 - StepF6    6.94e-02 0.0176 Inf   3.931  0.0104
 StepF3 - StepF7    4.81e-02 0.0176 Inf   2.726  0.3617
 StepF3 - StepF8    1.23e-01 0.0176 Inf   6.981  <.0001
 StepF3 - StepF9    1.04e-01 0.0176 Inf   5.907  <.0001
 StepF3 - StepF10   5.58e-02 0.0176 Inf   3.160  0.1327
 StepF3 - StepF11   5.25e-02 0.0176 Inf   2.978  0.2107
 StepF3 - StepF12   1.64e-01 0.0176 Inf   9.315  <.0001
 StepF3 - StepF13   1.53e-01 0.0176 Inf   8.659  <.0001
 StepF3 - StepF14   1.39e-01 0.0176 Inf   7.903  <.0001
 StepF3 - StepF15   1.06e-01 0.0176 Inf   6.032  <.0001
 StepF3 - StepF16   1.42e-01 0.0176 Inf   8.027  <.0001
 StepF3 - StepF17   1.37e-01 0.0176 Inf   7.767  <.0001
 StepF3 - StepF18   1.63e-01 0.0177 Inf   9.223  <.0001
 StepF4 - StepF5   -7.96e-03 0.0176 Inf  -0.451  1.0000
 StepF4 - StepF6   -3.71e-02 0.0176 Inf  -2.101  0.8164
 StepF4 - StepF7   -5.83e-02 0.0176 Inf  -3.305  0.0882
 StepF4 - StepF8    1.68e-02 0.0176 Inf   0.950  1.0000
 StepF4 - StepF9   -2.19e-03 0.0176 Inf  -0.124  1.0000
 StepF4 - StepF10  -5.07e-02 0.0176 Inf  -2.871  0.2688
 StepF4 - StepF11  -5.39e-02 0.0176 Inf  -3.053  0.1752
 StepF4 - StepF12   5.79e-02 0.0176 Inf   3.284  0.0937
 StepF4 - StepF13   4.64e-02 0.0176 Inf   2.628  0.4323
 StepF4 - StepF14   3.30e-02 0.0176 Inf   1.872  0.9223
 StepF4 - StepF15   2.13e-05 0.0176 Inf   0.001  1.0000
 StepF4 - StepF16   3.52e-02 0.0176 Inf   1.996  0.8718
 StepF4 - StepF17   3.06e-02 0.0176 Inf   1.736  0.9598
 StepF4 - StepF18   5.65e-02 0.0177 Inf   3.198  0.1197
 StepF5 - StepF6   -2.91e-02 0.0176 Inf  -1.650  0.9753
 StepF5 - StepF7   -5.04e-02 0.0176 Inf  -2.854  0.2792
 StepF5 - StepF8    2.47e-02 0.0176 Inf   1.401  0.9957
 StepF5 - StepF9    5.76e-03 0.0176 Inf   0.327  1.0000
 StepF5 - StepF10  -4.27e-02 0.0176 Inf  -2.420  0.5922
 StepF5 - StepF11  -4.59e-02 0.0176 Inf  -2.602  0.4516
 StepF5 - StepF12   6.59e-02 0.0176 Inf   3.735  0.0216
 StepF5 - StepF13   5.43e-02 0.0176 Inf   3.079  0.1641
 StepF5 - StepF14   4.10e-02 0.0176 Inf   2.323  0.6665
 StepF5 - StepF15   7.98e-03 0.0176 Inf   0.452  1.0000
 StepF5 - StepF16   4.32e-02 0.0176 Inf   2.447  0.5716
 StepF5 - StepF17   3.86e-02 0.0176 Inf   2.187  0.7626
 StepF5 - StepF18   6.44e-02 0.0177 Inf   3.648  0.0293
 StepF6 - StepF7   -2.12e-02 0.0176 Inf  -1.204  0.9993
 StepF6 - StepF8    5.38e-02 0.0176 Inf   3.051  0.1763
 StepF6 - StepF9    3.49e-02 0.0176 Inf   1.976  0.8808
 StepF6 - StepF10  -1.36e-02 0.0176 Inf  -0.771  1.0000
 StepF6 - StepF11  -1.68e-02 0.0176 Inf  -0.953  1.0000
 StepF6 - StepF12   9.50e-02 0.0176 Inf   5.385  <.0001
 StepF6 - StepF13   8.34e-02 0.0176 Inf   4.729  0.0003
 StepF6 - StepF14   7.01e-02 0.0176 Inf   3.973  0.0089
 StepF6 - StepF15   3.71e-02 0.0176 Inf   2.102  0.8157
 StepF6 - StepF16   7.23e-02 0.0176 Inf   4.097  0.0054
 StepF6 - StepF17   6.77e-02 0.0176 Inf   3.837  0.0149
 StepF6 - StepF18   9.35e-02 0.0177 Inf   5.296  <.0001
 StepF7 - StepF8    7.51e-02 0.0176 Inf   4.255  0.0028
 StepF7 - StepF9    5.61e-02 0.0176 Inf   3.181  0.1255
 StepF7 - StepF10   7.65e-03 0.0176 Inf   0.433  1.0000
 StepF7 - StepF11   4.44e-03 0.0176 Inf   0.251  1.0000
 StepF7 - StepF12   1.16e-01 0.0176 Inf   6.589  <.0001
 StepF7 - StepF13   1.05e-01 0.0176 Inf   5.933  <.0001
 StepF7 - StepF14   9.13e-02 0.0176 Inf   5.177  <.0001
 StepF7 - StepF15   5.83e-02 0.0176 Inf   3.306  0.0879
 StepF7 - StepF16   9.35e-02 0.0176 Inf   5.301  <.0001
 StepF7 - StepF17   8.89e-02 0.0176 Inf   5.041  0.0001
 StepF7 - StepF18   1.15e-01 0.0177 Inf   6.499  <.0001
 StepF8 - StepF9   -1.90e-02 0.0176 Inf  -1.074  0.9999
 StepF8 - StepF10  -6.74e-02 0.0176 Inf  -3.821  0.0158
 StepF8 - StepF11  -7.06e-02 0.0176 Inf  -4.003  0.0078
 StepF8 - StepF12   4.12e-02 0.0176 Inf   2.334  0.6583
 StepF8 - StepF13   2.96e-02 0.0176 Inf   1.678  0.9709
 StepF8 - StepF14   1.63e-02 0.0176 Inf   0.922  1.0000
 StepF8 - StepF15  -1.67e-02 0.0176 Inf  -0.949  1.0000
 StepF8 - StepF16   1.85e-02 0.0176 Inf   1.046  0.9999
 StepF8 - StepF17   1.39e-02 0.0176 Inf   0.786  1.0000
 StepF8 - StepF18   3.97e-02 0.0177 Inf   2.248  0.7208
 StepF9 - StepF10  -4.85e-02 0.0176 Inf  -2.747  0.3476
 StepF9 - StepF11  -5.17e-02 0.0176 Inf  -2.929  0.2362
 StepF9 - StepF12   6.01e-02 0.0176 Inf   3.408  0.0645
 StepF9 - StepF13   4.86e-02 0.0176 Inf   2.752  0.3440
 StepF9 - StepF14   3.52e-02 0.0176 Inf   1.996  0.8716
 StepF9 - StepF15   2.21e-03 0.0176 Inf   0.125  1.0000
 StepF9 - StepF16   3.74e-02 0.0176 Inf   2.120  0.8049
 StepF9 - StepF17   3.28e-02 0.0176 Inf   1.860  0.9262
 StepF9 - StepF18   5.87e-02 0.0177 Inf   3.322  0.0839
 StepF10 - StepF11 -3.21e-03 0.0176 Inf  -0.182  1.0000
 StepF10 - StepF12  1.09e-01 0.0176 Inf   6.155  <.0001
 StepF10 - StepF13  9.70e-02 0.0176 Inf   5.499  <.0001
 StepF10 - StepF14  8.37e-02 0.0176 Inf   4.743  0.0003
 StepF10 - StepF15  5.07e-02 0.0176 Inf   2.872  0.2681
 StepF10 - StepF16  8.59e-02 0.0176 Inf   4.867  0.0002
 StepF10 - StepF17  8.13e-02 0.0176 Inf   4.607  0.0006
 StepF10 - StepF18  1.07e-01 0.0177 Inf   6.066  <.0001
 StepF11 - StepF12  1.12e-01 0.0176 Inf   6.337  <.0001
 StepF11 - StepF13  1.00e-01 0.0176 Inf   5.681  <.0001
 StepF11 - StepF14  8.69e-02 0.0176 Inf   4.925  0.0001
 StepF11 - StepF15  5.39e-02 0.0176 Inf   3.054  0.1747
 StepF11 - StepF16  8.91e-02 0.0176 Inf   5.049  0.0001
 StepF11 - StepF17  8.45e-02 0.0176 Inf   4.789  0.0002
 StepF11 - StepF18  1.10e-01 0.0177 Inf   6.248  <.0001
 StepF12 - StepF13 -1.16e-02 0.0176 Inf  -0.656  1.0000
 StepF12 - StepF14 -2.49e-02 0.0176 Inf  -1.412  0.9953
 StepF12 - StepF15 -5.79e-02 0.0176 Inf  -3.283  0.0940
 StepF12 - StepF16 -2.27e-02 0.0176 Inf  -1.288  0.9984
 StepF12 - StepF17 -2.73e-02 0.0176 Inf  -1.548  0.9871
 StepF12 - StepF18 -1.47e-03 0.0177 Inf  -0.083  1.0000
 StepF13 - StepF14 -1.33e-02 0.0176 Inf  -0.756  1.0000
 StepF13 - StepF15 -4.64e-02 0.0176 Inf  -2.627  0.4332
 StepF13 - StepF16 -1.12e-02 0.0176 Inf  -0.632  1.0000
 StepF13 - StepF17 -1.57e-02 0.0176 Inf  -0.892  1.0000
 StepF13 - StepF18  1.01e-02 0.0177 Inf   0.572  1.0000
 StepF14 - StepF15 -3.30e-02 0.0176 Inf  -1.871  0.9227
 StepF14 - StepF16  2.19e-03 0.0176 Inf   0.124  1.0000
 StepF14 - StepF17 -2.40e-03 0.0176 Inf  -0.136  1.0000
 StepF14 - StepF18  2.34e-02 0.0177 Inf   1.327  0.9977
 StepF15 - StepF16  3.52e-02 0.0176 Inf   1.995  0.8724
 StepF15 - StepF17  3.06e-02 0.0176 Inf   1.735  0.9601
 StepF15 - StepF18  5.65e-02 0.0177 Inf   3.196  0.1201
 StepF16 - StepF17 -4.58e-03 0.0176 Inf  -0.260  1.0000
 StepF16 - StepF18  2.13e-02 0.0177 Inf   1.204  0.9993
 StepF17 - StepF18  2.58e-02 0.0177 Inf   1.463  0.9930

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.09017 0.0176 Inf   5.110  <.0001
 StepF3 - StepF2    0.01796 0.0176 Inf   1.018  1.0000
 StepF4 - StepF3   -0.10642 0.0176 Inf  -6.031  <.0001
 StepF5 - StepF4    0.00796 0.0176 Inf   0.451  1.0000
 StepF6 - StepF5    0.02911 0.0176 Inf   1.650  0.9901
 StepF7 - StepF6    0.02125 0.0176 Inf   1.204  1.0000
 StepF8 - StepF7   -0.07508 0.0176 Inf  -4.255  0.0003
 StepF9 - StepF8    0.01896 0.0176 Inf   1.074  1.0000
 StepF10 - StepF9   0.04847 0.0176 Inf   2.747  0.0782
 StepF11 - StepF10  0.00321 0.0176 Inf   0.182  1.0000
 StepF12 - StepF11 -0.11182 0.0176 Inf  -6.337  <.0001
 StepF13 - StepF12  0.01158 0.0176 Inf   0.656  1.0000
 StepF14 - StepF13  0.01334 0.0176 Inf   0.756  1.0000
 StepF15 - StepF14  0.03301 0.0176 Inf   1.871  0.6751
 StepF16 - StepF15 -0.03520 0.0176 Inf  -1.995  0.5529
 StepF17 - StepF16  0.00458 0.0176 Inf   0.260  1.0000
 StepF18 - StepF17 -0.02584 0.0177 Inf  -1.463  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.09017 0.0176 Inf   5.110  <.0001
 StepF3 - StepF2    0.01796 0.0176 Inf   1.018  1.0000
 StepF4 - StepF3   -0.10642 0.0176 Inf  -6.031  <.0001
 StepF5 - StepF4    0.00796 0.0176 Inf   0.451  1.0000
 StepF6 - StepF5    0.02911 0.0176 Inf   1.650  0.9901
 StepF7 - StepF6    0.02125 0.0176 Inf   1.204  1.0000
 StepF8 - StepF7   -0.07508 0.0176 Inf  -4.255  0.0003
 StepF9 - StepF8    0.01896 0.0176 Inf   1.074  1.0000
 StepF10 - StepF9   0.04847 0.0176 Inf   2.747  0.0782
 StepF11 - StepF10  0.00321 0.0176 Inf   0.182  1.0000
 StepF12 - StepF11 -0.11182 0.0176 Inf  -6.337  <.0001
 StepF13 - StepF12  0.01158 0.0176 Inf   0.656  1.0000
 StepF14 - StepF13  0.01334 0.0176 Inf   0.756  1.0000
 StepF15 - StepF14  0.03301 0.0176 Inf   1.871  0.6751
 StepF16 - StepF15 -0.03520 0.0176 Inf  -1.995  0.5529
 StepF17 - StepF16  0.00458 0.0176 Inf   0.260  1.0000
 StepF18 - StepF17 -0.02584 0.0177 Inf  -1.463  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TRAINING | Block 3 (18 steps) | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    257.8478 17     <2e-16 ***
Accuracy   0.2421  1     0.6227    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.20 0.119 Inf     0.966      1.43
 2       1.36 0.119 Inf     1.130      1.60
 3       1.36 0.119 Inf     1.131      1.60
 4       1.23 0.119 Inf     0.996      1.46
 5       1.24 0.119 Inf     1.006      1.47
 6       1.27 0.119 Inf     1.034      1.50
 7       1.27 0.119 Inf     1.039      1.51
 8       1.25 0.119 Inf     1.020      1.49
 9       1.22 0.119 Inf     0.984      1.45
 10      1.26 0.119 Inf     1.027      1.49
 11      1.22 0.119 Inf     0.991      1.46
 12      1.11 0.119 Inf     0.877      1.34
 13      1.16 0.119 Inf     0.928      1.39
 14      1.22 0.119 Inf     0.985      1.45
 15      1.17 0.119 Inf     0.934      1.40
 16      1.11 0.119 Inf     0.881      1.35
 17      1.08 0.119 Inf     0.848      1.31
 18      1.04 0.119 Inf     0.806      1.27

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.19 0.119 Inf     0.958      1.42
 2       1.36 0.119 Inf     1.122      1.59
 3       1.36 0.119 Inf     1.124      1.59
 4       1.22 0.119 Inf     0.989      1.45
 5       1.23 0.119 Inf     0.998      1.46
 6       1.26 0.119 Inf     1.027      1.49
 7       1.26 0.119 Inf     1.032      1.50
 8       1.25 0.119 Inf     1.013      1.48
 9       1.21 0.119 Inf     0.977      1.44
 10      1.25 0.119 Inf     1.020      1.49
 11      1.22 0.119 Inf     0.983      1.45
 12      1.10 0.119 Inf     0.870      1.34
 13      1.15 0.119 Inf     0.921      1.39
 14      1.21 0.119 Inf     0.977      1.44
 15      1.16 0.119 Inf     0.926      1.39
 16      1.11 0.119 Inf     0.874      1.34
 17      1.07 0.119 Inf     0.841      1.31
 18      1.03 0.119 Inf     0.798      1.26

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.16413 0.0317 Inf  -5.178  <.0001
 StepF1 - StepF3   -0.16549 0.0317 Inf  -5.221  <.0001
 StepF1 - StepF4   -0.03047 0.0317 Inf  -0.961  1.0000
 StepF1 - StepF5   -0.04012 0.0317 Inf  -1.266  0.9987
 StepF1 - StepF6   -0.06876 0.0317 Inf  -2.170  0.7741
 StepF1 - StepF7   -0.07379 0.0317 Inf  -2.328  0.6627
 StepF1 - StepF8   -0.05473 0.0317 Inf  -1.727  0.9618
 StepF1 - StepF9   -0.01876 0.0317 Inf  -0.592  1.0000
 StepF1 - StepF10  -0.06141 0.0317 Inf  -1.937  0.8977
 StepF1 - StepF11  -0.02527 0.0317 Inf  -0.797  1.0000
 StepF1 - StepF12   0.08853 0.0317 Inf   2.793  0.3170
 StepF1 - StepF13   0.03764 0.0317 Inf   1.187  0.9994
 StepF1 - StepF14  -0.01911 0.0317 Inf  -0.603  1.0000
 StepF1 - StepF15   0.03204 0.0317 Inf   1.011  0.9999
 StepF1 - StepF16   0.08454 0.0317 Inf   2.667  0.4037
 StepF1 - StepF17   0.11743 0.0317 Inf   3.705  0.0240
 StepF1 - StepF18   0.15973 0.0317 Inf   5.035  0.0001
 StepF2 - StepF3   -0.00137 0.0317 Inf  -0.043  1.0000
 StepF2 - StepF4    0.13366 0.0317 Inf   4.217  0.0033
 StepF2 - StepF5    0.12401 0.0317 Inf   3.913  0.0112
 StepF2 - StepF6    0.09536 0.0317 Inf   3.009  0.1957
 StepF2 - StepF7    0.09034 0.0317 Inf   2.850  0.2814
 StepF2 - StepF8    0.10939 0.0317 Inf   3.451  0.0563
 StepF2 - StepF9    0.14537 0.0317 Inf   4.586  0.0006
 StepF2 - StepF10   0.10272 0.0317 Inf   3.241  0.1061
 StepF2 - StepF11   0.13886 0.0317 Inf   4.381  0.0016
 StepF2 - StepF12   0.25266 0.0317 Inf   7.972  <.0001
 StepF2 - StepF13   0.20176 0.0317 Inf   6.366  <.0001
 StepF2 - StepF14   0.14502 0.0317 Inf   4.575  0.0007
 StepF2 - StepF15   0.19617 0.0317 Inf   6.189  <.0001
 StepF2 - StepF16   0.24866 0.0317 Inf   7.845  <.0001
 StepF2 - StepF17   0.28156 0.0317 Inf   8.883  <.0001
 StepF2 - StepF18   0.32386 0.0317 Inf  10.209  <.0001
 StepF3 - StepF4    0.13503 0.0317 Inf   4.260  0.0027
 StepF3 - StepF5    0.12538 0.0317 Inf   3.956  0.0095
 StepF3 - StepF6    0.09673 0.0317 Inf   3.052  0.1759
 StepF3 - StepF7    0.09170 0.0317 Inf   2.893  0.2561
 StepF3 - StepF8    0.11076 0.0317 Inf   3.495  0.0491
 StepF3 - StepF9    0.14673 0.0317 Inf   4.629  0.0005
 StepF3 - StepF10   0.10408 0.0317 Inf   3.284  0.0937
 StepF3 - StepF11   0.14022 0.0317 Inf   4.424  0.0013
 StepF3 - StepF12   0.25403 0.0317 Inf   8.015  <.0001
 StepF3 - StepF13   0.20313 0.0317 Inf   6.409  <.0001
 StepF3 - StepF14   0.14638 0.0317 Inf   4.618  0.0005
 StepF3 - StepF15   0.19754 0.0317 Inf   6.232  <.0001
 StepF3 - StepF16   0.25003 0.0317 Inf   7.888  <.0001
 StepF3 - StepF17   0.28293 0.0317 Inf   8.926  <.0001
 StepF3 - StepF18   0.32523 0.0317 Inf  10.252  <.0001
 StepF4 - StepF5   -0.00965 0.0317 Inf  -0.304  1.0000
 StepF4 - StepF6   -0.03830 0.0317 Inf  -1.208  0.9993
 StepF4 - StepF7   -0.04332 0.0317 Inf  -1.367  0.9968
 StepF4 - StepF8   -0.02427 0.0317 Inf  -0.766  1.0000
 StepF4 - StepF9    0.01171 0.0317 Inf   0.369  1.0000
 StepF4 - StepF10  -0.03094 0.0317 Inf  -0.976  1.0000
 StepF4 - StepF11   0.00520 0.0317 Inf   0.164  1.0000
 StepF4 - StepF12   0.11900 0.0317 Inf   3.754  0.0201
 StepF4 - StepF13   0.06810 0.0317 Inf   2.149  0.7873
 StepF4 - StepF14   0.01136 0.0317 Inf   0.358  1.0000
 StepF4 - StepF15   0.06251 0.0317 Inf   1.972  0.8827
 StepF4 - StepF16   0.11500 0.0317 Inf   3.628  0.0314
 StepF4 - StepF17   0.14790 0.0317 Inf   4.666  0.0004
 StepF4 - StepF18   0.19020 0.0317 Inf   5.995  <.0001
 StepF5 - StepF6   -0.02865 0.0317 Inf  -0.904  1.0000
 StepF5 - StepF7   -0.03368 0.0317 Inf  -1.062  0.9999
 StepF5 - StepF8   -0.01462 0.0317 Inf  -0.461  1.0000
 StepF5 - StepF9    0.02136 0.0317 Inf   0.674  1.0000
 StepF5 - StepF10  -0.02129 0.0317 Inf  -0.672  1.0000
 StepF5 - StepF11   0.01484 0.0317 Inf   0.468  1.0000
 StepF5 - StepF12   0.12865 0.0317 Inf   4.059  0.0063
 StepF5 - StepF13   0.07775 0.0317 Inf   2.453  0.5667
 StepF5 - StepF14   0.02101 0.0317 Inf   0.663  1.0000
 StepF5 - StepF15   0.07216 0.0317 Inf   2.277  0.7005
 StepF5 - StepF16   0.12465 0.0317 Inf   3.933  0.0103
 StepF5 - StepF17   0.15755 0.0317 Inf   4.971  0.0001
 StepF5 - StepF18   0.19985 0.0317 Inf   6.300  <.0001
 StepF6 - StepF7   -0.00503 0.0317 Inf  -0.159  1.0000
 StepF6 - StepF8    0.01403 0.0317 Inf   0.443  1.0000
 StepF6 - StepF9    0.05000 0.0317 Inf   1.578  0.9843
 StepF6 - StepF10   0.00736 0.0317 Inf   0.232  1.0000
 StepF6 - StepF11   0.04349 0.0317 Inf   1.372  0.9966
 StepF6 - StepF12   0.15730 0.0317 Inf   4.963  0.0001
 StepF6 - StepF13   0.10640 0.0317 Inf   3.357  0.0755
 StepF6 - StepF14   0.04965 0.0317 Inf   1.567  0.9854
 StepF6 - StepF15   0.10081 0.0317 Inf   3.181  0.1254
 StepF6 - StepF16   0.15330 0.0317 Inf   4.837  0.0002
 StepF6 - StepF17   0.18620 0.0317 Inf   5.875  <.0001
 StepF6 - StepF18   0.22850 0.0317 Inf   7.203  <.0001
 StepF7 - StepF8    0.01906 0.0317 Inf   0.601  1.0000
 StepF7 - StepF9    0.05503 0.0317 Inf   1.736  0.9598
 StepF7 - StepF10   0.01238 0.0317 Inf   0.391  1.0000
 StepF7 - StepF11   0.04852 0.0317 Inf   1.531  0.9885
 StepF7 - StepF12   0.16232 0.0317 Inf   5.121  <.0001
 StepF7 - StepF13   0.11143 0.0317 Inf   3.516  0.0458
 StepF7 - StepF14   0.05468 0.0317 Inf   1.725  0.9621
 StepF7 - StepF15   0.10584 0.0317 Inf   3.339  0.0796
 StepF7 - StepF16   0.15833 0.0317 Inf   4.995  0.0001
 StepF7 - StepF17   0.19123 0.0317 Inf   6.033  <.0001
 StepF7 - StepF18   0.23353 0.0317 Inf   7.361  <.0001
 StepF8 - StepF9    0.03597 0.0317 Inf   1.135  0.9997
 StepF8 - StepF10  -0.00668 0.0317 Inf  -0.211  1.0000
 StepF8 - StepF11   0.02946 0.0317 Inf   0.930  1.0000
 StepF8 - StepF12   0.14327 0.0317 Inf   4.520  0.0009
 StepF8 - StepF13   0.09237 0.0317 Inf   2.914  0.2443
 StepF8 - StepF14   0.03562 0.0317 Inf   1.124  0.9997
 StepF8 - StepF15   0.08678 0.0317 Inf   2.738  0.3538
 StepF8 - StepF16   0.13927 0.0317 Inf   4.394  0.0015
 StepF8 - StepF17   0.17217 0.0317 Inf   5.432  <.0001
 StepF8 - StepF18   0.21447 0.0317 Inf   6.760  <.0001
 StepF9 - StepF10  -0.04265 0.0317 Inf  -1.346  0.9973
 StepF9 - StepF11  -0.00651 0.0317 Inf  -0.205  1.0000
 StepF9 - StepF12   0.10729 0.0317 Inf   3.385  0.0693
 StepF9 - StepF13   0.05640 0.0317 Inf   1.779  0.9498
 StepF9 - StepF14  -0.00035 0.0317 Inf  -0.011  1.0000
 StepF9 - StepF15   0.05080 0.0317 Inf   1.603  0.9815
 StepF9 - StepF16   0.10330 0.0317 Inf   3.259  0.1007
 StepF9 - StepF17   0.13620 0.0317 Inf   4.297  0.0023
 StepF9 - StepF18   0.17849 0.0317 Inf   5.626  <.0001
 StepF10 - StepF11  0.03614 0.0317 Inf   1.140  0.9997
 StepF10 - StepF12  0.14994 0.0317 Inf   4.731  0.0003
 StepF10 - StepF13  0.09905 0.0317 Inf   3.125  0.1457
 StepF10 - StepF14  0.04230 0.0317 Inf   1.335  0.9976
 StepF10 - StepF15  0.09345 0.0317 Inf   2.949  0.2258
 StepF10 - StepF16  0.14594 0.0317 Inf   4.605  0.0006
 StepF10 - StepF17  0.17884 0.0317 Inf   5.643  <.0001
 StepF10 - StepF18  0.22114 0.0317 Inf   6.971  <.0001
 StepF11 - StepF12  0.11380 0.0317 Inf   3.591  0.0357
 StepF11 - StepF13  0.06291 0.0317 Inf   1.985  0.8770
 StepF11 - StepF14  0.00616 0.0317 Inf   0.194  1.0000
 StepF11 - StepF15  0.05732 0.0317 Inf   1.808  0.9421
 StepF11 - StepF16  0.10981 0.0317 Inf   3.464  0.0540
 StepF11 - StepF17  0.14271 0.0317 Inf   4.502  0.0009
 StepF11 - StepF18  0.18501 0.0317 Inf   5.832  <.0001
 StepF12 - StepF13 -0.05090 0.0317 Inf  -1.606  0.9811
 StepF12 - StepF14 -0.10764 0.0317 Inf  -3.396  0.0670
 StepF12 - StepF15 -0.05649 0.0317 Inf  -1.782  0.9490
 StepF12 - StepF16 -0.00400 0.0317 Inf  -0.126  1.0000
 StepF12 - StepF17  0.02890 0.0317 Inf   0.912  1.0000
 StepF12 - StepF18  0.07120 0.0317 Inf   2.244  0.7236
 StepF13 - StepF14 -0.05675 0.0317 Inf  -1.790  0.9469
 StepF13 - StepF15 -0.00559 0.0317 Inf  -0.176  1.0000
 StepF13 - StepF16  0.04690 0.0317 Inf   1.480  0.9921
 StepF13 - StepF17  0.07980 0.0317 Inf   2.518  0.5165
 StepF13 - StepF18  0.12210 0.0317 Inf   3.849  0.0142
 StepF14 - StepF15  0.05115 0.0317 Inf   1.614  0.9801
 StepF14 - StepF16  0.10365 0.0317 Inf   3.270  0.0976
 StepF14 - StepF17  0.13654 0.0317 Inf   4.308  0.0022
 StepF14 - StepF18  0.17884 0.0317 Inf   5.637  <.0001
 StepF15 - StepF16  0.05249 0.0317 Inf   1.656  0.9743
 StepF15 - StepF17  0.08539 0.0317 Inf   2.694  0.3843
 StepF15 - StepF18  0.12769 0.0317 Inf   4.025  0.0072
 StepF16 - StepF17  0.03290 0.0317 Inf   1.038  0.9999
 StepF16 - StepF18  0.07520 0.0317 Inf   2.370  0.6307
 StepF17 - StepF18  0.04230 0.0317 Inf   1.333  0.9976

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.16413 0.0317 Inf  -5.178  <.0001
 StepF1 - StepF3   -0.16549 0.0317 Inf  -5.221  <.0001
 StepF1 - StepF4   -0.03047 0.0317 Inf  -0.961  1.0000
 StepF1 - StepF5   -0.04012 0.0317 Inf  -1.266  0.9987
 StepF1 - StepF6   -0.06876 0.0317 Inf  -2.170  0.7741
 StepF1 - StepF7   -0.07379 0.0317 Inf  -2.328  0.6627
 StepF1 - StepF8   -0.05473 0.0317 Inf  -1.727  0.9618
 StepF1 - StepF9   -0.01876 0.0317 Inf  -0.592  1.0000
 StepF1 - StepF10  -0.06141 0.0317 Inf  -1.937  0.8977
 StepF1 - StepF11  -0.02527 0.0317 Inf  -0.797  1.0000
 StepF1 - StepF12   0.08853 0.0317 Inf   2.793  0.3170
 StepF1 - StepF13   0.03764 0.0317 Inf   1.187  0.9994
 StepF1 - StepF14  -0.01911 0.0317 Inf  -0.603  1.0000
 StepF1 - StepF15   0.03204 0.0317 Inf   1.011  0.9999
 StepF1 - StepF16   0.08454 0.0317 Inf   2.667  0.4037
 StepF1 - StepF17   0.11743 0.0317 Inf   3.705  0.0240
 StepF1 - StepF18   0.15973 0.0317 Inf   5.035  0.0001
 StepF2 - StepF3   -0.00137 0.0317 Inf  -0.043  1.0000
 StepF2 - StepF4    0.13366 0.0317 Inf   4.217  0.0033
 StepF2 - StepF5    0.12401 0.0317 Inf   3.913  0.0112
 StepF2 - StepF6    0.09536 0.0317 Inf   3.009  0.1957
 StepF2 - StepF7    0.09034 0.0317 Inf   2.850  0.2814
 StepF2 - StepF8    0.10939 0.0317 Inf   3.451  0.0563
 StepF2 - StepF9    0.14537 0.0317 Inf   4.586  0.0006
 StepF2 - StepF10   0.10272 0.0317 Inf   3.241  0.1061
 StepF2 - StepF11   0.13886 0.0317 Inf   4.381  0.0016
 StepF2 - StepF12   0.25266 0.0317 Inf   7.972  <.0001
 StepF2 - StepF13   0.20176 0.0317 Inf   6.366  <.0001
 StepF2 - StepF14   0.14502 0.0317 Inf   4.575  0.0007
 StepF2 - StepF15   0.19617 0.0317 Inf   6.189  <.0001
 StepF2 - StepF16   0.24866 0.0317 Inf   7.845  <.0001
 StepF2 - StepF17   0.28156 0.0317 Inf   8.883  <.0001
 StepF2 - StepF18   0.32386 0.0317 Inf  10.209  <.0001
 StepF3 - StepF4    0.13503 0.0317 Inf   4.260  0.0027
 StepF3 - StepF5    0.12538 0.0317 Inf   3.956  0.0095
 StepF3 - StepF6    0.09673 0.0317 Inf   3.052  0.1759
 StepF3 - StepF7    0.09170 0.0317 Inf   2.893  0.2561
 StepF3 - StepF8    0.11076 0.0317 Inf   3.495  0.0491
 StepF3 - StepF9    0.14673 0.0317 Inf   4.629  0.0005
 StepF3 - StepF10   0.10408 0.0317 Inf   3.284  0.0937
 StepF3 - StepF11   0.14022 0.0317 Inf   4.424  0.0013
 StepF3 - StepF12   0.25403 0.0317 Inf   8.015  <.0001
 StepF3 - StepF13   0.20313 0.0317 Inf   6.409  <.0001
 StepF3 - StepF14   0.14638 0.0317 Inf   4.618  0.0005
 StepF3 - StepF15   0.19754 0.0317 Inf   6.232  <.0001
 StepF3 - StepF16   0.25003 0.0317 Inf   7.888  <.0001
 StepF3 - StepF17   0.28293 0.0317 Inf   8.926  <.0001
 StepF3 - StepF18   0.32523 0.0317 Inf  10.252  <.0001
 StepF4 - StepF5   -0.00965 0.0317 Inf  -0.304  1.0000
 StepF4 - StepF6   -0.03830 0.0317 Inf  -1.208  0.9993
 StepF4 - StepF7   -0.04332 0.0317 Inf  -1.367  0.9968
 StepF4 - StepF8   -0.02427 0.0317 Inf  -0.766  1.0000
 StepF4 - StepF9    0.01171 0.0317 Inf   0.369  1.0000
 StepF4 - StepF10  -0.03094 0.0317 Inf  -0.976  1.0000
 StepF4 - StepF11   0.00520 0.0317 Inf   0.164  1.0000
 StepF4 - StepF12   0.11900 0.0317 Inf   3.754  0.0201
 StepF4 - StepF13   0.06810 0.0317 Inf   2.149  0.7873
 StepF4 - StepF14   0.01136 0.0317 Inf   0.358  1.0000
 StepF4 - StepF15   0.06251 0.0317 Inf   1.972  0.8827
 StepF4 - StepF16   0.11500 0.0317 Inf   3.628  0.0314
 StepF4 - StepF17   0.14790 0.0317 Inf   4.666  0.0004
 StepF4 - StepF18   0.19020 0.0317 Inf   5.995  <.0001
 StepF5 - StepF6   -0.02865 0.0317 Inf  -0.904  1.0000
 StepF5 - StepF7   -0.03368 0.0317 Inf  -1.062  0.9999
 StepF5 - StepF8   -0.01462 0.0317 Inf  -0.461  1.0000
 StepF5 - StepF9    0.02136 0.0317 Inf   0.674  1.0000
 StepF5 - StepF10  -0.02129 0.0317 Inf  -0.672  1.0000
 StepF5 - StepF11   0.01484 0.0317 Inf   0.468  1.0000
 StepF5 - StepF12   0.12865 0.0317 Inf   4.059  0.0063
 StepF5 - StepF13   0.07775 0.0317 Inf   2.453  0.5667
 StepF5 - StepF14   0.02101 0.0317 Inf   0.663  1.0000
 StepF5 - StepF15   0.07216 0.0317 Inf   2.277  0.7005
 StepF5 - StepF16   0.12465 0.0317 Inf   3.933  0.0103
 StepF5 - StepF17   0.15755 0.0317 Inf   4.971  0.0001
 StepF5 - StepF18   0.19985 0.0317 Inf   6.300  <.0001
 StepF6 - StepF7   -0.00503 0.0317 Inf  -0.159  1.0000
 StepF6 - StepF8    0.01403 0.0317 Inf   0.443  1.0000
 StepF6 - StepF9    0.05000 0.0317 Inf   1.578  0.9843
 StepF6 - StepF10   0.00736 0.0317 Inf   0.232  1.0000
 StepF6 - StepF11   0.04349 0.0317 Inf   1.372  0.9966
 StepF6 - StepF12   0.15730 0.0317 Inf   4.963  0.0001
 StepF6 - StepF13   0.10640 0.0317 Inf   3.357  0.0755
 StepF6 - StepF14   0.04965 0.0317 Inf   1.567  0.9854
 StepF6 - StepF15   0.10081 0.0317 Inf   3.181  0.1254
 StepF6 - StepF16   0.15330 0.0317 Inf   4.837  0.0002
 StepF6 - StepF17   0.18620 0.0317 Inf   5.875  <.0001
 StepF6 - StepF18   0.22850 0.0317 Inf   7.203  <.0001
 StepF7 - StepF8    0.01906 0.0317 Inf   0.601  1.0000
 StepF7 - StepF9    0.05503 0.0317 Inf   1.736  0.9598
 StepF7 - StepF10   0.01238 0.0317 Inf   0.391  1.0000
 StepF7 - StepF11   0.04852 0.0317 Inf   1.531  0.9885
 StepF7 - StepF12   0.16232 0.0317 Inf   5.121  <.0001
 StepF7 - StepF13   0.11143 0.0317 Inf   3.516  0.0458
 StepF7 - StepF14   0.05468 0.0317 Inf   1.725  0.9621
 StepF7 - StepF15   0.10584 0.0317 Inf   3.339  0.0796
 StepF7 - StepF16   0.15833 0.0317 Inf   4.995  0.0001
 StepF7 - StepF17   0.19123 0.0317 Inf   6.033  <.0001
 StepF7 - StepF18   0.23353 0.0317 Inf   7.361  <.0001
 StepF8 - StepF9    0.03597 0.0317 Inf   1.135  0.9997
 StepF8 - StepF10  -0.00668 0.0317 Inf  -0.211  1.0000
 StepF8 - StepF11   0.02946 0.0317 Inf   0.930  1.0000
 StepF8 - StepF12   0.14327 0.0317 Inf   4.520  0.0009
 StepF8 - StepF13   0.09237 0.0317 Inf   2.914  0.2443
 StepF8 - StepF14   0.03562 0.0317 Inf   1.124  0.9997
 StepF8 - StepF15   0.08678 0.0317 Inf   2.738  0.3538
 StepF8 - StepF16   0.13927 0.0317 Inf   4.394  0.0015
 StepF8 - StepF17   0.17217 0.0317 Inf   5.432  <.0001
 StepF8 - StepF18   0.21447 0.0317 Inf   6.760  <.0001
 StepF9 - StepF10  -0.04265 0.0317 Inf  -1.346  0.9973
 StepF9 - StepF11  -0.00651 0.0317 Inf  -0.205  1.0000
 StepF9 - StepF12   0.10729 0.0317 Inf   3.385  0.0693
 StepF9 - StepF13   0.05640 0.0317 Inf   1.779  0.9498
 StepF9 - StepF14  -0.00035 0.0317 Inf  -0.011  1.0000
 StepF9 - StepF15   0.05080 0.0317 Inf   1.603  0.9815
 StepF9 - StepF16   0.10330 0.0317 Inf   3.259  0.1007
 StepF9 - StepF17   0.13620 0.0317 Inf   4.297  0.0023
 StepF9 - StepF18   0.17849 0.0317 Inf   5.626  <.0001
 StepF10 - StepF11  0.03614 0.0317 Inf   1.140  0.9997
 StepF10 - StepF12  0.14994 0.0317 Inf   4.731  0.0003
 StepF10 - StepF13  0.09905 0.0317 Inf   3.125  0.1457
 StepF10 - StepF14  0.04230 0.0317 Inf   1.335  0.9976
 StepF10 - StepF15  0.09345 0.0317 Inf   2.949  0.2258
 StepF10 - StepF16  0.14594 0.0317 Inf   4.605  0.0006
 StepF10 - StepF17  0.17884 0.0317 Inf   5.643  <.0001
 StepF10 - StepF18  0.22114 0.0317 Inf   6.971  <.0001
 StepF11 - StepF12  0.11380 0.0317 Inf   3.591  0.0357
 StepF11 - StepF13  0.06291 0.0317 Inf   1.985  0.8770
 StepF11 - StepF14  0.00616 0.0317 Inf   0.194  1.0000
 StepF11 - StepF15  0.05732 0.0317 Inf   1.808  0.9421
 StepF11 - StepF16  0.10981 0.0317 Inf   3.464  0.0540
 StepF11 - StepF17  0.14271 0.0317 Inf   4.502  0.0009
 StepF11 - StepF18  0.18501 0.0317 Inf   5.832  <.0001
 StepF12 - StepF13 -0.05090 0.0317 Inf  -1.606  0.9811
 StepF12 - StepF14 -0.10764 0.0317 Inf  -3.396  0.0670
 StepF12 - StepF15 -0.05649 0.0317 Inf  -1.782  0.9490
 StepF12 - StepF16 -0.00400 0.0317 Inf  -0.126  1.0000
 StepF12 - StepF17  0.02890 0.0317 Inf   0.912  1.0000
 StepF12 - StepF18  0.07120 0.0317 Inf   2.244  0.7236
 StepF13 - StepF14 -0.05675 0.0317 Inf  -1.790  0.9469
 StepF13 - StepF15 -0.00559 0.0317 Inf  -0.176  1.0000
 StepF13 - StepF16  0.04690 0.0317 Inf   1.480  0.9921
 StepF13 - StepF17  0.07980 0.0317 Inf   2.518  0.5165
 StepF13 - StepF18  0.12210 0.0317 Inf   3.849  0.0142
 StepF14 - StepF15  0.05115 0.0317 Inf   1.614  0.9801
 StepF14 - StepF16  0.10365 0.0317 Inf   3.270  0.0976
 StepF14 - StepF17  0.13654 0.0317 Inf   4.308  0.0022
 StepF14 - StepF18  0.17884 0.0317 Inf   5.637  <.0001
 StepF15 - StepF16  0.05249 0.0317 Inf   1.656  0.9743
 StepF15 - StepF17  0.08539 0.0317 Inf   2.694  0.3843
 StepF15 - StepF18  0.12769 0.0317 Inf   4.025  0.0072
 StepF16 - StepF17  0.03290 0.0317 Inf   1.038  0.9999
 StepF16 - StepF18  0.07520 0.0317 Inf   2.370  0.6307
 StepF17 - StepF18  0.04230 0.0317 Inf   1.333  0.9976

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.16413 0.0317 Inf   5.178  <.0001
 StepF3 - StepF2    0.00137 0.0317 Inf   0.043  1.0000
 StepF4 - StepF3   -0.13503 0.0317 Inf  -4.260  0.0003
 StepF5 - StepF4    0.00965 0.0317 Inf   0.304  1.0000
 StepF6 - StepF5    0.02865 0.0317 Inf   0.904  1.0000
 StepF7 - StepF6    0.00503 0.0317 Inf   0.159  1.0000
 StepF8 - StepF7   -0.01906 0.0317 Inf  -0.601  1.0000
 StepF9 - StepF8   -0.03597 0.0317 Inf  -1.135  1.0000
 StepF10 - StepF9   0.04265 0.0317 Inf   1.346  1.0000
 StepF11 - StepF10 -0.03614 0.0317 Inf  -1.140  1.0000
 StepF12 - StepF11 -0.11380 0.0317 Inf  -3.591  0.0049
 StepF13 - StepF12  0.05090 0.0317 Inf   1.606  1.0000
 StepF14 - StepF13  0.05675 0.0317 Inf   1.790  1.0000
 StepF15 - StepF14 -0.05115 0.0317 Inf  -1.614  1.0000
 StepF16 - StepF15 -0.05249 0.0317 Inf  -1.656  1.0000
 StepF17 - StepF16 -0.03290 0.0317 Inf  -1.038  1.0000
 StepF18 - StepF17 -0.04230 0.0317 Inf  -1.333  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.16413 0.0317 Inf   5.178  <.0001
 StepF3 - StepF2    0.00137 0.0317 Inf   0.043  1.0000
 StepF4 - StepF3   -0.13503 0.0317 Inf  -4.260  0.0003
 StepF5 - StepF4    0.00965 0.0317 Inf   0.304  1.0000
 StepF6 - StepF5    0.02865 0.0317 Inf   0.904  1.0000
 StepF7 - StepF6    0.00503 0.0317 Inf   0.159  1.0000
 StepF8 - StepF7   -0.01906 0.0317 Inf  -0.601  1.0000
 StepF9 - StepF8   -0.03597 0.0317 Inf  -1.135  1.0000
 StepF10 - StepF9   0.04265 0.0317 Inf   1.346  1.0000
 StepF11 - StepF10 -0.03614 0.0317 Inf  -1.140  1.0000
 StepF12 - StepF11 -0.11380 0.0317 Inf  -3.591  0.0049
 StepF13 - StepF12  0.05090 0.0317 Inf   1.606  1.0000
 StepF14 - StepF13  0.05675 0.0317 Inf   1.790  1.0000
 StepF15 - StepF14 -0.05115 0.0317 Inf  -1.614  1.0000
 StepF16 - StepF15 -0.05249 0.0317 Inf  -1.656  1.0000
 StepF17 - StepF16 -0.03290 0.0317 Inf  -1.038  1.0000
 StepF18 - StepF17 -0.04230 0.0317 Inf  -1.333  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 
# ==== TEST (Blocks 4–5): stepwise LMM + χ² + EMMs + all-pairs + adjacent (per block × seq length × axis) 
suppressPackageStartupMessages({
  library(dplyr); library(lme4); library(lmerTest); library(emmeans); library(car)
})
emm_options(lmer.df = "asymptotic")

.report_step_test <- function(df_block, block_label, seq_label) {
  for (ax in c("x","y","z")) {
    dd <- df_block %>% filter(Axis == ax)
    if (nrow(dd) == 0) next

    dd <- dd %>%
      mutate(
        StepF    = factor(Step, levels = sort(unique(Step))),
        subject  = factor(subject),
        trial_id = factor(trial_id),
        Accuracy = droplevels(Accuracy)
      )

    cat("\n\n==============================\n",
        "TEST | Block ", block_label, " | ", seq_label, " | Axis ", toupper(ax),
        "\n==============================\n", sep = "")

    m <- suppressWarnings(lmer(RMS ~ StepF + Accuracy + (1|subject) + (1|trial_id),
                               data = dd, REML = TRUE))

    cat("\nType II Wald χ² (StepF & Accuracy):\n")
    print(car::Anova(m, type = 2, test.statistic = "Chisq"))

    if (nlevels(dd$Accuracy) >= 2) {
      em <- emmeans(m, ~ StepF | Accuracy)
      cat("\nEMMs per step | Accuracy:\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps | Accuracy:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm) | Accuracy:\n")
      print(contrast(em, method = "consec", by = "Accuracy", adjust = "holm"))
    } else {
      em <- emmeans(m, ~ StepF)
      cat("\nEMMs per step:\n"); print(summary(em))

      cat("\nAll-pairs (Tukey) among steps:\n")
      print(pairs(em, adjust = "tukey"))

      cat("\nAdjacent steps (consec; Holm):\n")
      print(contrast(em, method = "consec", adjust = "holm"))
    }

    rm(m, em); invisible(gc())
  }
}

# Block 4
.report_step_test(sw_b4_6,  "4", "6 steps")


==============================
TEST | Block 4 | 6 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    67.6532  5  3.153e-13 ***
Accuracy  0.1616  1     0.6877    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.684 0.0717 Inf     0.543     0.824
 2      0.785 0.0717 Inf     0.644     0.925
 3      0.785 0.0717 Inf     0.645     0.926
 4      0.738 0.0717 Inf     0.598     0.879
 5      0.599 0.0717 Inf     0.458     0.739
 6      0.627 0.0717 Inf     0.487     0.768

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.674 0.0702 Inf     0.537     0.812
 2      0.775 0.0702 Inf     0.638     0.913
 3      0.776 0.0702 Inf     0.639     0.914
 4      0.729 0.0702 Inf     0.592     0.867
 5      0.589 0.0702 Inf     0.452     0.727
 6      0.618 0.0702 Inf     0.480     0.755

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast         estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.100977 0.0306 Inf  -3.295  0.0126
 StepF1 - StepF3 -0.101660 0.0306 Inf  -3.318  0.0117
 StepF1 - StepF4 -0.054661 0.0306 Inf  -1.784  0.4762
 StepF1 - StepF5  0.085246 0.0306 Inf   2.782  0.0603
 StepF1 - StepF6  0.056560 0.0306 Inf   1.846  0.4361
 StepF2 - StepF3 -0.000683 0.0306 Inf  -0.022  1.0000
 StepF2 - StepF4  0.046316 0.0306 Inf   1.512  0.6568
 StepF2 - StepF5  0.186222 0.0306 Inf   6.077  <.0001
 StepF2 - StepF6  0.157537 0.0306 Inf   5.141  <.0001
 StepF3 - StepF4  0.046999 0.0306 Inf   1.534  0.6423
 StepF3 - StepF5  0.186906 0.0306 Inf   6.100  <.0001
 StepF3 - StepF6  0.158220 0.0306 Inf   5.163  <.0001
 StepF4 - StepF5  0.139906 0.0306 Inf   4.566  0.0001
 StepF4 - StepF6  0.111221 0.0306 Inf   3.630  0.0039
 StepF5 - StepF6 -0.028686 0.0306 Inf  -0.936  0.9372

Accuracy = 1:
 contrast         estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.100977 0.0306 Inf  -3.295  0.0126
 StepF1 - StepF3 -0.101660 0.0306 Inf  -3.318  0.0117
 StepF1 - StepF4 -0.054661 0.0306 Inf  -1.784  0.4762
 StepF1 - StepF5  0.085246 0.0306 Inf   2.782  0.0603
 StepF1 - StepF6  0.056560 0.0306 Inf   1.846  0.4361
 StepF2 - StepF3 -0.000683 0.0306 Inf  -0.022  1.0000
 StepF2 - StepF4  0.046316 0.0306 Inf   1.512  0.6568
 StepF2 - StepF5  0.186222 0.0306 Inf   6.077  <.0001
 StepF2 - StepF6  0.157537 0.0306 Inf   5.141  <.0001
 StepF3 - StepF4  0.046999 0.0306 Inf   1.534  0.6423
 StepF3 - StepF5  0.186906 0.0306 Inf   6.100  <.0001
 StepF3 - StepF6  0.158220 0.0306 Inf   5.163  <.0001
 StepF4 - StepF5  0.139906 0.0306 Inf   4.566  0.0001
 StepF4 - StepF6  0.111221 0.0306 Inf   3.630  0.0039
 StepF5 - StepF6 -0.028686 0.0306 Inf  -0.936  0.9372

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast         estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.100977 0.0306 Inf   3.295  0.0039
 StepF3 - StepF2  0.000683 0.0306 Inf   0.022  0.9822
 StepF4 - StepF3 -0.046999 0.0306 Inf  -1.534  0.3752
 StepF5 - StepF4 -0.139906 0.0306 Inf  -4.566  <.0001
 StepF6 - StepF5  0.028686 0.0306 Inf   0.936  0.6984

Accuracy = 1:
 contrast         estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.100977 0.0306 Inf   3.295  0.0039
 StepF3 - StepF2  0.000683 0.0306 Inf   0.022  0.9822
 StepF4 - StepF3 -0.046999 0.0306 Inf  -1.534  0.3752
 StepF5 - StepF4 -0.139906 0.0306 Inf  -4.566  <.0001
 StepF6 - StepF5  0.028686 0.0306 Inf   0.936  0.6984

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST | Block 4 | 6 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    69.9093  5   1.07e-13 ***
Accuracy  0.0123  1     0.9117    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.688 0.0863 Inf     0.519     0.857
 2      0.906 0.0863 Inf     0.737     1.075
 3      0.864 0.0863 Inf     0.695     1.034
 4      0.762 0.0863 Inf     0.593     0.931
 5      0.688 0.0863 Inf     0.519     0.857
 6      0.743 0.0863 Inf     0.574     0.912

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.685 0.0847 Inf     0.519     0.851
 2      0.903 0.0847 Inf     0.737     1.069
 3      0.862 0.0847 Inf     0.695     1.028
 4      0.759 0.0847 Inf     0.593     0.925
 5      0.685 0.0847 Inf     0.519     0.851
 6      0.740 0.0847 Inf     0.574     0.906

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast         estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -2.18e-01 0.0345 Inf  -6.328  <.0001
 StepF1 - StepF3 -1.77e-01 0.0345 Inf  -5.120  <.0001
 StepF1 - StepF4 -7.42e-02 0.0345 Inf  -2.151  0.2610
 StepF1 - StepF5  8.15e-05 0.0345 Inf   0.002  1.0000
 StepF1 - StepF6 -5.52e-02 0.0345 Inf  -1.600  0.5986
 StepF2 - StepF3  4.16e-02 0.0345 Inf   1.208  0.8334
 StepF2 - StepF4  1.44e-01 0.0345 Inf   4.177  0.0004
 StepF2 - StepF5  2.18e-01 0.0345 Inf   6.330  <.0001
 StepF2 - StepF6  1.63e-01 0.0345 Inf   4.728  <.0001
 StepF3 - StepF4  1.02e-01 0.0345 Inf   2.969  0.0354
 StepF3 - StepF5  1.77e-01 0.0345 Inf   5.123  <.0001
 StepF3 - StepF6  1.21e-01 0.0345 Inf   3.520  0.0058
 StepF4 - StepF5  7.43e-02 0.0345 Inf   2.154  0.2599
 StepF4 - StepF6  1.90e-02 0.0345 Inf   0.551  0.9940
 StepF5 - StepF6 -5.52e-02 0.0345 Inf  -1.602  0.5970

Accuracy = 1:
 contrast         estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -2.18e-01 0.0345 Inf  -6.328  <.0001
 StepF1 - StepF3 -1.77e-01 0.0345 Inf  -5.120  <.0001
 StepF1 - StepF4 -7.42e-02 0.0345 Inf  -2.151  0.2610
 StepF1 - StepF5  8.15e-05 0.0345 Inf   0.002  1.0000
 StepF1 - StepF6 -5.52e-02 0.0345 Inf  -1.600  0.5986
 StepF2 - StepF3  4.16e-02 0.0345 Inf   1.208  0.8334
 StepF2 - StepF4  1.44e-01 0.0345 Inf   4.177  0.0004
 StepF2 - StepF5  2.18e-01 0.0345 Inf   6.330  <.0001
 StepF2 - StepF6  1.63e-01 0.0345 Inf   4.728  <.0001
 StepF3 - StepF4  1.02e-01 0.0345 Inf   2.969  0.0354
 StepF3 - StepF5  1.77e-01 0.0345 Inf   5.123  <.0001
 StepF3 - StepF6  1.21e-01 0.0345 Inf   3.520  0.0058
 StepF4 - StepF5  7.43e-02 0.0345 Inf   2.154  0.2599
 StepF4 - StepF6  1.90e-02 0.0345 Inf   0.551  0.9940
 StepF5 - StepF6 -5.52e-02 0.0345 Inf  -1.602  0.5970

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2182 0.0345 Inf   6.328  <.0001
 StepF3 - StepF2  -0.0416 0.0345 Inf  -1.208  0.2272
 StepF4 - StepF3  -0.1024 0.0345 Inf  -2.969  0.0120
 StepF5 - StepF4  -0.0743 0.0345 Inf  -2.154  0.0938
 StepF6 - StepF5   0.0552 0.0345 Inf   1.602  0.2182

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2182 0.0345 Inf   6.328  <.0001
 StepF3 - StepF2  -0.0416 0.0345 Inf  -1.208  0.2272
 StepF4 - StepF3  -0.1024 0.0345 Inf  -2.969  0.0120
 StepF5 - StepF4  -0.0743 0.0345 Inf  -2.154  0.0938
 StepF6 - StepF5   0.0552 0.0345 Inf   1.602  0.2182

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST | Block 4 | 6 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    83.2385  5     <2e-16 ***
Accuracy  0.0005  1      0.983    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.44 0.152 Inf      1.15      1.74
 2       1.69 0.152 Inf      1.40      1.99
 3       1.74 0.152 Inf      1.44      2.04
 4       1.61 0.152 Inf      1.31      1.90
 5       1.36 0.152 Inf      1.06      1.66
 6       1.32 0.152 Inf      1.02      1.62

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.45 0.149 Inf      1.15      1.74
 2       1.69 0.149 Inf      1.40      1.98
 3       1.74 0.149 Inf      1.45      2.03
 4       1.61 0.149 Inf      1.32      1.90
 5       1.36 0.149 Inf      1.07      1.65
 6       1.32 0.149 Inf      1.03      1.61

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2474 0.0614 Inf  -4.031  0.0008
 StepF1 - StepF3  -0.2960 0.0614 Inf  -4.823  <.0001
 StepF1 - StepF4  -0.1626 0.0614 Inf  -2.650  0.0855
 StepF1 - StepF5   0.0831 0.0614 Inf   1.354  0.7548
 StepF1 - StepF6   0.1257 0.0614 Inf   2.048  0.3151
 StepF2 - StepF3  -0.0486 0.0614 Inf  -0.791  0.9691
 StepF2 - StepF4   0.0848 0.0614 Inf   1.381  0.7385
 StepF2 - StepF5   0.3305 0.0614 Inf   5.385  <.0001
 StepF2 - StepF6   0.3731 0.0614 Inf   6.079  <.0001
 StepF3 - StepF4   0.1333 0.0614 Inf   2.172  0.2507
 StepF3 - StepF5   0.3790 0.0614 Inf   6.176  <.0001
 StepF3 - StepF6   0.4216 0.0614 Inf   6.871  <.0001
 StepF4 - StepF5   0.2457 0.0614 Inf   4.004  0.0009
 StepF4 - StepF6   0.2883 0.0614 Inf   4.698  <.0001
 StepF5 - StepF6   0.0426 0.0614 Inf   0.694  0.9826

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2474 0.0614 Inf  -4.031  0.0008
 StepF1 - StepF3  -0.2960 0.0614 Inf  -4.823  <.0001
 StepF1 - StepF4  -0.1626 0.0614 Inf  -2.650  0.0855
 StepF1 - StepF5   0.0831 0.0614 Inf   1.354  0.7548
 StepF1 - StepF6   0.1257 0.0614 Inf   2.048  0.3151
 StepF2 - StepF3  -0.0486 0.0614 Inf  -0.791  0.9691
 StepF2 - StepF4   0.0848 0.0614 Inf   1.381  0.7385
 StepF2 - StepF5   0.3305 0.0614 Inf   5.385  <.0001
 StepF2 - StepF6   0.3731 0.0614 Inf   6.079  <.0001
 StepF3 - StepF4   0.1333 0.0614 Inf   2.172  0.2507
 StepF3 - StepF5   0.3790 0.0614 Inf   6.176  <.0001
 StepF3 - StepF6   0.4216 0.0614 Inf   6.871  <.0001
 StepF4 - StepF5   0.2457 0.0614 Inf   4.004  0.0009
 StepF4 - StepF6   0.2883 0.0614 Inf   4.698  <.0001
 StepF5 - StepF6   0.0426 0.0614 Inf   0.694  0.9826

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2474 0.0614 Inf   4.031  0.0003
 StepF3 - StepF2   0.0486 0.0614 Inf   0.791  0.8576
 StepF4 - StepF3  -0.1333 0.0614 Inf  -2.172  0.0895
 StepF5 - StepF4  -0.2457 0.0614 Inf  -4.004  0.0003
 StepF6 - StepF5  -0.0426 0.0614 Inf  -0.694  0.8576

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2474 0.0614 Inf   4.031  0.0003
 StepF3 - StepF2   0.0486 0.0614 Inf   0.791  0.8576
 StepF4 - StepF3  -0.1333 0.0614 Inf  -2.172  0.0895
 StepF5 - StepF4  -0.2457 0.0614 Inf  -4.004  0.0003
 StepF6 - StepF5  -0.0426 0.0614 Inf  -0.694  0.8576

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 
.report_step_test(sw_b4_12, "4", "12 steps")


==============================
TEST | Block 4 | 12 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    125.9062 11     <2e-16 ***
Accuracy   0.0141  1     0.9054    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.683 0.0714 Inf     0.544     0.823
 2      0.785 0.0714 Inf     0.645     0.925
 3      0.774 0.0714 Inf     0.634     0.914
 4      0.716 0.0714 Inf     0.576     0.856
 5      0.679 0.0714 Inf     0.539     0.819
 6      0.740 0.0714 Inf     0.600     0.880
 7      0.724 0.0714 Inf     0.584     0.864
 8      0.684 0.0714 Inf     0.544     0.824
 9      0.649 0.0714 Inf     0.509     0.788
 10     0.607 0.0714 Inf     0.467     0.747
 11     0.625 0.0714 Inf     0.486     0.765
 12     0.520 0.0714 Inf     0.380     0.660

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.686 0.0703 Inf     0.548     0.823
 2      0.787 0.0703 Inf     0.650     0.925
 3      0.776 0.0703 Inf     0.639     0.914
 4      0.718 0.0703 Inf     0.580     0.856
 5      0.681 0.0703 Inf     0.543     0.819
 6      0.742 0.0703 Inf     0.605     0.880
 7      0.726 0.0703 Inf     0.588     0.864
 8      0.686 0.0703 Inf     0.548     0.824
 9      0.651 0.0703 Inf     0.513     0.789
 10     0.609 0.0703 Inf     0.471     0.747
 11     0.628 0.0703 Inf     0.490     0.765
 12     0.522 0.0703 Inf     0.384     0.660

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.101751 0.0313 Inf  -3.249  0.0530
 StepF1 - StepF3   -0.090757 0.0313 Inf  -2.898  0.1415
 StepF1 - StepF4   -0.032220 0.0313 Inf  -1.029  0.9971
 StepF1 - StepF5    0.004576 0.0313 Inf   0.146  1.0000
 StepF1 - StepF6   -0.056830 0.0313 Inf  -1.815  0.8104
 StepF1 - StepF7   -0.040277 0.0313 Inf  -1.286  0.9810
 StepF1 - StepF8   -0.000245 0.0313 Inf  -0.008  1.0000
 StepF1 - StepF9    0.034954 0.0313 Inf   1.116  0.9941
 StepF1 - StepF10   0.076751 0.0313 Inf   2.451  0.3717
 StepF1 - StepF11   0.058019 0.0313 Inf   1.852  0.7885
 StepF1 - StepF12   0.163683 0.0313 Inf   5.226  <.0001
 StepF2 - StepF3    0.010994 0.0313 Inf   0.351  1.0000
 StepF2 - StepF4    0.069531 0.0313 Inf   2.220  0.5348
 StepF2 - StepF5    0.106327 0.0313 Inf   3.395  0.0334
 StepF2 - StepF6    0.044921 0.0313 Inf   1.434  0.9569
 StepF2 - StepF7    0.061474 0.0313 Inf   1.963  0.7189
 StepF2 - StepF8    0.101505 0.0313 Inf   3.241  0.0543
 StepF2 - StepF9    0.136705 0.0313 Inf   4.365  0.0008
 StepF2 - StepF10   0.178502 0.0313 Inf   5.699  <.0001
 StepF2 - StepF11   0.159770 0.0313 Inf   5.101  <.0001
 StepF2 - StepF12   0.265434 0.0313 Inf   8.475  <.0001
 StepF3 - StepF4    0.058537 0.0313 Inf   1.869  0.7787
 StepF3 - StepF5    0.095332 0.0313 Inf   3.044  0.0962
 StepF3 - StepF6    0.033927 0.0313 Inf   1.083  0.9954
 StepF3 - StepF7    0.050480 0.0313 Inf   1.612  0.9053
 StepF3 - StepF8    0.090511 0.0313 Inf   2.890  0.1443
 StepF3 - StepF9    0.125711 0.0313 Inf   4.014  0.0035
 StepF3 - StepF10   0.167508 0.0313 Inf   5.348  <.0001
 StepF3 - StepF11   0.148776 0.0313 Inf   4.750  0.0001
 StepF3 - StepF12   0.254440 0.0313 Inf   8.124  <.0001
 StepF4 - StepF5    0.036796 0.0313 Inf   1.175  0.9908
 StepF4 - StepF6   -0.024610 0.0313 Inf  -0.786  0.9998
 StepF4 - StepF7   -0.008057 0.0313 Inf  -0.257  1.0000
 StepF4 - StepF8    0.031975 0.0313 Inf   1.021  0.9973
 StepF4 - StepF9    0.067174 0.0313 Inf   2.145  0.5901
 StepF4 - StepF10   0.108971 0.0313 Inf   3.479  0.0253
 StepF4 - StepF11   0.090239 0.0313 Inf   2.881  0.1475
 StepF4 - StepF12   0.195903 0.0313 Inf   6.255  <.0001
 StepF5 - StepF6   -0.061406 0.0313 Inf  -1.961  0.7203
 StepF5 - StepF7   -0.044852 0.0313 Inf  -1.432  0.9574
 StepF5 - StepF8   -0.004821 0.0313 Inf  -0.154  1.0000
 StepF5 - StepF9    0.030378 0.0313 Inf   0.970  0.9983
 StepF5 - StepF10   0.072176 0.0313 Inf   2.305  0.4732
 StepF5 - StepF11   0.053443 0.0313 Inf   1.706  0.8658
 StepF5 - StepF12   0.159107 0.0313 Inf   5.080  <.0001
 StepF6 - StepF7    0.016553 0.0313 Inf   0.529  1.0000
 StepF6 - StepF8    0.056584 0.0313 Inf   1.807  0.8148
 StepF6 - StepF9    0.091784 0.0313 Inf   2.931  0.1301
 StepF6 - StepF10   0.133581 0.0313 Inf   4.265  0.0012
 StepF6 - StepF11   0.114849 0.0313 Inf   3.667  0.0131
 StepF6 - StepF12   0.220513 0.0313 Inf   7.041  <.0001
 StepF7 - StepF8    0.040031 0.0313 Inf   1.278  0.9819
 StepF7 - StepF9    0.075231 0.0313 Inf   2.402  0.4044
 StepF7 - StepF10   0.117028 0.0313 Inf   3.737  0.0102
 StepF7 - StepF11   0.098296 0.0313 Inf   3.138  0.0736
 StepF7 - StepF12   0.203960 0.0313 Inf   6.512  <.0001
 StepF8 - StepF9    0.035199 0.0313 Inf   1.124  0.9937
 StepF8 - StepF10   0.076997 0.0313 Inf   2.458  0.3665
 StepF8 - StepF11   0.058264 0.0313 Inf   1.860  0.7839
 StepF8 - StepF12   0.163929 0.0313 Inf   5.234  <.0001
 StepF9 - StepF10   0.041797 0.0313 Inf   1.335  0.9747
 StepF9 - StepF11   0.023065 0.0313 Inf   0.736  0.9999
 StepF9 - StepF12   0.128729 0.0313 Inf   4.110  0.0023
 StepF10 - StepF11 -0.018732 0.0313 Inf  -0.598  1.0000
 StepF10 - StepF12  0.086932 0.0313 Inf   2.776  0.1903
 StepF11 - StepF12  0.105664 0.0313 Inf   3.374  0.0358

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.101751 0.0313 Inf  -3.249  0.0530
 StepF1 - StepF3   -0.090757 0.0313 Inf  -2.898  0.1415
 StepF1 - StepF4   -0.032220 0.0313 Inf  -1.029  0.9971
 StepF1 - StepF5    0.004576 0.0313 Inf   0.146  1.0000
 StepF1 - StepF6   -0.056830 0.0313 Inf  -1.815  0.8104
 StepF1 - StepF7   -0.040277 0.0313 Inf  -1.286  0.9810
 StepF1 - StepF8   -0.000245 0.0313 Inf  -0.008  1.0000
 StepF1 - StepF9    0.034954 0.0313 Inf   1.116  0.9941
 StepF1 - StepF10   0.076751 0.0313 Inf   2.451  0.3717
 StepF1 - StepF11   0.058019 0.0313 Inf   1.852  0.7885
 StepF1 - StepF12   0.163683 0.0313 Inf   5.226  <.0001
 StepF2 - StepF3    0.010994 0.0313 Inf   0.351  1.0000
 StepF2 - StepF4    0.069531 0.0313 Inf   2.220  0.5348
 StepF2 - StepF5    0.106327 0.0313 Inf   3.395  0.0334
 StepF2 - StepF6    0.044921 0.0313 Inf   1.434  0.9569
 StepF2 - StepF7    0.061474 0.0313 Inf   1.963  0.7189
 StepF2 - StepF8    0.101505 0.0313 Inf   3.241  0.0543
 StepF2 - StepF9    0.136705 0.0313 Inf   4.365  0.0008
 StepF2 - StepF10   0.178502 0.0313 Inf   5.699  <.0001
 StepF2 - StepF11   0.159770 0.0313 Inf   5.101  <.0001
 StepF2 - StepF12   0.265434 0.0313 Inf   8.475  <.0001
 StepF3 - StepF4    0.058537 0.0313 Inf   1.869  0.7787
 StepF3 - StepF5    0.095332 0.0313 Inf   3.044  0.0962
 StepF3 - StepF6    0.033927 0.0313 Inf   1.083  0.9954
 StepF3 - StepF7    0.050480 0.0313 Inf   1.612  0.9053
 StepF3 - StepF8    0.090511 0.0313 Inf   2.890  0.1443
 StepF3 - StepF9    0.125711 0.0313 Inf   4.014  0.0035
 StepF3 - StepF10   0.167508 0.0313 Inf   5.348  <.0001
 StepF3 - StepF11   0.148776 0.0313 Inf   4.750  0.0001
 StepF3 - StepF12   0.254440 0.0313 Inf   8.124  <.0001
 StepF4 - StepF5    0.036796 0.0313 Inf   1.175  0.9908
 StepF4 - StepF6   -0.024610 0.0313 Inf  -0.786  0.9998
 StepF4 - StepF7   -0.008057 0.0313 Inf  -0.257  1.0000
 StepF4 - StepF8    0.031975 0.0313 Inf   1.021  0.9973
 StepF4 - StepF9    0.067174 0.0313 Inf   2.145  0.5901
 StepF4 - StepF10   0.108971 0.0313 Inf   3.479  0.0253
 StepF4 - StepF11   0.090239 0.0313 Inf   2.881  0.1475
 StepF4 - StepF12   0.195903 0.0313 Inf   6.255  <.0001
 StepF5 - StepF6   -0.061406 0.0313 Inf  -1.961  0.7203
 StepF5 - StepF7   -0.044852 0.0313 Inf  -1.432  0.9574
 StepF5 - StepF8   -0.004821 0.0313 Inf  -0.154  1.0000
 StepF5 - StepF9    0.030378 0.0313 Inf   0.970  0.9983
 StepF5 - StepF10   0.072176 0.0313 Inf   2.305  0.4732
 StepF5 - StepF11   0.053443 0.0313 Inf   1.706  0.8658
 StepF5 - StepF12   0.159107 0.0313 Inf   5.080  <.0001
 StepF6 - StepF7    0.016553 0.0313 Inf   0.529  1.0000
 StepF6 - StepF8    0.056584 0.0313 Inf   1.807  0.8148
 StepF6 - StepF9    0.091784 0.0313 Inf   2.931  0.1301
 StepF6 - StepF10   0.133581 0.0313 Inf   4.265  0.0012
 StepF6 - StepF11   0.114849 0.0313 Inf   3.667  0.0131
 StepF6 - StepF12   0.220513 0.0313 Inf   7.041  <.0001
 StepF7 - StepF8    0.040031 0.0313 Inf   1.278  0.9819
 StepF7 - StepF9    0.075231 0.0313 Inf   2.402  0.4044
 StepF7 - StepF10   0.117028 0.0313 Inf   3.737  0.0102
 StepF7 - StepF11   0.098296 0.0313 Inf   3.138  0.0736
 StepF7 - StepF12   0.203960 0.0313 Inf   6.512  <.0001
 StepF8 - StepF9    0.035199 0.0313 Inf   1.124  0.9937
 StepF8 - StepF10   0.076997 0.0313 Inf   2.458  0.3665
 StepF8 - StepF11   0.058264 0.0313 Inf   1.860  0.7839
 StepF8 - StepF12   0.163929 0.0313 Inf   5.234  <.0001
 StepF9 - StepF10   0.041797 0.0313 Inf   1.335  0.9747
 StepF9 - StepF11   0.023065 0.0313 Inf   0.736  0.9999
 StepF9 - StepF12   0.128729 0.0313 Inf   4.110  0.0023
 StepF10 - StepF11 -0.018732 0.0313 Inf  -0.598  1.0000
 StepF10 - StepF12  0.086932 0.0313 Inf   2.776  0.1903
 StepF11 - StepF12  0.105664 0.0313 Inf   3.374  0.0358

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.1018 0.0313 Inf   3.249  0.0116
 StepF3 - StepF2    -0.0110 0.0313 Inf  -0.351  1.0000
 StepF4 - StepF3    -0.0585 0.0313 Inf  -1.869  0.4930
 StepF5 - StepF4    -0.0368 0.0313 Inf  -1.175  1.0000
 StepF6 - StepF5     0.0614 0.0313 Inf   1.961  0.4493
 StepF7 - StepF6    -0.0166 0.0313 Inf  -0.529  1.0000
 StepF8 - StepF7    -0.0400 0.0313 Inf  -1.278  1.0000
 StepF9 - StepF8    -0.0352 0.0313 Inf  -1.124  1.0000
 StepF10 - StepF9   -0.0418 0.0313 Inf  -1.335  1.0000
 StepF11 - StepF10   0.0187 0.0313 Inf   0.598  1.0000
 StepF12 - StepF11  -0.1057 0.0313 Inf  -3.374  0.0082

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.1018 0.0313 Inf   3.249  0.0116
 StepF3 - StepF2    -0.0110 0.0313 Inf  -0.351  1.0000
 StepF4 - StepF3    -0.0585 0.0313 Inf  -1.869  0.4930
 StepF5 - StepF4    -0.0368 0.0313 Inf  -1.175  1.0000
 StepF6 - StepF5     0.0614 0.0313 Inf   1.961  0.4493
 StepF7 - StepF6    -0.0166 0.0313 Inf  -0.529  1.0000
 StepF8 - StepF7    -0.0400 0.0313 Inf  -1.278  1.0000
 StepF9 - StepF8    -0.0352 0.0313 Inf  -1.124  1.0000
 StepF10 - StepF9   -0.0418 0.0313 Inf  -1.335  1.0000
 StepF11 - StepF10   0.0187 0.0313 Inf   0.598  1.0000
 StepF12 - StepF11  -0.1057 0.0313 Inf  -3.374  0.0082

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST | Block 4 | 12 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    202.0651 11     <2e-16 ***
Accuracy   0.0237  1     0.8778    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.694 0.0846 Inf     0.528     0.860
 2      0.887 0.0846 Inf     0.721     1.053
 3      0.924 0.0846 Inf     0.758     1.090
 4      0.781 0.0846 Inf     0.616     0.947
 5      0.728 0.0846 Inf     0.562     0.894
 6      0.818 0.0846 Inf     0.652     0.983
 7      0.782 0.0846 Inf     0.616     0.948
 8      0.673 0.0846 Inf     0.507     0.839
 9      0.665 0.0846 Inf     0.500     0.831
 10     0.702 0.0846 Inf     0.536     0.868
 11     0.660 0.0846 Inf     0.495     0.826
 12     0.529 0.0846 Inf     0.364     0.695

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.697 0.0834 Inf     0.534     0.861
 2      0.890 0.0834 Inf     0.727     1.054
 3      0.927 0.0834 Inf     0.764     1.090
 4      0.785 0.0834 Inf     0.621     0.948
 5      0.731 0.0834 Inf     0.568     0.894
 6      0.821 0.0834 Inf     0.657     0.984
 7      0.785 0.0834 Inf     0.622     0.949
 8      0.676 0.0834 Inf     0.513     0.840
 9      0.669 0.0834 Inf     0.505     0.832
 10     0.705 0.0834 Inf     0.542     0.869
 11     0.664 0.0834 Inf     0.500     0.827
 12     0.533 0.0834 Inf     0.369     0.696

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.192878 0.0358 Inf  -5.392  <.0001
 StepF1 - StepF3   -0.229587 0.0358 Inf  -6.419  <.0001
 StepF1 - StepF4   -0.087247 0.0358 Inf  -2.439  0.3793
 StepF1 - StepF5   -0.033545 0.0358 Inf  -0.938  0.9987
 StepF1 - StepF6   -0.123297 0.0358 Inf  -3.447  0.0282
 StepF1 - StepF7   -0.087903 0.0358 Inf  -2.458  0.3671
 StepF1 - StepF8    0.021035 0.0358 Inf   0.588  1.0000
 StepF1 - StepF9    0.028954 0.0358 Inf   0.809  0.9997
 StepF1 - StepF10  -0.007789 0.0358 Inf  -0.218  1.0000
 StepF1 - StepF11   0.033889 0.0358 Inf   0.947  0.9986
 StepF1 - StepF12   0.164836 0.0358 Inf   4.608  0.0003
 StepF2 - StepF3   -0.036710 0.0358 Inf  -1.026  0.9971
 StepF2 - StepF4    0.105630 0.0358 Inf   2.953  0.1227
 StepF2 - StepF5    0.159333 0.0358 Inf   4.454  0.0005
 StepF2 - StepF6    0.069581 0.0358 Inf   1.945  0.7305
 StepF2 - StepF7    0.104974 0.0358 Inf   2.935  0.1287
 StepF2 - StepF8    0.213912 0.0358 Inf   5.980  <.0001
 StepF2 - StepF9    0.221832 0.0358 Inf   6.202  <.0001
 StepF2 - StepF10   0.185089 0.0358 Inf   5.175  <.0001
 StepF2 - StepF11   0.226767 0.0358 Inf   6.340  <.0001
 StepF2 - StepF12   0.357714 0.0358 Inf  10.001  <.0001
 StepF3 - StepF4    0.142340 0.0358 Inf   3.979  0.0040
 StepF3 - StepF5    0.196043 0.0358 Inf   5.481  <.0001
 StepF3 - StepF6    0.106291 0.0358 Inf   2.972  0.1169
 StepF3 - StepF7    0.141684 0.0358 Inf   3.961  0.0043
 StepF3 - StepF8    0.250622 0.0358 Inf   7.007  <.0001
 StepF3 - StepF9    0.258542 0.0358 Inf   7.228  <.0001
 StepF3 - StepF10   0.221799 0.0358 Inf   6.201  <.0001
 StepF3 - StepF11   0.263477 0.0358 Inf   7.366  <.0001
 StepF3 - StepF12   0.394424 0.0358 Inf  11.027  <.0001
 StepF4 - StepF5    0.053702 0.0358 Inf   1.501  0.9407
 StepF4 - StepF6   -0.036049 0.0358 Inf  -1.008  0.9976
 StepF4 - StepF7   -0.000656 0.0358 Inf  -0.018  1.0000
 StepF4 - StepF8    0.108282 0.0358 Inf   3.027  0.1007
 StepF4 - StepF9    0.116201 0.0358 Inf   3.249  0.0531
 StepF4 - StepF10   0.079458 0.0358 Inf   2.221  0.5338
 StepF4 - StepF11   0.121136 0.0358 Inf   3.387  0.0343
 StepF4 - StepF12   0.252083 0.0358 Inf   7.048  <.0001
 StepF5 - StepF6   -0.089752 0.0358 Inf  -2.509  0.3339
 StepF5 - StepF7   -0.054358 0.0358 Inf  -1.520  0.9355
 StepF5 - StepF8    0.054579 0.0358 Inf   1.526  0.9338
 StepF5 - StepF9    0.062499 0.0358 Inf   1.747  0.8461
 StepF5 - StepF10   0.025756 0.0358 Inf   0.720  0.9999
 StepF5 - StepF11   0.067434 0.0358 Inf   1.885  0.7687
 StepF5 - StepF12   0.198381 0.0358 Inf   5.546  <.0001
 StepF6 - StepF7    0.035394 0.0358 Inf   0.990  0.9979
 StepF6 - StepF8    0.144331 0.0358 Inf   4.035  0.0032
 StepF6 - StepF9    0.152251 0.0358 Inf   4.257  0.0013
 StepF6 - StepF10   0.115508 0.0358 Inf   3.229  0.0563
 StepF6 - StepF11   0.157186 0.0358 Inf   4.394  0.0007
 StepF6 - StepF12   0.288133 0.0358 Inf   8.055  <.0001
 StepF7 - StepF8    0.108938 0.0358 Inf   3.046  0.0957
 StepF7 - StepF9    0.116857 0.0358 Inf   3.267  0.0502
 StepF7 - StepF10   0.080114 0.0358 Inf   2.240  0.5204
 StepF7 - StepF11   0.121792 0.0358 Inf   3.405  0.0324
 StepF7 - StepF12   0.252739 0.0358 Inf   7.066  <.0001
 StepF8 - StepF9    0.007920 0.0358 Inf   0.221  1.0000
 StepF8 - StepF10  -0.028823 0.0358 Inf  -0.806  0.9997
 StepF8 - StepF11   0.012855 0.0358 Inf   0.359  1.0000
 StepF8 - StepF12   0.143802 0.0358 Inf   4.020  0.0034
 StepF9 - StepF10  -0.036743 0.0358 Inf  -1.027  0.9971
 StepF9 - StepF11   0.004935 0.0358 Inf   0.138  1.0000
 StepF9 - StepF12   0.135882 0.0358 Inf   3.799  0.0080
 StepF10 - StepF11  0.041678 0.0358 Inf   1.165  0.9914
 StepF10 - StepF12  0.172625 0.0358 Inf   4.826  0.0001
 StepF11 - StepF12  0.130947 0.0358 Inf   3.661  0.0134

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.192878 0.0358 Inf  -5.392  <.0001
 StepF1 - StepF3   -0.229587 0.0358 Inf  -6.419  <.0001
 StepF1 - StepF4   -0.087247 0.0358 Inf  -2.439  0.3793
 StepF1 - StepF5   -0.033545 0.0358 Inf  -0.938  0.9987
 StepF1 - StepF6   -0.123297 0.0358 Inf  -3.447  0.0282
 StepF1 - StepF7   -0.087903 0.0358 Inf  -2.458  0.3671
 StepF1 - StepF8    0.021035 0.0358 Inf   0.588  1.0000
 StepF1 - StepF9    0.028954 0.0358 Inf   0.809  0.9997
 StepF1 - StepF10  -0.007789 0.0358 Inf  -0.218  1.0000
 StepF1 - StepF11   0.033889 0.0358 Inf   0.947  0.9986
 StepF1 - StepF12   0.164836 0.0358 Inf   4.608  0.0003
 StepF2 - StepF3   -0.036710 0.0358 Inf  -1.026  0.9971
 StepF2 - StepF4    0.105630 0.0358 Inf   2.953  0.1227
 StepF2 - StepF5    0.159333 0.0358 Inf   4.454  0.0005
 StepF2 - StepF6    0.069581 0.0358 Inf   1.945  0.7305
 StepF2 - StepF7    0.104974 0.0358 Inf   2.935  0.1287
 StepF2 - StepF8    0.213912 0.0358 Inf   5.980  <.0001
 StepF2 - StepF9    0.221832 0.0358 Inf   6.202  <.0001
 StepF2 - StepF10   0.185089 0.0358 Inf   5.175  <.0001
 StepF2 - StepF11   0.226767 0.0358 Inf   6.340  <.0001
 StepF2 - StepF12   0.357714 0.0358 Inf  10.001  <.0001
 StepF3 - StepF4    0.142340 0.0358 Inf   3.979  0.0040
 StepF3 - StepF5    0.196043 0.0358 Inf   5.481  <.0001
 StepF3 - StepF6    0.106291 0.0358 Inf   2.972  0.1169
 StepF3 - StepF7    0.141684 0.0358 Inf   3.961  0.0043
 StepF3 - StepF8    0.250622 0.0358 Inf   7.007  <.0001
 StepF3 - StepF9    0.258542 0.0358 Inf   7.228  <.0001
 StepF3 - StepF10   0.221799 0.0358 Inf   6.201  <.0001
 StepF3 - StepF11   0.263477 0.0358 Inf   7.366  <.0001
 StepF3 - StepF12   0.394424 0.0358 Inf  11.027  <.0001
 StepF4 - StepF5    0.053702 0.0358 Inf   1.501  0.9407
 StepF4 - StepF6   -0.036049 0.0358 Inf  -1.008  0.9976
 StepF4 - StepF7   -0.000656 0.0358 Inf  -0.018  1.0000
 StepF4 - StepF8    0.108282 0.0358 Inf   3.027  0.1007
 StepF4 - StepF9    0.116201 0.0358 Inf   3.249  0.0531
 StepF4 - StepF10   0.079458 0.0358 Inf   2.221  0.5338
 StepF4 - StepF11   0.121136 0.0358 Inf   3.387  0.0343
 StepF4 - StepF12   0.252083 0.0358 Inf   7.048  <.0001
 StepF5 - StepF6   -0.089752 0.0358 Inf  -2.509  0.3339
 StepF5 - StepF7   -0.054358 0.0358 Inf  -1.520  0.9355
 StepF5 - StepF8    0.054579 0.0358 Inf   1.526  0.9338
 StepF5 - StepF9    0.062499 0.0358 Inf   1.747  0.8461
 StepF5 - StepF10   0.025756 0.0358 Inf   0.720  0.9999
 StepF5 - StepF11   0.067434 0.0358 Inf   1.885  0.7687
 StepF5 - StepF12   0.198381 0.0358 Inf   5.546  <.0001
 StepF6 - StepF7    0.035394 0.0358 Inf   0.990  0.9979
 StepF6 - StepF8    0.144331 0.0358 Inf   4.035  0.0032
 StepF6 - StepF9    0.152251 0.0358 Inf   4.257  0.0013
 StepF6 - StepF10   0.115508 0.0358 Inf   3.229  0.0563
 StepF6 - StepF11   0.157186 0.0358 Inf   4.394  0.0007
 StepF6 - StepF12   0.288133 0.0358 Inf   8.055  <.0001
 StepF7 - StepF8    0.108938 0.0358 Inf   3.046  0.0957
 StepF7 - StepF9    0.116857 0.0358 Inf   3.267  0.0502
 StepF7 - StepF10   0.080114 0.0358 Inf   2.240  0.5204
 StepF7 - StepF11   0.121792 0.0358 Inf   3.405  0.0324
 StepF7 - StepF12   0.252739 0.0358 Inf   7.066  <.0001
 StepF8 - StepF9    0.007920 0.0358 Inf   0.221  1.0000
 StepF8 - StepF10  -0.028823 0.0358 Inf  -0.806  0.9997
 StepF8 - StepF11   0.012855 0.0358 Inf   0.359  1.0000
 StepF8 - StepF12   0.143802 0.0358 Inf   4.020  0.0034
 StepF9 - StepF10  -0.036743 0.0358 Inf  -1.027  0.9971
 StepF9 - StepF11   0.004935 0.0358 Inf   0.138  1.0000
 StepF9 - StepF12   0.135882 0.0358 Inf   3.799  0.0080
 StepF10 - StepF11  0.041678 0.0358 Inf   1.165  0.9914
 StepF10 - StepF12  0.172625 0.0358 Inf   4.826  0.0001
 StepF11 - StepF12  0.130947 0.0358 Inf   3.661  0.0134

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.19288 0.0358 Inf   5.392  <.0001
 StepF3 - StepF2    0.03671 0.0358 Inf   1.026  1.0000
 StepF4 - StepF3   -0.14234 0.0358 Inf  -3.979  0.0007
 StepF5 - StepF4   -0.05370 0.0358 Inf  -1.501  0.7996
 StepF6 - StepF5    0.08975 0.0358 Inf   2.509  0.0847
 StepF7 - StepF6   -0.03539 0.0358 Inf  -0.990  1.0000
 StepF8 - StepF7   -0.10894 0.0358 Inf  -3.046  0.0186
 StepF9 - StepF8   -0.00792 0.0358 Inf  -0.221  1.0000
 StepF10 - StepF9   0.03674 0.0358 Inf   1.027  1.0000
 StepF11 - StepF10 -0.04168 0.0358 Inf  -1.165  1.0000
 StepF12 - StepF11 -0.13095 0.0358 Inf  -3.661  0.0023

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.19288 0.0358 Inf   5.392  <.0001
 StepF3 - StepF2    0.03671 0.0358 Inf   1.026  1.0000
 StepF4 - StepF3   -0.14234 0.0358 Inf  -3.979  0.0007
 StepF5 - StepF4   -0.05370 0.0358 Inf  -1.501  0.7996
 StepF6 - StepF5    0.08975 0.0358 Inf   2.509  0.0847
 StepF7 - StepF6   -0.03539 0.0358 Inf  -0.990  1.0000
 StepF8 - StepF7   -0.10894 0.0358 Inf  -3.046  0.0186
 StepF9 - StepF8   -0.00792 0.0358 Inf  -0.221  1.0000
 StepF10 - StepF9   0.03674 0.0358 Inf   1.027  1.0000
 StepF11 - StepF10 -0.04168 0.0358 Inf  -1.165  1.0000
 StepF12 - StepF11 -0.13095 0.0358 Inf  -3.661  0.0023

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST | Block 4 | 12 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    201.1109 11     <2e-16 ***
Accuracy   0.0973  1     0.7551    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.45 0.149 Inf     1.156      1.74
 2       1.70 0.149 Inf     1.411      2.00
 3       1.75 0.149 Inf     1.455      2.04
 4       1.60 0.149 Inf     1.310      1.90
 5       1.45 0.149 Inf     1.153      1.74
 6       1.48 0.149 Inf     1.184      1.77
 7       1.52 0.149 Inf     1.228      1.81
 8       1.38 0.149 Inf     1.089      1.67
 9       1.28 0.149 Inf     0.985      1.57
 10      1.32 0.149 Inf     1.029      1.61
 11      1.34 0.149 Inf     1.050      1.64
 12      1.10 0.149 Inf     0.812      1.40

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.46 0.147 Inf     1.171      1.75
 2       1.72 0.147 Inf     1.426      2.00
 3       1.76 0.147 Inf     1.470      2.05
 4       1.61 0.147 Inf     1.325      1.90
 5       1.46 0.147 Inf     1.168      1.75
 6       1.49 0.147 Inf     1.199      1.78
 7       1.53 0.147 Inf     1.244      1.82
 8       1.39 0.147 Inf     1.104      1.68
 9       1.29 0.147 Inf     1.001      1.58
 10      1.33 0.147 Inf     1.044      1.62
 11      1.35 0.147 Inf     1.066      1.64
 12      1.12 0.147 Inf     0.827      1.41

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.25512 0.0601 Inf  -4.245  0.0013
 StepF1 - StepF3   -0.29878 0.0601 Inf  -4.972  <.0001
 StepF1 - StepF4   -0.15367 0.0601 Inf  -2.557  0.3044
 StepF1 - StepF5    0.00315 0.0601 Inf   0.052  1.0000
 StepF1 - StepF6   -0.02816 0.0601 Inf  -0.469  1.0000
 StepF1 - StepF7   -0.07240 0.0601 Inf  -1.205  0.9887
 StepF1 - StepF8    0.06690 0.0601 Inf   1.113  0.9942
 StepF1 - StepF9    0.17049 0.0601 Inf   2.837  0.1644
 StepF1 - StepF10   0.12721 0.0601 Inf   2.117  0.6105
 StepF1 - StepF11   0.10566 0.0601 Inf   1.758  0.8406
 StepF1 - StepF12   0.34383 0.0601 Inf   5.722  <.0001
 StepF2 - StepF3   -0.04366 0.0601 Inf  -0.727  0.9999
 StepF2 - StepF4    0.10145 0.0601 Inf   1.688  0.8740
 StepF2 - StepF5    0.25827 0.0601 Inf   4.298  0.0010
 StepF2 - StepF6    0.22696 0.0601 Inf   3.777  0.0087
 StepF2 - StepF7    0.18272 0.0601 Inf   3.041  0.0971
 StepF2 - StepF8    0.32201 0.0601 Inf   5.359  <.0001
 StepF2 - StepF9    0.42560 0.0601 Inf   7.082  <.0001
 StepF2 - StepF10   0.38233 0.0601 Inf   6.362  <.0001
 StepF2 - StepF11   0.36077 0.0601 Inf   6.004  <.0001
 StepF2 - StepF12   0.59895 0.0601 Inf   9.967  <.0001
 StepF3 - StepF4    0.14511 0.0601 Inf   2.415  0.3957
 StepF3 - StepF5    0.30193 0.0601 Inf   5.025  <.0001
 StepF3 - StepF6    0.27062 0.0601 Inf   4.503  0.0004
 StepF3 - StepF7    0.22638 0.0601 Inf   3.767  0.0091
 StepF3 - StepF8    0.36568 0.0601 Inf   6.085  <.0001
 StepF3 - StepF9    0.46927 0.0601 Inf   7.809  <.0001
 StepF3 - StepF10   0.42600 0.0601 Inf   7.089  <.0001
 StepF3 - StepF11   0.40444 0.0601 Inf   6.730  <.0001
 StepF3 - StepF12   0.64261 0.0601 Inf  10.694  <.0001
 StepF4 - StepF5    0.15682 0.0601 Inf   2.610  0.2740
 StepF4 - StepF6    0.12551 0.0601 Inf   2.089  0.6311
 StepF4 - StepF7    0.08127 0.0601 Inf   1.352  0.9720
 StepF4 - StepF8    0.22057 0.0601 Inf   3.670  0.0129
 StepF4 - StepF9    0.32415 0.0601 Inf   5.394  <.0001
 StepF4 - StepF10   0.28088 0.0601 Inf   4.674  0.0002
 StepF4 - StepF11   0.25932 0.0601 Inf   4.315  0.0010
 StepF4 - StepF12   0.49750 0.0601 Inf   8.279  <.0001
 StepF5 - StepF6   -0.03131 0.0601 Inf  -0.521  1.0000
 StepF5 - StepF7   -0.07555 0.0601 Inf  -1.257  0.9841
 StepF5 - StepF8    0.06375 0.0601 Inf   1.061  0.9962
 StepF5 - StepF9    0.16733 0.0601 Inf   2.785  0.1864
 StepF5 - StepF10   0.12406 0.0601 Inf   2.065  0.6484
 StepF5 - StepF11   0.10250 0.0601 Inf   1.706  0.8661
 StepF5 - StepF12   0.34068 0.0601 Inf   5.669  <.0001
 StepF6 - StepF7   -0.04424 0.0601 Inf  -0.736  0.9999
 StepF6 - StepF8    0.09506 0.0601 Inf   1.582  0.9160
 StepF6 - StepF9    0.19865 0.0601 Inf   3.306  0.0445
 StepF6 - StepF10   0.15537 0.0601 Inf   2.586  0.2877
 StepF6 - StepF11   0.13382 0.0601 Inf   2.227  0.5298
 StepF6 - StepF12   0.37199 0.0601 Inf   6.190  <.0001
 StepF7 - StepF8    0.13930 0.0601 Inf   2.318  0.4635
 StepF7 - StepF9    0.24289 0.0601 Inf   4.042  0.0031
 StepF7 - StepF10   0.19961 0.0601 Inf   3.322  0.0423
 StepF7 - StepF11   0.17806 0.0601 Inf   2.963  0.1196
 StepF7 - StepF12   0.41623 0.0601 Inf   6.927  <.0001
 StepF8 - StepF9    0.10359 0.0601 Inf   1.724  0.8576
 StepF8 - StepF10   0.06032 0.0601 Inf   1.004  0.9977
 StepF8 - StepF11   0.03876 0.0601 Inf   0.645  1.0000
 StepF8 - StepF12   0.27693 0.0601 Inf   4.608  0.0003
 StepF9 - StepF10  -0.04327 0.0601 Inf  -0.720  0.9999
 StepF9 - StepF11  -0.06483 0.0601 Inf  -1.079  0.9956
 StepF9 - StepF12   0.17335 0.0601 Inf   2.885  0.1462
 StepF10 - StepF11 -0.02156 0.0601 Inf  -0.359  1.0000
 StepF10 - StepF12  0.21662 0.0601 Inf   3.605  0.0164
 StepF11 - StepF12  0.23818 0.0601 Inf   3.963  0.0042

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.25512 0.0601 Inf  -4.245  0.0013
 StepF1 - StepF3   -0.29878 0.0601 Inf  -4.972  <.0001
 StepF1 - StepF4   -0.15367 0.0601 Inf  -2.557  0.3044
 StepF1 - StepF5    0.00315 0.0601 Inf   0.052  1.0000
 StepF1 - StepF6   -0.02816 0.0601 Inf  -0.469  1.0000
 StepF1 - StepF7   -0.07240 0.0601 Inf  -1.205  0.9887
 StepF1 - StepF8    0.06690 0.0601 Inf   1.113  0.9942
 StepF1 - StepF9    0.17049 0.0601 Inf   2.837  0.1644
 StepF1 - StepF10   0.12721 0.0601 Inf   2.117  0.6105
 StepF1 - StepF11   0.10566 0.0601 Inf   1.758  0.8406
 StepF1 - StepF12   0.34383 0.0601 Inf   5.722  <.0001
 StepF2 - StepF3   -0.04366 0.0601 Inf  -0.727  0.9999
 StepF2 - StepF4    0.10145 0.0601 Inf   1.688  0.8740
 StepF2 - StepF5    0.25827 0.0601 Inf   4.298  0.0010
 StepF2 - StepF6    0.22696 0.0601 Inf   3.777  0.0087
 StepF2 - StepF7    0.18272 0.0601 Inf   3.041  0.0971
 StepF2 - StepF8    0.32201 0.0601 Inf   5.359  <.0001
 StepF2 - StepF9    0.42560 0.0601 Inf   7.082  <.0001
 StepF2 - StepF10   0.38233 0.0601 Inf   6.362  <.0001
 StepF2 - StepF11   0.36077 0.0601 Inf   6.004  <.0001
 StepF2 - StepF12   0.59895 0.0601 Inf   9.967  <.0001
 StepF3 - StepF4    0.14511 0.0601 Inf   2.415  0.3957
 StepF3 - StepF5    0.30193 0.0601 Inf   5.025  <.0001
 StepF3 - StepF6    0.27062 0.0601 Inf   4.503  0.0004
 StepF3 - StepF7    0.22638 0.0601 Inf   3.767  0.0091
 StepF3 - StepF8    0.36568 0.0601 Inf   6.085  <.0001
 StepF3 - StepF9    0.46927 0.0601 Inf   7.809  <.0001
 StepF3 - StepF10   0.42600 0.0601 Inf   7.089  <.0001
 StepF3 - StepF11   0.40444 0.0601 Inf   6.730  <.0001
 StepF3 - StepF12   0.64261 0.0601 Inf  10.694  <.0001
 StepF4 - StepF5    0.15682 0.0601 Inf   2.610  0.2740
 StepF4 - StepF6    0.12551 0.0601 Inf   2.089  0.6311
 StepF4 - StepF7    0.08127 0.0601 Inf   1.352  0.9720
 StepF4 - StepF8    0.22057 0.0601 Inf   3.670  0.0129
 StepF4 - StepF9    0.32415 0.0601 Inf   5.394  <.0001
 StepF4 - StepF10   0.28088 0.0601 Inf   4.674  0.0002
 StepF4 - StepF11   0.25932 0.0601 Inf   4.315  0.0010
 StepF4 - StepF12   0.49750 0.0601 Inf   8.279  <.0001
 StepF5 - StepF6   -0.03131 0.0601 Inf  -0.521  1.0000
 StepF5 - StepF7   -0.07555 0.0601 Inf  -1.257  0.9841
 StepF5 - StepF8    0.06375 0.0601 Inf   1.061  0.9962
 StepF5 - StepF9    0.16733 0.0601 Inf   2.785  0.1864
 StepF5 - StepF10   0.12406 0.0601 Inf   2.065  0.6484
 StepF5 - StepF11   0.10250 0.0601 Inf   1.706  0.8661
 StepF5 - StepF12   0.34068 0.0601 Inf   5.669  <.0001
 StepF6 - StepF7   -0.04424 0.0601 Inf  -0.736  0.9999
 StepF6 - StepF8    0.09506 0.0601 Inf   1.582  0.9160
 StepF6 - StepF9    0.19865 0.0601 Inf   3.306  0.0445
 StepF6 - StepF10   0.15537 0.0601 Inf   2.586  0.2877
 StepF6 - StepF11   0.13382 0.0601 Inf   2.227  0.5298
 StepF6 - StepF12   0.37199 0.0601 Inf   6.190  <.0001
 StepF7 - StepF8    0.13930 0.0601 Inf   2.318  0.4635
 StepF7 - StepF9    0.24289 0.0601 Inf   4.042  0.0031
 StepF7 - StepF10   0.19961 0.0601 Inf   3.322  0.0423
 StepF7 - StepF11   0.17806 0.0601 Inf   2.963  0.1196
 StepF7 - StepF12   0.41623 0.0601 Inf   6.927  <.0001
 StepF8 - StepF9    0.10359 0.0601 Inf   1.724  0.8576
 StepF8 - StepF10   0.06032 0.0601 Inf   1.004  0.9977
 StepF8 - StepF11   0.03876 0.0601 Inf   0.645  1.0000
 StepF8 - StepF12   0.27693 0.0601 Inf   4.608  0.0003
 StepF9 - StepF10  -0.04327 0.0601 Inf  -0.720  0.9999
 StepF9 - StepF11  -0.06483 0.0601 Inf  -1.079  0.9956
 StepF9 - StepF12   0.17335 0.0601 Inf   2.885  0.1462
 StepF10 - StepF11 -0.02156 0.0601 Inf  -0.359  1.0000
 StepF10 - StepF12  0.21662 0.0601 Inf   3.605  0.0164
 StepF11 - StepF12  0.23818 0.0601 Inf   3.963  0.0042

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.2551 0.0601 Inf   4.245  0.0002
 StepF3 - StepF2     0.0437 0.0601 Inf   0.727  1.0000
 StepF4 - StepF3    -0.1451 0.0601 Inf  -2.415  0.1259
 StepF5 - StepF4    -0.1568 0.0601 Inf  -2.610  0.0816
 StepF6 - StepF5     0.0313 0.0601 Inf   0.521  1.0000
 StepF7 - StepF6     0.0442 0.0601 Inf   0.736  1.0000
 StepF8 - StepF7    -0.1393 0.0601 Inf  -2.318  0.1431
 StepF9 - StepF8    -0.1036 0.0601 Inf  -1.724  0.5084
 StepF10 - StepF9    0.0433 0.0601 Inf   0.720  1.0000
 StepF11 - StepF10   0.0216 0.0601 Inf   0.359  1.0000
 StepF12 - StepF11  -0.2382 0.0601 Inf  -3.963  0.0007

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.2551 0.0601 Inf   4.245  0.0002
 StepF3 - StepF2     0.0437 0.0601 Inf   0.727  1.0000
 StepF4 - StepF3    -0.1451 0.0601 Inf  -2.415  0.1259
 StepF5 - StepF4    -0.1568 0.0601 Inf  -2.610  0.0816
 StepF6 - StepF5     0.0313 0.0601 Inf   0.521  1.0000
 StepF7 - StepF6     0.0442 0.0601 Inf   0.736  1.0000
 StepF8 - StepF7    -0.1393 0.0601 Inf  -2.318  0.1431
 StepF9 - StepF8    -0.1036 0.0601 Inf  -1.724  0.5084
 StepF10 - StepF9    0.0433 0.0601 Inf   0.720  1.0000
 StepF11 - StepF10   0.0216 0.0601 Inf   0.359  1.0000
 StepF12 - StepF11  -0.2382 0.0601 Inf  -3.963  0.0007

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 
.report_step_test(sw_b4_18, "4", "18 steps")


==============================
TEST | Block 4 | 18 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    223.7951 17     <2e-16 ***
Accuracy   0.0416  1     0.8384    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.699 0.0720 Inf     0.558     0.840
 2      0.814 0.0720 Inf     0.673     0.955
 3      0.783 0.0720 Inf     0.642     0.924
 4      0.756 0.0720 Inf     0.615     0.898
 5      0.700 0.0720 Inf     0.558     0.841
 6      0.839 0.0720 Inf     0.697     0.980
 7      0.710 0.0720 Inf     0.569     0.851
 8      0.701 0.0720 Inf     0.559     0.842
 9      0.746 0.0720 Inf     0.605     0.887
 10     0.659 0.0720 Inf     0.518     0.801
 11     0.685 0.0720 Inf     0.544     0.826
 12     0.605 0.0720 Inf     0.464     0.746
 13     0.655 0.0720 Inf     0.514     0.796
 14     0.661 0.0720 Inf     0.520     0.802
 15     0.687 0.0720 Inf     0.546     0.829
 16     0.654 0.0720 Inf     0.513     0.795
 17     0.548 0.0720 Inf     0.407     0.689
 18     0.521 0.0720 Inf     0.380     0.662

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.696 0.0714 Inf     0.556     0.836
 2      0.811 0.0714 Inf     0.671     0.951
 3      0.780 0.0714 Inf     0.640     0.920
 4      0.753 0.0714 Inf     0.613     0.893
 5      0.696 0.0714 Inf     0.556     0.836
 6      0.835 0.0714 Inf     0.695     0.975
 7      0.707 0.0714 Inf     0.567     0.847
 8      0.697 0.0714 Inf     0.558     0.837
 9      0.743 0.0714 Inf     0.603     0.883
 10     0.656 0.0714 Inf     0.516     0.796
 11     0.682 0.0714 Inf     0.542     0.822
 12     0.602 0.0714 Inf     0.462     0.742
 13     0.652 0.0714 Inf     0.512     0.792
 14     0.658 0.0714 Inf     0.518     0.798
 15     0.684 0.0714 Inf     0.544     0.824
 16     0.651 0.0714 Inf     0.511     0.791
 17     0.545 0.0714 Inf     0.405     0.685
 18     0.518 0.0714 Inf     0.378     0.658

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate    SE  df z.ratio p.value
 StepF1 - StepF2   -0.115213 0.032 Inf  -3.599  0.0347
 StepF1 - StepF3   -0.084028 0.032 Inf  -2.625  0.4346
 StepF1 - StepF4   -0.057319 0.032 Inf  -1.791  0.9469
 StepF1 - StepF5   -0.000365 0.032 Inf  -0.011  1.0000
 StepF1 - StepF6   -0.139372 0.032 Inf  -4.354  0.0018
 StepF1 - StepF7   -0.010956 0.032 Inf  -0.342  1.0000
 StepF1 - StepF8   -0.001450 0.032 Inf  -0.045  1.0000
 StepF1 - StepF9   -0.046816 0.032 Inf  -1.463  0.9930
 StepF1 - StepF10   0.039705 0.032 Inf   1.240  0.9990
 StepF1 - StepF11   0.014342 0.032 Inf   0.448  1.0000
 StepF1 - StepF12   0.094244 0.032 Inf   2.944  0.2281
 StepF1 - StepF13   0.044322 0.032 Inf   1.385  0.9963
 StepF1 - StepF14   0.038434 0.032 Inf   1.201  0.9994
 StepF1 - StepF15   0.011701 0.032 Inf   0.366  1.0000
 StepF1 - StepF16   0.045237 0.032 Inf   1.413  0.9953
 StepF1 - StepF17   0.150937 0.032 Inf   4.715  0.0003
 StepF1 - StepF18   0.177955 0.032 Inf   5.559  <.0001
 StepF2 - StepF3    0.031185 0.032 Inf   0.974  1.0000
 StepF2 - StepF4    0.057894 0.032 Inf   1.809  0.9420
 StepF2 - StepF5    0.114848 0.032 Inf   3.588  0.0360
 StepF2 - StepF6   -0.024159 0.032 Inf  -0.755  1.0000
 StepF2 - StepF7    0.104257 0.032 Inf   3.257  0.1013
 StepF2 - StepF8    0.113763 0.032 Inf   3.554  0.0404
 StepF2 - StepF9    0.068397 0.032 Inf   2.137  0.7947
 StepF2 - StepF10   0.154918 0.032 Inf   4.840  0.0002
 StepF2 - StepF11   0.129555 0.032 Inf   4.047  0.0066
 StepF2 - StepF12   0.209457 0.032 Inf   6.544  <.0001
 StepF2 - StepF13   0.159534 0.032 Inf   4.984  0.0001
 StepF2 - StepF14   0.153647 0.032 Inf   4.800  0.0002
 StepF2 - StepF15   0.126914 0.032 Inf   3.965  0.0091
 StepF2 - StepF16   0.160450 0.032 Inf   5.013  0.0001
 StepF2 - StepF17   0.266149 0.032 Inf   8.315  <.0001
 StepF2 - StepF18   0.293168 0.032 Inf   9.159  <.0001
 StepF3 - StepF4    0.026710 0.032 Inf   0.834  1.0000
 StepF3 - StepF5    0.083663 0.032 Inf   2.614  0.4431
 StepF3 - StepF6   -0.055344 0.032 Inf  -1.729  0.9613
 StepF3 - StepF7    0.073072 0.032 Inf   2.283  0.6961
 StepF3 - StepF8    0.082578 0.032 Inf   2.580  0.4687
 StepF3 - StepF9    0.037212 0.032 Inf   1.163  0.9996
 StepF3 - StepF10   0.123734 0.032 Inf   3.866  0.0134
 StepF3 - StepF11   0.098371 0.032 Inf   3.073  0.1666
 StepF3 - StepF12   0.178272 0.032 Inf   5.569  <.0001
 StepF3 - StepF13   0.128350 0.032 Inf   4.010  0.0077
 StepF3 - StepF14   0.122463 0.032 Inf   3.826  0.0155
 StepF3 - StepF15   0.095729 0.032 Inf   2.991  0.2044
 StepF3 - StepF16   0.129266 0.032 Inf   4.038  0.0068
 StepF3 - StepF17   0.234965 0.032 Inf   7.340  <.0001
 StepF3 - StepF18   0.261984 0.032 Inf   8.185  <.0001
 StepF4 - StepF5    0.056953 0.032 Inf   1.779  0.9498
 StepF4 - StepF6   -0.082054 0.032 Inf  -2.563  0.4812
 StepF4 - StepF7    0.046363 0.032 Inf   1.448  0.9937
 StepF4 - StepF8    0.055868 0.032 Inf   1.745  0.9578
 StepF4 - StepF9    0.010502 0.032 Inf   0.328  1.0000
 StepF4 - StepF10   0.097024 0.032 Inf   3.031  0.1852
 StepF4 - StepF11   0.071661 0.032 Inf   2.239  0.7275
 StepF4 - StepF12   0.151562 0.032 Inf   4.735  0.0003
 StepF4 - StepF13   0.101640 0.032 Inf   3.175  0.1273
 StepF4 - StepF14   0.095753 0.032 Inf   2.991  0.2040
 StepF4 - StepF15   0.069020 0.032 Inf   2.156  0.7826
 StepF4 - StepF16   0.102556 0.032 Inf   3.204  0.1176
 StepF4 - StepF17   0.208255 0.032 Inf   6.506  <.0001
 StepF4 - StepF18   0.235274 0.032 Inf   7.350  <.0001
 StepF5 - StepF6   -0.139007 0.032 Inf  -4.343  0.0019
 StepF5 - StepF7   -0.010591 0.032 Inf  -0.331  1.0000
 StepF5 - StepF8   -0.001085 0.032 Inf  -0.034  1.0000
 StepF5 - StepF9   -0.046451 0.032 Inf  -1.451  0.9936
 StepF5 - StepF10   0.040071 0.032 Inf   1.252  0.9989
 StepF5 - StepF11   0.014708 0.032 Inf   0.459  1.0000
 StepF5 - StepF12   0.094609 0.032 Inf   2.956  0.2221
 StepF5 - StepF13   0.044687 0.032 Inf   1.396  0.9959
 StepF5 - StepF14   0.038800 0.032 Inf   1.212  0.9993
 StepF5 - StepF15   0.012066 0.032 Inf   0.377  1.0000
 StepF5 - StepF16   0.045602 0.032 Inf   1.425  0.9948
 StepF5 - StepF17   0.151302 0.032 Inf   4.727  0.0003
 StepF5 - StepF18   0.178321 0.032 Inf   5.571  <.0001
 StepF6 - StepF7    0.128416 0.032 Inf   4.012  0.0076
 StepF6 - StepF8    0.137922 0.032 Inf   4.309  0.0022
 StepF6 - StepF9    0.092556 0.032 Inf   2.892  0.2571
 StepF6 - StepF10   0.179077 0.032 Inf   5.595  <.0001
 StepF6 - StepF11   0.153715 0.032 Inf   4.802  0.0002
 StepF6 - StepF12   0.233616 0.032 Inf   7.298  <.0001
 StepF6 - StepF13   0.183694 0.032 Inf   5.739  <.0001
 StepF6 - StepF14   0.177807 0.032 Inf   5.555  <.0001
 StepF6 - StepF15   0.151073 0.032 Inf   4.720  0.0003
 StepF6 - StepF16   0.184609 0.032 Inf   5.767  <.0001
 StepF6 - StepF17   0.290309 0.032 Inf   9.069  <.0001
 StepF6 - StepF18   0.317328 0.032 Inf   9.914  <.0001
 StepF7 - StepF8    0.009506 0.032 Inf   0.297  1.0000
 StepF7 - StepF9   -0.035860 0.032 Inf  -1.120  0.9997
 StepF7 - StepF10   0.050661 0.032 Inf   1.583  0.9837
 StepF7 - StepF11   0.025298 0.032 Inf   0.790  1.0000
 StepF7 - StepF12   0.105200 0.032 Inf   3.287  0.0930
 StepF7 - StepF13   0.055278 0.032 Inf   1.727  0.9617
 StepF7 - StepF14   0.049390 0.032 Inf   1.543  0.9875
 StepF7 - StepF15   0.022657 0.032 Inf   0.708  1.0000
 StepF7 - StepF16   0.056193 0.032 Inf   1.756  0.9555
 StepF7 - StepF17   0.161893 0.032 Inf   5.058  0.0001
 StepF7 - StepF18   0.188912 0.032 Inf   5.902  <.0001
 StepF8 - StepF9   -0.045366 0.032 Inf  -1.417  0.9951
 StepF8 - StepF10   0.041155 0.032 Inf   1.286  0.9985
 StepF8 - StepF11   0.015793 0.032 Inf   0.493  1.0000
 StepF8 - StepF12   0.095694 0.032 Inf   2.990  0.2049
 StepF8 - StepF13   0.045772 0.032 Inf   1.430  0.9946
 StepF8 - StepF14   0.039885 0.032 Inf   1.246  0.9990
 StepF8 - StepF15   0.013151 0.032 Inf   0.411  1.0000
 StepF8 - StepF16   0.046687 0.032 Inf   1.459  0.9932
 StepF8 - StepF17   0.152387 0.032 Inf   4.761  0.0003
 StepF8 - StepF18   0.179406 0.032 Inf   5.605  <.0001
 StepF9 - StepF10   0.086521 0.032 Inf   2.703  0.3781
 StepF9 - StepF11   0.061158 0.032 Inf   1.911  0.9083
 StepF9 - StepF12   0.141060 0.032 Inf   4.407  0.0014
 StepF9 - StepF13   0.091138 0.032 Inf   2.847  0.2832
 StepF9 - StepF14   0.085250 0.032 Inf   2.663  0.4065
 StepF9 - StepF15   0.058517 0.032 Inf   1.828  0.9364
 StepF9 - StepF16   0.092053 0.032 Inf   2.876  0.2662
 StepF9 - StepF17   0.197753 0.032 Inf   6.178  <.0001
 StepF9 - StepF18   0.224772 0.032 Inf   7.022  <.0001
 StepF10 - StepF11 -0.025363 0.032 Inf  -0.792  1.0000
 StepF10 - StepF12  0.054538 0.032 Inf   1.704  0.9663
 StepF10 - StepF13  0.004616 0.032 Inf   0.144  1.0000
 StepF10 - StepF14 -0.001271 0.032 Inf  -0.040  1.0000
 StepF10 - StepF15 -0.028004 0.032 Inf  -0.875  1.0000
 StepF10 - StepF16  0.005532 0.032 Inf   0.173  1.0000
 StepF10 - StepF17  0.111231 0.032 Inf   3.475  0.0523
 StepF10 - StepF18  0.138250 0.032 Inf   4.319  0.0021
 StepF11 - StepF12  0.079901 0.032 Inf   2.496  0.5332
 StepF11 - StepF13  0.029979 0.032 Inf   0.937  1.0000
 StepF11 - StepF14  0.024092 0.032 Inf   0.753  1.0000
 StepF11 - StepF15 -0.002641 0.032 Inf  -0.083  1.0000
 StepF11 - StepF16  0.030895 0.032 Inf   0.965  1.0000
 StepF11 - StepF17  0.136594 0.032 Inf   4.267  0.0026
 StepF11 - StepF18  0.163613 0.032 Inf   5.111  <.0001
 StepF12 - StepF13 -0.049922 0.032 Inf  -1.560  0.9860
 StepF12 - StepF14 -0.055809 0.032 Inf  -1.744  0.9582
 StepF12 - StepF15 -0.082543 0.032 Inf  -2.579  0.4696
 StepF12 - StepF16 -0.049006 0.032 Inf  -1.531  0.9885
 StepF12 - StepF17  0.056693 0.032 Inf   1.771  0.9518
 StepF12 - StepF18  0.083712 0.032 Inf   2.615  0.4420
 StepF13 - StepF14 -0.005887 0.032 Inf  -0.184  1.0000
 StepF13 - StepF15 -0.032620 0.032 Inf  -1.019  0.9999
 StepF13 - StepF16  0.000916 0.032 Inf   0.029  1.0000
 StepF13 - StepF17  0.106615 0.032 Inf   3.331  0.0817
 StepF13 - StepF18  0.133634 0.032 Inf   4.175  0.0039
 StepF14 - StepF15 -0.026733 0.032 Inf  -0.835  1.0000
 StepF14 - StepF16  0.006803 0.032 Inf   0.213  1.0000
 StepF14 - StepF17  0.112502 0.032 Inf   3.515  0.0460
 StepF14 - StepF18  0.139521 0.032 Inf   4.359  0.0018
 StepF15 - StepF16  0.033536 0.032 Inf   1.048  0.9999
 StepF15 - StepF17  0.139236 0.032 Inf   4.350  0.0019
 StepF15 - StepF18  0.166254 0.032 Inf   5.194  <.0001
 StepF16 - StepF17  0.105699 0.032 Inf   3.302  0.0889
 StepF16 - StepF18  0.132718 0.032 Inf   4.146  0.0044
 StepF17 - StepF18  0.027019 0.032 Inf   0.844  1.0000

Accuracy = 1:
 contrast           estimate    SE  df z.ratio p.value
 StepF1 - StepF2   -0.115213 0.032 Inf  -3.599  0.0347
 StepF1 - StepF3   -0.084028 0.032 Inf  -2.625  0.4346
 StepF1 - StepF4   -0.057319 0.032 Inf  -1.791  0.9469
 StepF1 - StepF5   -0.000365 0.032 Inf  -0.011  1.0000
 StepF1 - StepF6   -0.139372 0.032 Inf  -4.354  0.0018
 StepF1 - StepF7   -0.010956 0.032 Inf  -0.342  1.0000
 StepF1 - StepF8   -0.001450 0.032 Inf  -0.045  1.0000
 StepF1 - StepF9   -0.046816 0.032 Inf  -1.463  0.9930
 StepF1 - StepF10   0.039705 0.032 Inf   1.240  0.9990
 StepF1 - StepF11   0.014342 0.032 Inf   0.448  1.0000
 StepF1 - StepF12   0.094244 0.032 Inf   2.944  0.2281
 StepF1 - StepF13   0.044322 0.032 Inf   1.385  0.9963
 StepF1 - StepF14   0.038434 0.032 Inf   1.201  0.9994
 StepF1 - StepF15   0.011701 0.032 Inf   0.366  1.0000
 StepF1 - StepF16   0.045237 0.032 Inf   1.413  0.9953
 StepF1 - StepF17   0.150937 0.032 Inf   4.715  0.0003
 StepF1 - StepF18   0.177955 0.032 Inf   5.559  <.0001
 StepF2 - StepF3    0.031185 0.032 Inf   0.974  1.0000
 StepF2 - StepF4    0.057894 0.032 Inf   1.809  0.9420
 StepF2 - StepF5    0.114848 0.032 Inf   3.588  0.0360
 StepF2 - StepF6   -0.024159 0.032 Inf  -0.755  1.0000
 StepF2 - StepF7    0.104257 0.032 Inf   3.257  0.1013
 StepF2 - StepF8    0.113763 0.032 Inf   3.554  0.0404
 StepF2 - StepF9    0.068397 0.032 Inf   2.137  0.7947
 StepF2 - StepF10   0.154918 0.032 Inf   4.840  0.0002
 StepF2 - StepF11   0.129555 0.032 Inf   4.047  0.0066
 StepF2 - StepF12   0.209457 0.032 Inf   6.544  <.0001
 StepF2 - StepF13   0.159534 0.032 Inf   4.984  0.0001
 StepF2 - StepF14   0.153647 0.032 Inf   4.800  0.0002
 StepF2 - StepF15   0.126914 0.032 Inf   3.965  0.0091
 StepF2 - StepF16   0.160450 0.032 Inf   5.013  0.0001
 StepF2 - StepF17   0.266149 0.032 Inf   8.315  <.0001
 StepF2 - StepF18   0.293168 0.032 Inf   9.159  <.0001
 StepF3 - StepF4    0.026710 0.032 Inf   0.834  1.0000
 StepF3 - StepF5    0.083663 0.032 Inf   2.614  0.4431
 StepF3 - StepF6   -0.055344 0.032 Inf  -1.729  0.9613
 StepF3 - StepF7    0.073072 0.032 Inf   2.283  0.6961
 StepF3 - StepF8    0.082578 0.032 Inf   2.580  0.4687
 StepF3 - StepF9    0.037212 0.032 Inf   1.163  0.9996
 StepF3 - StepF10   0.123734 0.032 Inf   3.866  0.0134
 StepF3 - StepF11   0.098371 0.032 Inf   3.073  0.1666
 StepF3 - StepF12   0.178272 0.032 Inf   5.569  <.0001
 StepF3 - StepF13   0.128350 0.032 Inf   4.010  0.0077
 StepF3 - StepF14   0.122463 0.032 Inf   3.826  0.0155
 StepF3 - StepF15   0.095729 0.032 Inf   2.991  0.2044
 StepF3 - StepF16   0.129266 0.032 Inf   4.038  0.0068
 StepF3 - StepF17   0.234965 0.032 Inf   7.340  <.0001
 StepF3 - StepF18   0.261984 0.032 Inf   8.185  <.0001
 StepF4 - StepF5    0.056953 0.032 Inf   1.779  0.9498
 StepF4 - StepF6   -0.082054 0.032 Inf  -2.563  0.4812
 StepF4 - StepF7    0.046363 0.032 Inf   1.448  0.9937
 StepF4 - StepF8    0.055868 0.032 Inf   1.745  0.9578
 StepF4 - StepF9    0.010502 0.032 Inf   0.328  1.0000
 StepF4 - StepF10   0.097024 0.032 Inf   3.031  0.1852
 StepF4 - StepF11   0.071661 0.032 Inf   2.239  0.7275
 StepF4 - StepF12   0.151562 0.032 Inf   4.735  0.0003
 StepF4 - StepF13   0.101640 0.032 Inf   3.175  0.1273
 StepF4 - StepF14   0.095753 0.032 Inf   2.991  0.2040
 StepF4 - StepF15   0.069020 0.032 Inf   2.156  0.7826
 StepF4 - StepF16   0.102556 0.032 Inf   3.204  0.1176
 StepF4 - StepF17   0.208255 0.032 Inf   6.506  <.0001
 StepF4 - StepF18   0.235274 0.032 Inf   7.350  <.0001
 StepF5 - StepF6   -0.139007 0.032 Inf  -4.343  0.0019
 StepF5 - StepF7   -0.010591 0.032 Inf  -0.331  1.0000
 StepF5 - StepF8   -0.001085 0.032 Inf  -0.034  1.0000
 StepF5 - StepF9   -0.046451 0.032 Inf  -1.451  0.9936
 StepF5 - StepF10   0.040071 0.032 Inf   1.252  0.9989
 StepF5 - StepF11   0.014708 0.032 Inf   0.459  1.0000
 StepF5 - StepF12   0.094609 0.032 Inf   2.956  0.2221
 StepF5 - StepF13   0.044687 0.032 Inf   1.396  0.9959
 StepF5 - StepF14   0.038800 0.032 Inf   1.212  0.9993
 StepF5 - StepF15   0.012066 0.032 Inf   0.377  1.0000
 StepF5 - StepF16   0.045602 0.032 Inf   1.425  0.9948
 StepF5 - StepF17   0.151302 0.032 Inf   4.727  0.0003
 StepF5 - StepF18   0.178321 0.032 Inf   5.571  <.0001
 StepF6 - StepF7    0.128416 0.032 Inf   4.012  0.0076
 StepF6 - StepF8    0.137922 0.032 Inf   4.309  0.0022
 StepF6 - StepF9    0.092556 0.032 Inf   2.892  0.2571
 StepF6 - StepF10   0.179077 0.032 Inf   5.595  <.0001
 StepF6 - StepF11   0.153715 0.032 Inf   4.802  0.0002
 StepF6 - StepF12   0.233616 0.032 Inf   7.298  <.0001
 StepF6 - StepF13   0.183694 0.032 Inf   5.739  <.0001
 StepF6 - StepF14   0.177807 0.032 Inf   5.555  <.0001
 StepF6 - StepF15   0.151073 0.032 Inf   4.720  0.0003
 StepF6 - StepF16   0.184609 0.032 Inf   5.767  <.0001
 StepF6 - StepF17   0.290309 0.032 Inf   9.069  <.0001
 StepF6 - StepF18   0.317328 0.032 Inf   9.914  <.0001
 StepF7 - StepF8    0.009506 0.032 Inf   0.297  1.0000
 StepF7 - StepF9   -0.035860 0.032 Inf  -1.120  0.9997
 StepF7 - StepF10   0.050661 0.032 Inf   1.583  0.9837
 StepF7 - StepF11   0.025298 0.032 Inf   0.790  1.0000
 StepF7 - StepF12   0.105200 0.032 Inf   3.287  0.0930
 StepF7 - StepF13   0.055278 0.032 Inf   1.727  0.9617
 StepF7 - StepF14   0.049390 0.032 Inf   1.543  0.9875
 StepF7 - StepF15   0.022657 0.032 Inf   0.708  1.0000
 StepF7 - StepF16   0.056193 0.032 Inf   1.756  0.9555
 StepF7 - StepF17   0.161893 0.032 Inf   5.058  0.0001
 StepF7 - StepF18   0.188912 0.032 Inf   5.902  <.0001
 StepF8 - StepF9   -0.045366 0.032 Inf  -1.417  0.9951
 StepF8 - StepF10   0.041155 0.032 Inf   1.286  0.9985
 StepF8 - StepF11   0.015793 0.032 Inf   0.493  1.0000
 StepF8 - StepF12   0.095694 0.032 Inf   2.990  0.2049
 StepF8 - StepF13   0.045772 0.032 Inf   1.430  0.9946
 StepF8 - StepF14   0.039885 0.032 Inf   1.246  0.9990
 StepF8 - StepF15   0.013151 0.032 Inf   0.411  1.0000
 StepF8 - StepF16   0.046687 0.032 Inf   1.459  0.9932
 StepF8 - StepF17   0.152387 0.032 Inf   4.761  0.0003
 StepF8 - StepF18   0.179406 0.032 Inf   5.605  <.0001
 StepF9 - StepF10   0.086521 0.032 Inf   2.703  0.3781
 StepF9 - StepF11   0.061158 0.032 Inf   1.911  0.9083
 StepF9 - StepF12   0.141060 0.032 Inf   4.407  0.0014
 StepF9 - StepF13   0.091138 0.032 Inf   2.847  0.2832
 StepF9 - StepF14   0.085250 0.032 Inf   2.663  0.4065
 StepF9 - StepF15   0.058517 0.032 Inf   1.828  0.9364
 StepF9 - StepF16   0.092053 0.032 Inf   2.876  0.2662
 StepF9 - StepF17   0.197753 0.032 Inf   6.178  <.0001
 StepF9 - StepF18   0.224772 0.032 Inf   7.022  <.0001
 StepF10 - StepF11 -0.025363 0.032 Inf  -0.792  1.0000
 StepF10 - StepF12  0.054538 0.032 Inf   1.704  0.9663
 StepF10 - StepF13  0.004616 0.032 Inf   0.144  1.0000
 StepF10 - StepF14 -0.001271 0.032 Inf  -0.040  1.0000
 StepF10 - StepF15 -0.028004 0.032 Inf  -0.875  1.0000
 StepF10 - StepF16  0.005532 0.032 Inf   0.173  1.0000
 StepF10 - StepF17  0.111231 0.032 Inf   3.475  0.0523
 StepF10 - StepF18  0.138250 0.032 Inf   4.319  0.0021
 StepF11 - StepF12  0.079901 0.032 Inf   2.496  0.5332
 StepF11 - StepF13  0.029979 0.032 Inf   0.937  1.0000
 StepF11 - StepF14  0.024092 0.032 Inf   0.753  1.0000
 StepF11 - StepF15 -0.002641 0.032 Inf  -0.083  1.0000
 StepF11 - StepF16  0.030895 0.032 Inf   0.965  1.0000
 StepF11 - StepF17  0.136594 0.032 Inf   4.267  0.0026
 StepF11 - StepF18  0.163613 0.032 Inf   5.111  <.0001
 StepF12 - StepF13 -0.049922 0.032 Inf  -1.560  0.9860
 StepF12 - StepF14 -0.055809 0.032 Inf  -1.744  0.9582
 StepF12 - StepF15 -0.082543 0.032 Inf  -2.579  0.4696
 StepF12 - StepF16 -0.049006 0.032 Inf  -1.531  0.9885
 StepF12 - StepF17  0.056693 0.032 Inf   1.771  0.9518
 StepF12 - StepF18  0.083712 0.032 Inf   2.615  0.4420
 StepF13 - StepF14 -0.005887 0.032 Inf  -0.184  1.0000
 StepF13 - StepF15 -0.032620 0.032 Inf  -1.019  0.9999
 StepF13 - StepF16  0.000916 0.032 Inf   0.029  1.0000
 StepF13 - StepF17  0.106615 0.032 Inf   3.331  0.0817
 StepF13 - StepF18  0.133634 0.032 Inf   4.175  0.0039
 StepF14 - StepF15 -0.026733 0.032 Inf  -0.835  1.0000
 StepF14 - StepF16  0.006803 0.032 Inf   0.213  1.0000
 StepF14 - StepF17  0.112502 0.032 Inf   3.515  0.0460
 StepF14 - StepF18  0.139521 0.032 Inf   4.359  0.0018
 StepF15 - StepF16  0.033536 0.032 Inf   1.048  0.9999
 StepF15 - StepF17  0.139236 0.032 Inf   4.350  0.0019
 StepF15 - StepF18  0.166254 0.032 Inf   5.194  <.0001
 StepF16 - StepF17  0.105699 0.032 Inf   3.302  0.0889
 StepF16 - StepF18  0.132718 0.032 Inf   4.146  0.0044
 StepF17 - StepF18  0.027019 0.032 Inf   0.844  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate    SE  df z.ratio p.value
 StepF2 - StepF1    0.11521 0.032 Inf   3.599  0.0048
 StepF3 - StepF2   -0.03118 0.032 Inf  -0.974  1.0000
 StepF4 - StepF3   -0.02671 0.032 Inf  -0.834  1.0000
 StepF5 - StepF4   -0.05695 0.032 Inf  -1.779  0.8272
 StepF6 - StepF5    0.13901 0.032 Inf   4.343  0.0002
 StepF7 - StepF6   -0.12842 0.032 Inf  -4.012  0.0010
 StepF8 - StepF7   -0.00951 0.032 Inf  -0.297  1.0000
 StepF9 - StepF8    0.04537 0.032 Inf   1.417  1.0000
 StepF10 - StepF9  -0.08652 0.032 Inf  -2.703  0.0893
 StepF11 - StepF10  0.02536 0.032 Inf   0.792  1.0000
 StepF12 - StepF11 -0.07990 0.032 Inf  -2.496  0.1507
 StepF13 - StepF12  0.04992 0.032 Inf   1.560  1.0000
 StepF14 - StepF13  0.00589 0.032 Inf   0.184  1.0000
 StepF15 - StepF14  0.02673 0.032 Inf   0.835  1.0000
 StepF16 - StepF15 -0.03354 0.032 Inf  -1.048  1.0000
 StepF17 - StepF16 -0.10570 0.032 Inf  -3.302  0.0134
 StepF18 - StepF17 -0.02702 0.032 Inf  -0.844  1.0000

Accuracy = 1:
 contrast          estimate    SE  df z.ratio p.value
 StepF2 - StepF1    0.11521 0.032 Inf   3.599  0.0048
 StepF3 - StepF2   -0.03118 0.032 Inf  -0.974  1.0000
 StepF4 - StepF3   -0.02671 0.032 Inf  -0.834  1.0000
 StepF5 - StepF4   -0.05695 0.032 Inf  -1.779  0.8272
 StepF6 - StepF5    0.13901 0.032 Inf   4.343  0.0002
 StepF7 - StepF6   -0.12842 0.032 Inf  -4.012  0.0010
 StepF8 - StepF7   -0.00951 0.032 Inf  -0.297  1.0000
 StepF9 - StepF8    0.04537 0.032 Inf   1.417  1.0000
 StepF10 - StepF9  -0.08652 0.032 Inf  -2.703  0.0893
 StepF11 - StepF10  0.02536 0.032 Inf   0.792  1.0000
 StepF12 - StepF11 -0.07990 0.032 Inf  -2.496  0.1507
 StepF13 - StepF12  0.04992 0.032 Inf   1.560  1.0000
 StepF14 - StepF13  0.00589 0.032 Inf   0.184  1.0000
 StepF15 - StepF14  0.02673 0.032 Inf   0.835  1.0000
 StepF16 - StepF15 -0.03354 0.032 Inf  -1.048  1.0000
 StepF17 - StepF16 -0.10570 0.032 Inf  -3.302  0.0134
 StepF18 - StepF17 -0.02702 0.032 Inf  -0.844  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST | Block 4 | 18 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    279.5721 17     <2e-16 ***
Accuracy   0.0015  1     0.9693    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.787 0.0843 Inf     0.622     0.953
 2      0.946 0.0843 Inf     0.781     1.112
 3      0.903 0.0843 Inf     0.738     1.068
 4      0.767 0.0843 Inf     0.602     0.933
 5      0.780 0.0843 Inf     0.615     0.946
 6      0.907 0.0843 Inf     0.742     1.072
 7      0.792 0.0843 Inf     0.627     0.957
 8      0.715 0.0843 Inf     0.550     0.880
 9      0.758 0.0843 Inf     0.593     0.923
 10     0.794 0.0843 Inf     0.629     0.959
 11     0.720 0.0843 Inf     0.555     0.885
 12     0.643 0.0843 Inf     0.478     0.808
 13     0.697 0.0843 Inf     0.532     0.862
 14     0.669 0.0843 Inf     0.504     0.834
 15     0.712 0.0843 Inf     0.547     0.877
 16     0.686 0.0843 Inf     0.520     0.851
 17     0.641 0.0843 Inf     0.476     0.806
 18     0.583 0.0843 Inf     0.418     0.748

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.787 0.0837 Inf     0.623     0.951
 2      0.946 0.0837 Inf     0.782     1.110
 3      0.902 0.0837 Inf     0.738     1.066
 4      0.767 0.0837 Inf     0.603     0.931
 5      0.780 0.0837 Inf     0.616     0.944
 6      0.907 0.0837 Inf     0.743     1.071
 7      0.792 0.0837 Inf     0.628     0.956
 8      0.714 0.0837 Inf     0.550     0.878
 9      0.757 0.0837 Inf     0.593     0.921
 10     0.794 0.0837 Inf     0.630     0.958
 11     0.719 0.0837 Inf     0.555     0.883
 12     0.642 0.0837 Inf     0.478     0.806
 13     0.696 0.0837 Inf     0.532     0.860
 14     0.669 0.0837 Inf     0.505     0.833
 15     0.712 0.0837 Inf     0.548     0.876
 16     0.685 0.0837 Inf     0.521     0.849
 17     0.641 0.0837 Inf     0.477     0.805
 18     0.582 0.0837 Inf     0.418     0.746

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate    SE  df z.ratio p.value
 StepF1 - StepF2   -0.15901 0.034 Inf  -4.680  0.0004
 StepF1 - StepF3   -0.11530 0.034 Inf  -3.394  0.0675
 StepF1 - StepF4    0.02004 0.034 Inf   0.590  1.0000
 StepF1 - StepF5    0.00692 0.034 Inf   0.204  1.0000
 StepF1 - StepF6   -0.11991 0.034 Inf  -3.529  0.0438
 StepF1 - StepF7   -0.00491 0.034 Inf  -0.145  1.0000
 StepF1 - StepF8    0.07264 0.034 Inf   2.138  0.7940
 StepF1 - StepF9    0.02965 0.034 Inf   0.873  1.0000
 StepF1 - StepF10  -0.00688 0.034 Inf  -0.202  1.0000
 StepF1 - StepF11   0.06732 0.034 Inf   1.981  0.8785
 StepF1 - StepF12   0.14453 0.034 Inf   4.254  0.0028
 StepF1 - StepF13   0.09039 0.034 Inf   2.660  0.4086
 StepF1 - StepF14   0.11811 0.034 Inf   3.476  0.0521
 StepF1 - StepF15   0.07517 0.034 Inf   2.212  0.7457
 StepF1 - StepF16   0.10186 0.034 Inf   2.998  0.2008
 StepF1 - StepF17   0.14624 0.034 Inf   4.304  0.0023
 StepF1 - StepF18   0.20450 0.034 Inf   6.019  <.0001
 StepF2 - StepF3    0.04371 0.034 Inf   1.287  0.9985
 StepF2 - StepF4    0.17905 0.034 Inf   5.270  <.0001
 StepF2 - StepF5    0.16593 0.034 Inf   4.884  0.0002
 StepF2 - StepF6    0.03910 0.034 Inf   1.151  0.9996
 StepF2 - StepF7    0.15410 0.034 Inf   4.535  0.0008
 StepF2 - StepF8    0.23165 0.034 Inf   6.818  <.0001
 StepF2 - StepF9    0.18866 0.034 Inf   5.553  <.0001
 StepF2 - StepF10   0.15213 0.034 Inf   4.478  0.0010
 StepF2 - StepF11   0.22633 0.034 Inf   6.661  <.0001
 StepF2 - StepF12   0.30354 0.034 Inf   8.934  <.0001
 StepF2 - StepF13   0.24940 0.034 Inf   7.340  <.0001
 StepF2 - StepF14   0.27712 0.034 Inf   8.156  <.0001
 StepF2 - StepF15   0.23418 0.034 Inf   6.892  <.0001
 StepF2 - StepF16   0.26087 0.034 Inf   7.678  <.0001
 StepF2 - StepF17   0.30525 0.034 Inf   8.984  <.0001
 StepF2 - StepF18   0.36351 0.034 Inf  10.699  <.0001
 StepF3 - StepF4    0.13534 0.034 Inf   3.983  0.0085
 StepF3 - StepF5    0.12222 0.034 Inf   3.597  0.0349
 StepF3 - StepF6   -0.00461 0.034 Inf  -0.136  1.0000
 StepF3 - StepF7    0.11038 0.034 Inf   3.249  0.1037
 StepF3 - StepF8    0.18794 0.034 Inf   5.531  <.0001
 StepF3 - StepF9    0.14495 0.034 Inf   4.266  0.0027
 StepF3 - StepF10   0.10842 0.034 Inf   3.191  0.1219
 StepF3 - StepF11   0.18262 0.034 Inf   5.375  <.0001
 StepF3 - StepF12   0.25983 0.034 Inf   7.648  <.0001
 StepF3 - StepF13   0.20569 0.034 Inf   6.054  <.0001
 StepF3 - StepF14   0.23340 0.034 Inf   6.870  <.0001
 StepF3 - StepF15   0.19047 0.034 Inf   5.606  <.0001
 StepF3 - StepF16   0.21716 0.034 Inf   6.391  <.0001
 StepF3 - StepF17   0.26154 0.034 Inf   7.698  <.0001
 StepF3 - StepF18   0.31980 0.034 Inf   9.412  <.0001
 StepF4 - StepF5   -0.01312 0.034 Inf  -0.386  1.0000
 StepF4 - StepF6   -0.13995 0.034 Inf  -4.119  0.0049
 StepF4 - StepF7   -0.02495 0.034 Inf  -0.734  1.0000
 StepF4 - StepF8    0.05260 0.034 Inf   1.548  0.9871
 StepF4 - StepF9    0.00961 0.034 Inf   0.283  1.0000
 StepF4 - StepF10  -0.02692 0.034 Inf  -0.792  1.0000
 StepF4 - StepF11   0.04728 0.034 Inf   1.392  0.9960
 StepF4 - StepF12   0.12449 0.034 Inf   3.664  0.0277
 StepF4 - StepF13   0.07035 0.034 Inf   2.071  0.8335
 StepF4 - StepF14   0.09807 0.034 Inf   2.886  0.2601
 StepF4 - StepF15   0.05513 0.034 Inf   1.623  0.9791
 StepF4 - StepF16   0.08182 0.034 Inf   2.408  0.6017
 StepF4 - StepF17   0.12620 0.034 Inf   3.714  0.0232
 StepF4 - StepF18   0.18446 0.034 Inf   5.429  <.0001
 StepF5 - StepF6   -0.12683 0.034 Inf  -3.733  0.0218
 StepF5 - StepF7   -0.01184 0.034 Inf  -0.348  1.0000
 StepF5 - StepF8    0.06572 0.034 Inf   1.934  0.8990
 StepF5 - StepF9    0.02273 0.034 Inf   0.669  1.0000
 StepF5 - StepF10  -0.01380 0.034 Inf  -0.406  1.0000
 StepF5 - StepF11   0.06040 0.034 Inf   1.778  0.9502
 StepF5 - StepF12   0.13761 0.034 Inf   4.050  0.0065
 StepF5 - StepF13   0.08347 0.034 Inf   2.457  0.5640
 StepF5 - StepF14   0.11118 0.034 Inf   3.272  0.0969
 StepF5 - StepF15   0.06825 0.034 Inf   2.009  0.8657
 StepF5 - StepF16   0.09494 0.034 Inf   2.794  0.3164
 StepF5 - StepF17   0.13931 0.034 Inf   4.100  0.0053
 StepF5 - StepF18   0.19758 0.034 Inf   5.815  <.0001
 StepF6 - StepF7    0.11499 0.034 Inf   3.385  0.0694
 StepF6 - StepF8    0.19254 0.034 Inf   5.667  <.0001
 StepF6 - StepF9    0.14956 0.034 Inf   4.402  0.0015
 StepF6 - StepF10   0.11303 0.034 Inf   3.327  0.0826
 StepF6 - StepF11   0.18723 0.034 Inf   5.511  <.0001
 StepF6 - StepF12   0.26444 0.034 Inf   7.783  <.0001
 StepF6 - StepF13   0.21029 0.034 Inf   6.190  <.0001
 StepF6 - StepF14   0.23801 0.034 Inf   7.005  <.0001
 StepF6 - StepF15   0.19507 0.034 Inf   5.742  <.0001
 StepF6 - StepF16   0.22177 0.034 Inf   6.527  <.0001
 StepF6 - StepF17   0.26614 0.034 Inf   7.833  <.0001
 StepF6 - StepF18   0.32441 0.034 Inf   9.548  <.0001
 StepF7 - StepF8    0.07755 0.034 Inf   2.283  0.6963
 StepF7 - StepF9    0.03456 0.034 Inf   1.017  0.9999
 StepF7 - StepF10  -0.00197 0.034 Inf  -0.058  1.0000
 StepF7 - StepF11   0.07223 0.034 Inf   2.126  0.8013
 StepF7 - StepF12   0.14945 0.034 Inf   4.399  0.0015
 StepF7 - StepF13   0.09530 0.034 Inf   2.805  0.3095
 StepF7 - StepF14   0.12302 0.034 Inf   3.621  0.0322
 StepF7 - StepF15   0.08008 0.034 Inf   2.357  0.6409
 StepF7 - StepF16   0.10677 0.034 Inf   3.143  0.1390
 StepF7 - StepF17   0.15115 0.034 Inf   4.449  0.0012
 StepF7 - StepF18   0.20941 0.034 Inf   6.164  <.0001
 StepF8 - StepF9   -0.04299 0.034 Inf  -1.265  0.9987
 StepF8 - StepF10  -0.07952 0.034 Inf  -2.340  0.6534
 StepF8 - StepF11  -0.00532 0.034 Inf  -0.157  1.0000
 StepF8 - StepF12   0.07189 0.034 Inf   2.116  0.8073
 StepF8 - StepF13   0.01775 0.034 Inf   0.522  1.0000
 StepF8 - StepF14   0.04547 0.034 Inf   1.338  0.9975
 StepF8 - StepF15   0.00253 0.034 Inf   0.074  1.0000
 StepF8 - StepF16   0.02922 0.034 Inf   0.860  1.0000
 StepF8 - StepF17   0.07360 0.034 Inf   2.166  0.7762
 StepF8 - StepF18   0.13186 0.034 Inf   3.881  0.0126
 StepF9 - StepF10  -0.03653 0.034 Inf  -1.075  0.9999
 StepF9 - StepF11   0.03767 0.034 Inf   1.109  0.9998
 StepF9 - StepF12   0.11488 0.034 Inf   3.381  0.0701
 StepF9 - StepF13   0.06074 0.034 Inf   1.788  0.9477
 StepF9 - StepF14   0.08846 0.034 Inf   2.603  0.4508
 StepF9 - StepF15   0.04552 0.034 Inf   1.340  0.9975
 StepF9 - StepF16   0.07221 0.034 Inf   2.125  0.8018
 StepF9 - StepF17   0.11659 0.034 Inf   3.431  0.0600
 StepF9 - StepF18   0.17485 0.034 Inf   5.146  <.0001
 StepF10 - StepF11  0.07420 0.034 Inf   2.184  0.7647
 StepF10 - StepF12  0.15141 0.034 Inf   4.456  0.0012
 StepF10 - StepF13  0.09727 0.034 Inf   2.863  0.2738
 StepF10 - StepF14  0.12499 0.034 Inf   3.679  0.0264
 StepF10 - StepF15  0.08205 0.034 Inf   2.415  0.5964
 StepF10 - StepF16  0.10874 0.034 Inf   3.200  0.1188
 StepF10 - StepF17  0.15312 0.034 Inf   4.507  0.0009
 StepF10 - StepF18  0.21138 0.034 Inf   6.221  <.0001
 StepF11 - StepF12  0.07721 0.034 Inf   2.273  0.7035
 StepF11 - StepF13  0.02307 0.034 Inf   0.679  1.0000
 StepF11 - StepF14  0.05079 0.034 Inf   1.495  0.9911
 StepF11 - StepF15  0.00785 0.034 Inf   0.231  1.0000
 StepF11 - StepF16  0.03454 0.034 Inf   1.017  0.9999
 StepF11 - StepF17  0.07892 0.034 Inf   2.323  0.6667
 StepF11 - StepF18  0.13718 0.034 Inf   4.038  0.0069
 StepF12 - StepF13 -0.05415 0.034 Inf  -1.594  0.9825
 StepF12 - StepF14 -0.02643 0.034 Inf  -0.778  1.0000
 StepF12 - StepF15 -0.06936 0.034 Inf  -2.042  0.8490
 StepF12 - StepF16 -0.04267 0.034 Inf  -1.256  0.9989
 StepF12 - StepF17  0.00170 0.034 Inf   0.050  1.0000
 StepF12 - StepF18  0.05997 0.034 Inf   1.765  0.9533
 StepF13 - StepF14  0.02772 0.034 Inf   0.816  1.0000
 StepF13 - StepF15 -0.01522 0.034 Inf  -0.448  1.0000
 StepF13 - StepF16  0.01147 0.034 Inf   0.338  1.0000
 StepF13 - StepF17  0.05585 0.034 Inf   1.644  0.9762
 StepF13 - StepF18  0.11411 0.034 Inf   3.359  0.0751
 StepF14 - StepF15 -0.04294 0.034 Inf  -1.264  0.9988
 StepF14 - StepF16 -0.01625 0.034 Inf  -0.478  1.0000
 StepF14 - StepF17  0.02813 0.034 Inf   0.828  1.0000
 StepF14 - StepF18  0.08639 0.034 Inf   2.543  0.4971
 StepF15 - StepF16  0.02669 0.034 Inf   0.786  1.0000
 StepF15 - StepF17  0.07107 0.034 Inf   2.092  0.8215
 StepF15 - StepF18  0.12933 0.034 Inf   3.807  0.0166
 StepF16 - StepF17  0.04438 0.034 Inf   1.306  0.9981
 StepF16 - StepF18  0.10264 0.034 Inf   3.021  0.1899
 StepF17 - StepF18  0.05826 0.034 Inf   1.715  0.9642

Accuracy = 1:
 contrast          estimate    SE  df z.ratio p.value
 StepF1 - StepF2   -0.15901 0.034 Inf  -4.680  0.0004
 StepF1 - StepF3   -0.11530 0.034 Inf  -3.394  0.0675
 StepF1 - StepF4    0.02004 0.034 Inf   0.590  1.0000
 StepF1 - StepF5    0.00692 0.034 Inf   0.204  1.0000
 StepF1 - StepF6   -0.11991 0.034 Inf  -3.529  0.0438
 StepF1 - StepF7   -0.00491 0.034 Inf  -0.145  1.0000
 StepF1 - StepF8    0.07264 0.034 Inf   2.138  0.7940
 StepF1 - StepF9    0.02965 0.034 Inf   0.873  1.0000
 StepF1 - StepF10  -0.00688 0.034 Inf  -0.202  1.0000
 StepF1 - StepF11   0.06732 0.034 Inf   1.981  0.8785
 StepF1 - StepF12   0.14453 0.034 Inf   4.254  0.0028
 StepF1 - StepF13   0.09039 0.034 Inf   2.660  0.4086
 StepF1 - StepF14   0.11811 0.034 Inf   3.476  0.0521
 StepF1 - StepF15   0.07517 0.034 Inf   2.212  0.7457
 StepF1 - StepF16   0.10186 0.034 Inf   2.998  0.2008
 StepF1 - StepF17   0.14624 0.034 Inf   4.304  0.0023
 StepF1 - StepF18   0.20450 0.034 Inf   6.019  <.0001
 StepF2 - StepF3    0.04371 0.034 Inf   1.287  0.9985
 StepF2 - StepF4    0.17905 0.034 Inf   5.270  <.0001
 StepF2 - StepF5    0.16593 0.034 Inf   4.884  0.0002
 StepF2 - StepF6    0.03910 0.034 Inf   1.151  0.9996
 StepF2 - StepF7    0.15410 0.034 Inf   4.535  0.0008
 StepF2 - StepF8    0.23165 0.034 Inf   6.818  <.0001
 StepF2 - StepF9    0.18866 0.034 Inf   5.553  <.0001
 StepF2 - StepF10   0.15213 0.034 Inf   4.478  0.0010
 StepF2 - StepF11   0.22633 0.034 Inf   6.661  <.0001
 StepF2 - StepF12   0.30354 0.034 Inf   8.934  <.0001
 StepF2 - StepF13   0.24940 0.034 Inf   7.340  <.0001
 StepF2 - StepF14   0.27712 0.034 Inf   8.156  <.0001
 StepF2 - StepF15   0.23418 0.034 Inf   6.892  <.0001
 StepF2 - StepF16   0.26087 0.034 Inf   7.678  <.0001
 StepF2 - StepF17   0.30525 0.034 Inf   8.984  <.0001
 StepF2 - StepF18   0.36351 0.034 Inf  10.699  <.0001
 StepF3 - StepF4    0.13534 0.034 Inf   3.983  0.0085
 StepF3 - StepF5    0.12222 0.034 Inf   3.597  0.0349
 StepF3 - StepF6   -0.00461 0.034 Inf  -0.136  1.0000
 StepF3 - StepF7    0.11038 0.034 Inf   3.249  0.1037
 StepF3 - StepF8    0.18794 0.034 Inf   5.531  <.0001
 StepF3 - StepF9    0.14495 0.034 Inf   4.266  0.0027
 StepF3 - StepF10   0.10842 0.034 Inf   3.191  0.1219
 StepF3 - StepF11   0.18262 0.034 Inf   5.375  <.0001
 StepF3 - StepF12   0.25983 0.034 Inf   7.648  <.0001
 StepF3 - StepF13   0.20569 0.034 Inf   6.054  <.0001
 StepF3 - StepF14   0.23340 0.034 Inf   6.870  <.0001
 StepF3 - StepF15   0.19047 0.034 Inf   5.606  <.0001
 StepF3 - StepF16   0.21716 0.034 Inf   6.391  <.0001
 StepF3 - StepF17   0.26154 0.034 Inf   7.698  <.0001
 StepF3 - StepF18   0.31980 0.034 Inf   9.412  <.0001
 StepF4 - StepF5   -0.01312 0.034 Inf  -0.386  1.0000
 StepF4 - StepF6   -0.13995 0.034 Inf  -4.119  0.0049
 StepF4 - StepF7   -0.02495 0.034 Inf  -0.734  1.0000
 StepF4 - StepF8    0.05260 0.034 Inf   1.548  0.9871
 StepF4 - StepF9    0.00961 0.034 Inf   0.283  1.0000
 StepF4 - StepF10  -0.02692 0.034 Inf  -0.792  1.0000
 StepF4 - StepF11   0.04728 0.034 Inf   1.392  0.9960
 StepF4 - StepF12   0.12449 0.034 Inf   3.664  0.0277
 StepF4 - StepF13   0.07035 0.034 Inf   2.071  0.8335
 StepF4 - StepF14   0.09807 0.034 Inf   2.886  0.2601
 StepF4 - StepF15   0.05513 0.034 Inf   1.623  0.9791
 StepF4 - StepF16   0.08182 0.034 Inf   2.408  0.6017
 StepF4 - StepF17   0.12620 0.034 Inf   3.714  0.0232
 StepF4 - StepF18   0.18446 0.034 Inf   5.429  <.0001
 StepF5 - StepF6   -0.12683 0.034 Inf  -3.733  0.0218
 StepF5 - StepF7   -0.01184 0.034 Inf  -0.348  1.0000
 StepF5 - StepF8    0.06572 0.034 Inf   1.934  0.8990
 StepF5 - StepF9    0.02273 0.034 Inf   0.669  1.0000
 StepF5 - StepF10  -0.01380 0.034 Inf  -0.406  1.0000
 StepF5 - StepF11   0.06040 0.034 Inf   1.778  0.9502
 StepF5 - StepF12   0.13761 0.034 Inf   4.050  0.0065
 StepF5 - StepF13   0.08347 0.034 Inf   2.457  0.5640
 StepF5 - StepF14   0.11118 0.034 Inf   3.272  0.0969
 StepF5 - StepF15   0.06825 0.034 Inf   2.009  0.8657
 StepF5 - StepF16   0.09494 0.034 Inf   2.794  0.3164
 StepF5 - StepF17   0.13931 0.034 Inf   4.100  0.0053
 StepF5 - StepF18   0.19758 0.034 Inf   5.815  <.0001
 StepF6 - StepF7    0.11499 0.034 Inf   3.385  0.0694
 StepF6 - StepF8    0.19254 0.034 Inf   5.667  <.0001
 StepF6 - StepF9    0.14956 0.034 Inf   4.402  0.0015
 StepF6 - StepF10   0.11303 0.034 Inf   3.327  0.0826
 StepF6 - StepF11   0.18723 0.034 Inf   5.511  <.0001
 StepF6 - StepF12   0.26444 0.034 Inf   7.783  <.0001
 StepF6 - StepF13   0.21029 0.034 Inf   6.190  <.0001
 StepF6 - StepF14   0.23801 0.034 Inf   7.005  <.0001
 StepF6 - StepF15   0.19507 0.034 Inf   5.742  <.0001
 StepF6 - StepF16   0.22177 0.034 Inf   6.527  <.0001
 StepF6 - StepF17   0.26614 0.034 Inf   7.833  <.0001
 StepF6 - StepF18   0.32441 0.034 Inf   9.548  <.0001
 StepF7 - StepF8    0.07755 0.034 Inf   2.283  0.6963
 StepF7 - StepF9    0.03456 0.034 Inf   1.017  0.9999
 StepF7 - StepF10  -0.00197 0.034 Inf  -0.058  1.0000
 StepF7 - StepF11   0.07223 0.034 Inf   2.126  0.8013
 StepF7 - StepF12   0.14945 0.034 Inf   4.399  0.0015
 StepF7 - StepF13   0.09530 0.034 Inf   2.805  0.3095
 StepF7 - StepF14   0.12302 0.034 Inf   3.621  0.0322
 StepF7 - StepF15   0.08008 0.034 Inf   2.357  0.6409
 StepF7 - StepF16   0.10677 0.034 Inf   3.143  0.1390
 StepF7 - StepF17   0.15115 0.034 Inf   4.449  0.0012
 StepF7 - StepF18   0.20941 0.034 Inf   6.164  <.0001
 StepF8 - StepF9   -0.04299 0.034 Inf  -1.265  0.9987
 StepF8 - StepF10  -0.07952 0.034 Inf  -2.340  0.6534
 StepF8 - StepF11  -0.00532 0.034 Inf  -0.157  1.0000
 StepF8 - StepF12   0.07189 0.034 Inf   2.116  0.8073
 StepF8 - StepF13   0.01775 0.034 Inf   0.522  1.0000
 StepF8 - StepF14   0.04547 0.034 Inf   1.338  0.9975
 StepF8 - StepF15   0.00253 0.034 Inf   0.074  1.0000
 StepF8 - StepF16   0.02922 0.034 Inf   0.860  1.0000
 StepF8 - StepF17   0.07360 0.034 Inf   2.166  0.7762
 StepF8 - StepF18   0.13186 0.034 Inf   3.881  0.0126
 StepF9 - StepF10  -0.03653 0.034 Inf  -1.075  0.9999
 StepF9 - StepF11   0.03767 0.034 Inf   1.109  0.9998
 StepF9 - StepF12   0.11488 0.034 Inf   3.381  0.0701
 StepF9 - StepF13   0.06074 0.034 Inf   1.788  0.9477
 StepF9 - StepF14   0.08846 0.034 Inf   2.603  0.4508
 StepF9 - StepF15   0.04552 0.034 Inf   1.340  0.9975
 StepF9 - StepF16   0.07221 0.034 Inf   2.125  0.8018
 StepF9 - StepF17   0.11659 0.034 Inf   3.431  0.0600
 StepF9 - StepF18   0.17485 0.034 Inf   5.146  <.0001
 StepF10 - StepF11  0.07420 0.034 Inf   2.184  0.7647
 StepF10 - StepF12  0.15141 0.034 Inf   4.456  0.0012
 StepF10 - StepF13  0.09727 0.034 Inf   2.863  0.2738
 StepF10 - StepF14  0.12499 0.034 Inf   3.679  0.0264
 StepF10 - StepF15  0.08205 0.034 Inf   2.415  0.5964
 StepF10 - StepF16  0.10874 0.034 Inf   3.200  0.1188
 StepF10 - StepF17  0.15312 0.034 Inf   4.507  0.0009
 StepF10 - StepF18  0.21138 0.034 Inf   6.221  <.0001
 StepF11 - StepF12  0.07721 0.034 Inf   2.273  0.7035
 StepF11 - StepF13  0.02307 0.034 Inf   0.679  1.0000
 StepF11 - StepF14  0.05079 0.034 Inf   1.495  0.9911
 StepF11 - StepF15  0.00785 0.034 Inf   0.231  1.0000
 StepF11 - StepF16  0.03454 0.034 Inf   1.017  0.9999
 StepF11 - StepF17  0.07892 0.034 Inf   2.323  0.6667
 StepF11 - StepF18  0.13718 0.034 Inf   4.038  0.0069
 StepF12 - StepF13 -0.05415 0.034 Inf  -1.594  0.9825
 StepF12 - StepF14 -0.02643 0.034 Inf  -0.778  1.0000
 StepF12 - StepF15 -0.06936 0.034 Inf  -2.042  0.8490
 StepF12 - StepF16 -0.04267 0.034 Inf  -1.256  0.9989
 StepF12 - StepF17  0.00170 0.034 Inf   0.050  1.0000
 StepF12 - StepF18  0.05997 0.034 Inf   1.765  0.9533
 StepF13 - StepF14  0.02772 0.034 Inf   0.816  1.0000
 StepF13 - StepF15 -0.01522 0.034 Inf  -0.448  1.0000
 StepF13 - StepF16  0.01147 0.034 Inf   0.338  1.0000
 StepF13 - StepF17  0.05585 0.034 Inf   1.644  0.9762
 StepF13 - StepF18  0.11411 0.034 Inf   3.359  0.0751
 StepF14 - StepF15 -0.04294 0.034 Inf  -1.264  0.9988
 StepF14 - StepF16 -0.01625 0.034 Inf  -0.478  1.0000
 StepF14 - StepF17  0.02813 0.034 Inf   0.828  1.0000
 StepF14 - StepF18  0.08639 0.034 Inf   2.543  0.4971
 StepF15 - StepF16  0.02669 0.034 Inf   0.786  1.0000
 StepF15 - StepF17  0.07107 0.034 Inf   2.092  0.8215
 StepF15 - StepF18  0.12933 0.034 Inf   3.807  0.0166
 StepF16 - StepF17  0.04438 0.034 Inf   1.306  0.9981
 StepF16 - StepF18  0.10264 0.034 Inf   3.021  0.1899
 StepF17 - StepF18  0.05826 0.034 Inf   1.715  0.9642

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate    SE  df z.ratio p.value
 StepF2 - StepF1     0.1590 0.034 Inf   4.680  <.0001
 StepF3 - StepF2    -0.0437 0.034 Inf  -1.287  1.0000
 StepF4 - StepF3    -0.1353 0.034 Inf  -3.983  0.0011
 StepF5 - StepF4     0.0131 0.034 Inf   0.386  1.0000
 StepF6 - StepF5     0.1268 0.034 Inf   3.733  0.0028
 StepF7 - StepF6    -0.1150 0.034 Inf  -3.385  0.0100
 StepF8 - StepF7    -0.0776 0.034 Inf  -2.283  0.2919
 StepF9 - StepF8     0.0430 0.034 Inf   1.265  1.0000
 StepF10 - StepF9    0.0365 0.034 Inf   1.075  1.0000
 StepF11 - StepF10  -0.0742 0.034 Inf  -2.184  0.3187
 StepF12 - StepF11  -0.0772 0.034 Inf  -2.273  0.2919
 StepF13 - StepF12   0.0541 0.034 Inf   1.594  0.9991
 StepF14 - StepF13  -0.0277 0.034 Inf  -0.816  1.0000
 StepF15 - StepF14   0.0429 0.034 Inf   1.264  1.0000
 StepF16 - StepF15  -0.0267 0.034 Inf  -0.786  1.0000
 StepF17 - StepF16  -0.0444 0.034 Inf  -1.306  1.0000
 StepF18 - StepF17  -0.0583 0.034 Inf  -1.715  0.8638

Accuracy = 1:
 contrast          estimate    SE  df z.ratio p.value
 StepF2 - StepF1     0.1590 0.034 Inf   4.680  <.0001
 StepF3 - StepF2    -0.0437 0.034 Inf  -1.287  1.0000
 StepF4 - StepF3    -0.1353 0.034 Inf  -3.983  0.0011
 StepF5 - StepF4     0.0131 0.034 Inf   0.386  1.0000
 StepF6 - StepF5     0.1268 0.034 Inf   3.733  0.0028
 StepF7 - StepF6    -0.1150 0.034 Inf  -3.385  0.0100
 StepF8 - StepF7    -0.0776 0.034 Inf  -2.283  0.2919
 StepF9 - StepF8     0.0430 0.034 Inf   1.265  1.0000
 StepF10 - StepF9    0.0365 0.034 Inf   1.075  1.0000
 StepF11 - StepF10  -0.0742 0.034 Inf  -2.184  0.3187
 StepF12 - StepF11  -0.0772 0.034 Inf  -2.273  0.2919
 StepF13 - StepF12   0.0541 0.034 Inf   1.594  0.9991
 StepF14 - StepF13  -0.0277 0.034 Inf  -0.816  1.0000
 StepF15 - StepF14   0.0429 0.034 Inf   1.264  1.0000
 StepF16 - StepF15  -0.0267 0.034 Inf  -0.786  1.0000
 StepF17 - StepF16  -0.0444 0.034 Inf  -1.306  1.0000
 StepF18 - StepF17  -0.0583 0.034 Inf  -1.715  0.8638

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST | Block 4 | 18 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    304.2874 17     <2e-16 ***
Accuracy   0.0009  1     0.9762    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      1.593 0.153 Inf     1.293      1.89
 2      1.807 0.153 Inf     1.506      2.11
 3      1.740 0.153 Inf     1.440      2.04
 4      1.618 0.153 Inf     1.318      1.92
 5      1.467 0.153 Inf     1.166      1.77
 6      1.582 0.153 Inf     1.282      1.88
 7      1.521 0.153 Inf     1.221      1.82
 8      1.529 0.153 Inf     1.228      1.83
 9      1.463 0.153 Inf     1.162      1.76
 10     1.496 0.153 Inf     1.196      1.80
 11     1.543 0.153 Inf     1.242      1.84
 12     1.359 0.153 Inf     1.059      1.66
 13     1.382 0.153 Inf     1.082      1.68
 14     1.470 0.153 Inf     1.170      1.77
 15     1.449 0.153 Inf     1.149      1.75
 16     1.267 0.153 Inf     0.966      1.57
 17     1.252 0.153 Inf     0.951      1.55
 18     0.989 0.153 Inf     0.689      1.29

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1      1.594 0.152 Inf     1.296      1.89
 2      1.808 0.152 Inf     1.509      2.11
 3      1.741 0.152 Inf     1.443      2.04
 4      1.619 0.152 Inf     1.321      1.92
 5      1.467 0.152 Inf     1.169      1.77
 6      1.583 0.152 Inf     1.285      1.88
 7      1.522 0.152 Inf     1.224      1.82
 8      1.530 0.152 Inf     1.231      1.83
 9      1.463 0.152 Inf     1.165      1.76
 10     1.497 0.152 Inf     1.199      1.80
 11     1.543 0.152 Inf     1.245      1.84
 12     1.360 0.152 Inf     1.062      1.66
 13     1.383 0.152 Inf     1.085      1.68
 14     1.471 0.152 Inf     1.173      1.77
 15     1.450 0.152 Inf     1.152      1.75
 16     1.268 0.152 Inf     0.969      1.57
 17     1.252 0.152 Inf     0.954      1.55
 18     0.990 0.152 Inf     0.692      1.29

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.21381 0.0622 Inf  -3.437  0.0590
 StepF1 - StepF3   -0.14736 0.0622 Inf  -2.369  0.6320
 StepF1 - StepF4   -0.02536 0.0622 Inf  -0.408  1.0000
 StepF1 - StepF5    0.12653 0.0622 Inf   2.034  0.8530
 StepF1 - StepF6    0.01057 0.0622 Inf   0.170  1.0000
 StepF1 - StepF7    0.07195 0.0622 Inf   1.156  0.9996
 StepF1 - StepF8    0.06429 0.0622 Inf   1.033  0.9999
 StepF1 - StepF9    0.13047 0.0622 Inf   2.097  0.8184
 StepF1 - StepF10   0.09693 0.0622 Inf   1.558  0.9862
 StepF1 - StepF11   0.05051 0.0622 Inf   0.812  1.0000
 StepF1 - StepF12   0.23394 0.0622 Inf   3.760  0.0197
 StepF1 - StepF13   0.21087 0.0622 Inf   3.390  0.0683
 StepF1 - StepF14   0.12281 0.0622 Inf   1.974  0.8819
 StepF1 - StepF15   0.14375 0.0622 Inf   2.311  0.6757
 StepF1 - StepF16   0.32639 0.0622 Inf   5.246  <.0001
 StepF1 - StepF17   0.34148 0.0622 Inf   5.489  <.0001
 StepF1 - StepF18   0.60380 0.0622 Inf   9.705  <.0001
 StepF2 - StepF3    0.06645 0.0622 Inf   1.068  0.9999
 StepF2 - StepF4    0.18844 0.0622 Inf   3.029  0.1861
 StepF2 - StepF5    0.34033 0.0622 Inf   5.471  <.0001
 StepF2 - StepF6    0.22437 0.0622 Inf   3.607  0.0338
 StepF2 - StepF7    0.28575 0.0622 Inf   4.593  0.0006
 StepF2 - StepF8    0.27809 0.0622 Inf   4.470  0.0011
 StepF2 - StepF9    0.34428 0.0622 Inf   5.534  <.0001
 StepF2 - StepF10   0.31074 0.0622 Inf   4.995  0.0001
 StepF2 - StepF11   0.26432 0.0622 Inf   4.249  0.0029
 StepF2 - StepF12   0.44774 0.0622 Inf   7.197  <.0001
 StepF2 - StepF13   0.42468 0.0622 Inf   6.826  <.0001
 StepF2 - StepF14   0.33662 0.0622 Inf   5.411  <.0001
 StepF2 - StepF15   0.35756 0.0622 Inf   5.747  <.0001
 StepF2 - StepF16   0.54019 0.0622 Inf   8.683  <.0001
 StepF2 - StepF17   0.55529 0.0622 Inf   8.926  <.0001
 StepF2 - StepF18   0.81760 0.0622 Inf  13.142  <.0001
 StepF3 - StepF4    0.12200 0.0622 Inf   1.961  0.8877
 StepF3 - StepF5    0.27389 0.0622 Inf   4.402  0.0015
 StepF3 - StepF6    0.15793 0.0622 Inf   2.539  0.5004
 StepF3 - StepF7    0.21931 0.0622 Inf   3.525  0.0444
 StepF3 - StepF8    0.21165 0.0622 Inf   3.402  0.0658
 StepF3 - StepF9    0.27783 0.0622 Inf   4.466  0.0011
 StepF3 - StepF10   0.24430 0.0622 Inf   3.927  0.0106
 StepF3 - StepF11   0.19787 0.0622 Inf   3.181  0.1254
 StepF3 - StepF12   0.38130 0.0622 Inf   6.129  <.0001
 StepF3 - StepF13   0.35823 0.0622 Inf   5.758  <.0001
 StepF3 - StepF14   0.27018 0.0622 Inf   4.343  0.0019
 StepF3 - StepF15   0.29111 0.0622 Inf   4.679  0.0004
 StepF3 - StepF16   0.47375 0.0622 Inf   7.615  <.0001
 StepF3 - StepF17   0.48885 0.0622 Inf   7.858  <.0001
 StepF3 - StepF18   0.75116 0.0622 Inf  12.074  <.0001
 StepF4 - StepF5    0.15189 0.0622 Inf   2.441  0.5758
 StepF4 - StepF6    0.03593 0.0622 Inf   0.578  1.0000
 StepF4 - StepF7    0.09731 0.0622 Inf   1.564  0.9856
 StepF4 - StepF8    0.08965 0.0622 Inf   1.441  0.9941
 StepF4 - StepF9    0.15583 0.0622 Inf   2.505  0.5264
 StepF4 - StepF10   0.12230 0.0622 Inf   1.966  0.8856
 StepF4 - StepF11   0.07588 0.0622 Inf   1.220  0.9992
 StepF4 - StepF12   0.25930 0.0622 Inf   4.168  0.0040
 StepF4 - StepF13   0.23623 0.0622 Inf   3.797  0.0172
 StepF4 - StepF14   0.14818 0.0622 Inf   2.382  0.6219
 StepF4 - StepF15   0.16911 0.0622 Inf   2.718  0.3673
 StepF4 - StepF16   0.35175 0.0622 Inf   5.654  <.0001
 StepF4 - StepF17   0.36685 0.0622 Inf   5.897  <.0001
 StepF4 - StepF18   0.62916 0.0622 Inf  10.113  <.0001
 StepF5 - StepF6   -0.11596 0.0622 Inf  -1.864  0.9250
 StepF5 - StepF7   -0.05458 0.0622 Inf  -0.877  1.0000
 StepF5 - StepF8   -0.06224 0.0622 Inf  -1.000  0.9999
 StepF5 - StepF9    0.00394 0.0622 Inf   0.063  1.0000
 StepF5 - StepF10  -0.02959 0.0622 Inf  -0.476  1.0000
 StepF5 - StepF11  -0.07602 0.0622 Inf  -1.222  0.9992
 StepF5 - StepF12   0.10741 0.0622 Inf   1.727  0.9618
 StepF5 - StepF13   0.08434 0.0622 Inf   1.356  0.9971
 StepF5 - StepF14  -0.00371 0.0622 Inf  -0.060  1.0000
 StepF5 - StepF15   0.01722 0.0622 Inf   0.277  1.0000
 StepF5 - StepF16   0.19986 0.0622 Inf   3.213  0.1148
 StepF5 - StepF17   0.21496 0.0622 Inf   3.455  0.0557
 StepF5 - StepF18   0.47727 0.0622 Inf   7.672  <.0001
 StepF6 - StepF7    0.06138 0.0622 Inf   0.987  1.0000
 StepF6 - StepF8    0.05372 0.0622 Inf   0.864  1.0000
 StepF6 - StepF9    0.11990 0.0622 Inf   1.927  0.9018
 StepF6 - StepF10   0.08637 0.0622 Inf   1.388  0.9962
 StepF6 - StepF11   0.03995 0.0622 Inf   0.642  1.0000
 StepF6 - StepF12   0.22337 0.0622 Inf   3.590  0.0357
 StepF6 - StepF13   0.20030 0.0622 Inf   3.220  0.1126
 StepF6 - StepF14   0.11225 0.0622 Inf   1.804  0.9432
 StepF6 - StepF15   0.13319 0.0622 Inf   2.141  0.7922
 StepF6 - StepF16   0.31582 0.0622 Inf   5.077  0.0001
 StepF6 - StepF17   0.33092 0.0622 Inf   5.319  <.0001
 StepF6 - StepF18   0.59323 0.0622 Inf   9.536  <.0001
 StepF7 - StepF8   -0.00766 0.0622 Inf  -0.123  1.0000
 StepF7 - StepF9    0.05852 0.0622 Inf   0.941  1.0000
 StepF7 - StepF10   0.02499 0.0622 Inf   0.402  1.0000
 StepF7 - StepF11  -0.02143 0.0622 Inf  -0.345  1.0000
 StepF7 - StepF12   0.16199 0.0622 Inf   2.604  0.4505
 StepF7 - StepF13   0.13892 0.0622 Inf   2.233  0.7315
 StepF7 - StepF14   0.05087 0.0622 Inf   0.818  1.0000
 StepF7 - StepF15   0.07180 0.0622 Inf   1.154  0.9996
 StepF7 - StepF16   0.25444 0.0622 Inf   4.090  0.0056
 StepF7 - StepF17   0.26954 0.0622 Inf   4.333  0.0020
 StepF7 - StepF18   0.53185 0.0622 Inf   8.549  <.0001
 StepF8 - StepF9    0.06618 0.0622 Inf   1.064  0.9999
 StepF8 - StepF10   0.03265 0.0622 Inf   0.525  1.0000
 StepF8 - StepF11  -0.01378 0.0622 Inf  -0.221  1.0000
 StepF8 - StepF12   0.16965 0.0622 Inf   2.727  0.3613
 StepF8 - StepF13   0.14658 0.0622 Inf   2.356  0.6415
 StepF8 - StepF14   0.05853 0.0622 Inf   0.941  1.0000
 StepF8 - StepF15   0.07946 0.0622 Inf   1.277  0.9986
 StepF8 - StepF16   0.26210 0.0622 Inf   4.213  0.0033
 StepF8 - StepF17   0.27720 0.0622 Inf   4.456  0.0012
 StepF8 - StepF18   0.53951 0.0622 Inf   8.672  <.0001
 StepF9 - StepF10  -0.03354 0.0622 Inf  -0.539  1.0000
 StepF9 - StepF11  -0.07996 0.0622 Inf  -1.285  0.9985
 StepF9 - StepF12   0.10347 0.0622 Inf   1.663  0.9733
 StepF9 - StepF13   0.08040 0.0622 Inf   1.292  0.9984
 StepF9 - StepF14  -0.00766 0.0622 Inf  -0.123  1.0000
 StepF9 - StepF15   0.01328 0.0622 Inf   0.213  1.0000
 StepF9 - StepF16   0.19592 0.0622 Inf   3.149  0.1366
 StepF9 - StepF17   0.21101 0.0622 Inf   3.392  0.0679
 StepF9 - StepF18   0.47333 0.0622 Inf   7.608  <.0001
 StepF10 - StepF11 -0.04642 0.0622 Inf  -0.746  1.0000
 StepF10 - StepF12  0.13700 0.0622 Inf   2.202  0.7526
 StepF10 - StepF13  0.11393 0.0622 Inf   1.831  0.9354
 StepF10 - StepF14  0.02588 0.0622 Inf   0.416  1.0000
 StepF10 - StepF15  0.04682 0.0622 Inf   0.753  1.0000
 StepF10 - StepF16  0.22945 0.0622 Inf   3.688  0.0255
 StepF10 - StepF17  0.24455 0.0622 Inf   3.931  0.0104
 StepF10 - StepF18  0.50686 0.0622 Inf   8.147  <.0001
 StepF11 - StepF12  0.18343 0.0622 Inf   2.948  0.2259
 StepF11 - StepF13  0.16036 0.0622 Inf   2.578  0.4704
 StepF11 - StepF14  0.07230 0.0622 Inf   1.162  0.9996
 StepF11 - StepF15  0.09324 0.0622 Inf   1.499  0.9909
 StepF11 - StepF16  0.27588 0.0622 Inf   4.434  0.0013
 StepF11 - StepF17  0.29097 0.0622 Inf   4.677  0.0004
 StepF11 - StepF18  0.55328 0.0622 Inf   8.893  <.0001
 StepF12 - StepF13 -0.02307 0.0622 Inf  -0.371  1.0000
 StepF12 - StepF14 -0.11112 0.0622 Inf  -1.786  0.9480
 StepF12 - StepF15 -0.09019 0.0622 Inf  -1.450  0.9937
 StepF12 - StepF16  0.09245 0.0622 Inf   1.486  0.9917
 StepF12 - StepF17  0.10755 0.0622 Inf   1.729  0.9614
 StepF12 - StepF18  0.36986 0.0622 Inf   5.945  <.0001
 StepF13 - StepF14 -0.08805 0.0622 Inf  -1.415  0.9952
 StepF13 - StepF15 -0.06712 0.0622 Inf  -1.079  0.9998
 StepF13 - StepF16  0.11552 0.0622 Inf   1.857  0.9274
 StepF13 - StepF17  0.13062 0.0622 Inf   2.100  0.8170
 StepF13 - StepF18  0.39293 0.0622 Inf   6.316  <.0001
 StepF14 - StepF15  0.02094 0.0622 Inf   0.337  1.0000
 StepF14 - StepF16  0.20357 0.0622 Inf   3.272  0.0969
 StepF14 - StepF17  0.21867 0.0622 Inf   3.515  0.0459
 StepF14 - StepF18  0.48098 0.0622 Inf   7.731  <.0001
 StepF15 - StepF16  0.18264 0.0622 Inf   2.936  0.2326
 StepF15 - StepF17  0.19773 0.0622 Inf   3.178  0.1262
 StepF15 - StepF18  0.46005 0.0622 Inf   7.395  <.0001
 StepF16 - StepF17  0.01510 0.0622 Inf   0.243  1.0000
 StepF16 - StepF18  0.27741 0.0622 Inf   4.459  0.0011
 StepF17 - StepF18  0.26231 0.0622 Inf   4.216  0.0033

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.21381 0.0622 Inf  -3.437  0.0590
 StepF1 - StepF3   -0.14736 0.0622 Inf  -2.369  0.6320
 StepF1 - StepF4   -0.02536 0.0622 Inf  -0.408  1.0000
 StepF1 - StepF5    0.12653 0.0622 Inf   2.034  0.8530
 StepF1 - StepF6    0.01057 0.0622 Inf   0.170  1.0000
 StepF1 - StepF7    0.07195 0.0622 Inf   1.156  0.9996
 StepF1 - StepF8    0.06429 0.0622 Inf   1.033  0.9999
 StepF1 - StepF9    0.13047 0.0622 Inf   2.097  0.8184
 StepF1 - StepF10   0.09693 0.0622 Inf   1.558  0.9862
 StepF1 - StepF11   0.05051 0.0622 Inf   0.812  1.0000
 StepF1 - StepF12   0.23394 0.0622 Inf   3.760  0.0197
 StepF1 - StepF13   0.21087 0.0622 Inf   3.390  0.0683
 StepF1 - StepF14   0.12281 0.0622 Inf   1.974  0.8819
 StepF1 - StepF15   0.14375 0.0622 Inf   2.311  0.6757
 StepF1 - StepF16   0.32639 0.0622 Inf   5.246  <.0001
 StepF1 - StepF17   0.34148 0.0622 Inf   5.489  <.0001
 StepF1 - StepF18   0.60380 0.0622 Inf   9.705  <.0001
 StepF2 - StepF3    0.06645 0.0622 Inf   1.068  0.9999
 StepF2 - StepF4    0.18844 0.0622 Inf   3.029  0.1861
 StepF2 - StepF5    0.34033 0.0622 Inf   5.471  <.0001
 StepF2 - StepF6    0.22437 0.0622 Inf   3.607  0.0338
 StepF2 - StepF7    0.28575 0.0622 Inf   4.593  0.0006
 StepF2 - StepF8    0.27809 0.0622 Inf   4.470  0.0011
 StepF2 - StepF9    0.34428 0.0622 Inf   5.534  <.0001
 StepF2 - StepF10   0.31074 0.0622 Inf   4.995  0.0001
 StepF2 - StepF11   0.26432 0.0622 Inf   4.249  0.0029
 StepF2 - StepF12   0.44774 0.0622 Inf   7.197  <.0001
 StepF2 - StepF13   0.42468 0.0622 Inf   6.826  <.0001
 StepF2 - StepF14   0.33662 0.0622 Inf   5.411  <.0001
 StepF2 - StepF15   0.35756 0.0622 Inf   5.747  <.0001
 StepF2 - StepF16   0.54019 0.0622 Inf   8.683  <.0001
 StepF2 - StepF17   0.55529 0.0622 Inf   8.926  <.0001
 StepF2 - StepF18   0.81760 0.0622 Inf  13.142  <.0001
 StepF3 - StepF4    0.12200 0.0622 Inf   1.961  0.8877
 StepF3 - StepF5    0.27389 0.0622 Inf   4.402  0.0015
 StepF3 - StepF6    0.15793 0.0622 Inf   2.539  0.5004
 StepF3 - StepF7    0.21931 0.0622 Inf   3.525  0.0444
 StepF3 - StepF8    0.21165 0.0622 Inf   3.402  0.0658
 StepF3 - StepF9    0.27783 0.0622 Inf   4.466  0.0011
 StepF3 - StepF10   0.24430 0.0622 Inf   3.927  0.0106
 StepF3 - StepF11   0.19787 0.0622 Inf   3.181  0.1254
 StepF3 - StepF12   0.38130 0.0622 Inf   6.129  <.0001
 StepF3 - StepF13   0.35823 0.0622 Inf   5.758  <.0001
 StepF3 - StepF14   0.27018 0.0622 Inf   4.343  0.0019
 StepF3 - StepF15   0.29111 0.0622 Inf   4.679  0.0004
 StepF3 - StepF16   0.47375 0.0622 Inf   7.615  <.0001
 StepF3 - StepF17   0.48885 0.0622 Inf   7.858  <.0001
 StepF3 - StepF18   0.75116 0.0622 Inf  12.074  <.0001
 StepF4 - StepF5    0.15189 0.0622 Inf   2.441  0.5758
 StepF4 - StepF6    0.03593 0.0622 Inf   0.578  1.0000
 StepF4 - StepF7    0.09731 0.0622 Inf   1.564  0.9856
 StepF4 - StepF8    0.08965 0.0622 Inf   1.441  0.9941
 StepF4 - StepF9    0.15583 0.0622 Inf   2.505  0.5264
 StepF4 - StepF10   0.12230 0.0622 Inf   1.966  0.8856
 StepF4 - StepF11   0.07588 0.0622 Inf   1.220  0.9992
 StepF4 - StepF12   0.25930 0.0622 Inf   4.168  0.0040
 StepF4 - StepF13   0.23623 0.0622 Inf   3.797  0.0172
 StepF4 - StepF14   0.14818 0.0622 Inf   2.382  0.6219
 StepF4 - StepF15   0.16911 0.0622 Inf   2.718  0.3673
 StepF4 - StepF16   0.35175 0.0622 Inf   5.654  <.0001
 StepF4 - StepF17   0.36685 0.0622 Inf   5.897  <.0001
 StepF4 - StepF18   0.62916 0.0622 Inf  10.113  <.0001
 StepF5 - StepF6   -0.11596 0.0622 Inf  -1.864  0.9250
 StepF5 - StepF7   -0.05458 0.0622 Inf  -0.877  1.0000
 StepF5 - StepF8   -0.06224 0.0622 Inf  -1.000  0.9999
 StepF5 - StepF9    0.00394 0.0622 Inf   0.063  1.0000
 StepF5 - StepF10  -0.02959 0.0622 Inf  -0.476  1.0000
 StepF5 - StepF11  -0.07602 0.0622 Inf  -1.222  0.9992
 StepF5 - StepF12   0.10741 0.0622 Inf   1.727  0.9618
 StepF5 - StepF13   0.08434 0.0622 Inf   1.356  0.9971
 StepF5 - StepF14  -0.00371 0.0622 Inf  -0.060  1.0000
 StepF5 - StepF15   0.01722 0.0622 Inf   0.277  1.0000
 StepF5 - StepF16   0.19986 0.0622 Inf   3.213  0.1148
 StepF5 - StepF17   0.21496 0.0622 Inf   3.455  0.0557
 StepF5 - StepF18   0.47727 0.0622 Inf   7.672  <.0001
 StepF6 - StepF7    0.06138 0.0622 Inf   0.987  1.0000
 StepF6 - StepF8    0.05372 0.0622 Inf   0.864  1.0000
 StepF6 - StepF9    0.11990 0.0622 Inf   1.927  0.9018
 StepF6 - StepF10   0.08637 0.0622 Inf   1.388  0.9962
 StepF6 - StepF11   0.03995 0.0622 Inf   0.642  1.0000
 StepF6 - StepF12   0.22337 0.0622 Inf   3.590  0.0357
 StepF6 - StepF13   0.20030 0.0622 Inf   3.220  0.1126
 StepF6 - StepF14   0.11225 0.0622 Inf   1.804  0.9432
 StepF6 - StepF15   0.13319 0.0622 Inf   2.141  0.7922
 StepF6 - StepF16   0.31582 0.0622 Inf   5.077  0.0001
 StepF6 - StepF17   0.33092 0.0622 Inf   5.319  <.0001
 StepF6 - StepF18   0.59323 0.0622 Inf   9.536  <.0001
 StepF7 - StepF8   -0.00766 0.0622 Inf  -0.123  1.0000
 StepF7 - StepF9    0.05852 0.0622 Inf   0.941  1.0000
 StepF7 - StepF10   0.02499 0.0622 Inf   0.402  1.0000
 StepF7 - StepF11  -0.02143 0.0622 Inf  -0.345  1.0000
 StepF7 - StepF12   0.16199 0.0622 Inf   2.604  0.4505
 StepF7 - StepF13   0.13892 0.0622 Inf   2.233  0.7315
 StepF7 - StepF14   0.05087 0.0622 Inf   0.818  1.0000
 StepF7 - StepF15   0.07180 0.0622 Inf   1.154  0.9996
 StepF7 - StepF16   0.25444 0.0622 Inf   4.090  0.0056
 StepF7 - StepF17   0.26954 0.0622 Inf   4.333  0.0020
 StepF7 - StepF18   0.53185 0.0622 Inf   8.549  <.0001
 StepF8 - StepF9    0.06618 0.0622 Inf   1.064  0.9999
 StepF8 - StepF10   0.03265 0.0622 Inf   0.525  1.0000
 StepF8 - StepF11  -0.01378 0.0622 Inf  -0.221  1.0000
 StepF8 - StepF12   0.16965 0.0622 Inf   2.727  0.3613
 StepF8 - StepF13   0.14658 0.0622 Inf   2.356  0.6415
 StepF8 - StepF14   0.05853 0.0622 Inf   0.941  1.0000
 StepF8 - StepF15   0.07946 0.0622 Inf   1.277  0.9986
 StepF8 - StepF16   0.26210 0.0622 Inf   4.213  0.0033
 StepF8 - StepF17   0.27720 0.0622 Inf   4.456  0.0012
 StepF8 - StepF18   0.53951 0.0622 Inf   8.672  <.0001
 StepF9 - StepF10  -0.03354 0.0622 Inf  -0.539  1.0000
 StepF9 - StepF11  -0.07996 0.0622 Inf  -1.285  0.9985
 StepF9 - StepF12   0.10347 0.0622 Inf   1.663  0.9733
 StepF9 - StepF13   0.08040 0.0622 Inf   1.292  0.9984
 StepF9 - StepF14  -0.00766 0.0622 Inf  -0.123  1.0000
 StepF9 - StepF15   0.01328 0.0622 Inf   0.213  1.0000
 StepF9 - StepF16   0.19592 0.0622 Inf   3.149  0.1366
 StepF9 - StepF17   0.21101 0.0622 Inf   3.392  0.0679
 StepF9 - StepF18   0.47333 0.0622 Inf   7.608  <.0001
 StepF10 - StepF11 -0.04642 0.0622 Inf  -0.746  1.0000
 StepF10 - StepF12  0.13700 0.0622 Inf   2.202  0.7526
 StepF10 - StepF13  0.11393 0.0622 Inf   1.831  0.9354
 StepF10 - StepF14  0.02588 0.0622 Inf   0.416  1.0000
 StepF10 - StepF15  0.04682 0.0622 Inf   0.753  1.0000
 StepF10 - StepF16  0.22945 0.0622 Inf   3.688  0.0255
 StepF10 - StepF17  0.24455 0.0622 Inf   3.931  0.0104
 StepF10 - StepF18  0.50686 0.0622 Inf   8.147  <.0001
 StepF11 - StepF12  0.18343 0.0622 Inf   2.948  0.2259
 StepF11 - StepF13  0.16036 0.0622 Inf   2.578  0.4704
 StepF11 - StepF14  0.07230 0.0622 Inf   1.162  0.9996
 StepF11 - StepF15  0.09324 0.0622 Inf   1.499  0.9909
 StepF11 - StepF16  0.27588 0.0622 Inf   4.434  0.0013
 StepF11 - StepF17  0.29097 0.0622 Inf   4.677  0.0004
 StepF11 - StepF18  0.55328 0.0622 Inf   8.893  <.0001
 StepF12 - StepF13 -0.02307 0.0622 Inf  -0.371  1.0000
 StepF12 - StepF14 -0.11112 0.0622 Inf  -1.786  0.9480
 StepF12 - StepF15 -0.09019 0.0622 Inf  -1.450  0.9937
 StepF12 - StepF16  0.09245 0.0622 Inf   1.486  0.9917
 StepF12 - StepF17  0.10755 0.0622 Inf   1.729  0.9614
 StepF12 - StepF18  0.36986 0.0622 Inf   5.945  <.0001
 StepF13 - StepF14 -0.08805 0.0622 Inf  -1.415  0.9952
 StepF13 - StepF15 -0.06712 0.0622 Inf  -1.079  0.9998
 StepF13 - StepF16  0.11552 0.0622 Inf   1.857  0.9274
 StepF13 - StepF17  0.13062 0.0622 Inf   2.100  0.8170
 StepF13 - StepF18  0.39293 0.0622 Inf   6.316  <.0001
 StepF14 - StepF15  0.02094 0.0622 Inf   0.337  1.0000
 StepF14 - StepF16  0.20357 0.0622 Inf   3.272  0.0969
 StepF14 - StepF17  0.21867 0.0622 Inf   3.515  0.0459
 StepF14 - StepF18  0.48098 0.0622 Inf   7.731  <.0001
 StepF15 - StepF16  0.18264 0.0622 Inf   2.936  0.2326
 StepF15 - StepF17  0.19773 0.0622 Inf   3.178  0.1262
 StepF15 - StepF18  0.46005 0.0622 Inf   7.395  <.0001
 StepF16 - StepF17  0.01510 0.0622 Inf   0.243  1.0000
 StepF16 - StepF18  0.27741 0.0622 Inf   4.459  0.0011
 StepF17 - StepF18  0.26231 0.0622 Inf   4.216  0.0033

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.21381 0.0622 Inf   3.437  0.0094
 StepF3 - StepF2   -0.06645 0.0622 Inf  -1.068  1.0000
 StepF4 - StepF3   -0.12200 0.0622 Inf  -1.961  0.5986
 StepF5 - StepF4   -0.15189 0.0622 Inf  -2.441  0.1901
 StepF6 - StepF5    0.11596 0.0622 Inf   1.864  0.6856
 StepF7 - StepF6   -0.06138 0.0622 Inf  -0.987  1.0000
 StepF8 - StepF7    0.00766 0.0622 Inf   0.123  1.0000
 StepF9 - StepF8   -0.06618 0.0622 Inf  -1.064  1.0000
 StepF10 - StepF9   0.03354 0.0622 Inf   0.539  1.0000
 StepF11 - StepF10  0.04642 0.0622 Inf   0.746  1.0000
 StepF12 - StepF11 -0.18343 0.0622 Inf  -2.948  0.0479
 StepF13 - StepF12  0.02307 0.0622 Inf   0.371  1.0000
 StepF14 - StepF13  0.08805 0.0622 Inf   1.415  1.0000
 StepF15 - StepF14 -0.02094 0.0622 Inf  -0.337  1.0000
 StepF16 - StepF15 -0.18264 0.0622 Inf  -2.936  0.0479
 StepF17 - StepF16 -0.01510 0.0622 Inf  -0.243  1.0000
 StepF18 - StepF17 -0.26231 0.0622 Inf  -4.216  0.0004

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.21381 0.0622 Inf   3.437  0.0094
 StepF3 - StepF2   -0.06645 0.0622 Inf  -1.068  1.0000
 StepF4 - StepF3   -0.12200 0.0622 Inf  -1.961  0.5986
 StepF5 - StepF4   -0.15189 0.0622 Inf  -2.441  0.1901
 StepF6 - StepF5    0.11596 0.0622 Inf   1.864  0.6856
 StepF7 - StepF6   -0.06138 0.0622 Inf  -0.987  1.0000
 StepF8 - StepF7    0.00766 0.0622 Inf   0.123  1.0000
 StepF9 - StepF8   -0.06618 0.0622 Inf  -1.064  1.0000
 StepF10 - StepF9   0.03354 0.0622 Inf   0.539  1.0000
 StepF11 - StepF10  0.04642 0.0622 Inf   0.746  1.0000
 StepF12 - StepF11 -0.18343 0.0622 Inf  -2.948  0.0479
 StepF13 - StepF12  0.02307 0.0622 Inf   0.371  1.0000
 StepF14 - StepF13  0.08805 0.0622 Inf   1.415  1.0000
 StepF15 - StepF14 -0.02094 0.0622 Inf  -0.337  1.0000
 StepF16 - StepF15 -0.18264 0.0622 Inf  -2.936  0.0479
 StepF17 - StepF16 -0.01510 0.0622 Inf  -0.243  1.0000
 StepF18 - StepF17 -0.26231 0.0622 Inf  -4.216  0.0004

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 
# Block 5
.report_step_test(sw_b5_6,  "5", "6 steps")


==============================
TEST | Block 5 | 6 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)   
StepF    17.8923  5   0.003084 **
Accuracy  0.5532  1   0.457024   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.629 0.0457 Inf     0.540     0.719
 2      0.592 0.0457 Inf     0.502     0.682
 3      0.630 0.0457 Inf     0.540     0.719
 4      0.611 0.0457 Inf     0.521     0.700
 5      0.563 0.0457 Inf     0.473     0.653
 6      0.559 0.0457 Inf     0.470     0.649

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.616 0.0459 Inf     0.526     0.706
 2      0.579 0.0459 Inf     0.489     0.669
 3      0.617 0.0459 Inf     0.527     0.707
 4      0.598 0.0459 Inf     0.508     0.688
 5      0.550 0.0459 Inf     0.460     0.640
 6      0.546 0.0459 Inf     0.456     0.636

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast         estimate     SE  df z.ratio p.value
 StepF1 - StepF2  0.037257 0.0234 Inf   1.591  0.6046
 StepF1 - StepF3 -0.000418 0.0234 Inf  -0.018  1.0000
 StepF1 - StepF4  0.018617 0.0234 Inf   0.795  0.9685
 StepF1 - StepF5  0.066239 0.0234 Inf   2.829  0.0530
 StepF1 - StepF6  0.070104 0.0234 Inf   2.994  0.0329
 StepF2 - StepF3 -0.037674 0.0234 Inf  -1.609  0.5927
 StepF2 - StepF4 -0.018639 0.0234 Inf  -0.796  0.9683
 StepF2 - StepF5  0.028983 0.0234 Inf   1.238  0.8184
 StepF2 - StepF6  0.032848 0.0234 Inf   1.403  0.7255
 StepF3 - StepF4  0.019035 0.0234 Inf   0.813  0.9653
 StepF3 - StepF5  0.066657 0.0234 Inf   2.846  0.0505
 StepF3 - StepF6  0.070522 0.0234 Inf   3.012  0.0312
 StepF4 - StepF5  0.047622 0.0234 Inf   2.034  0.3231
 StepF4 - StepF6  0.051487 0.0234 Inf   2.199  0.2382
 StepF5 - StepF6  0.003865 0.0234 Inf   0.165  1.0000

Accuracy = 1:
 contrast         estimate     SE  df z.ratio p.value
 StepF1 - StepF2  0.037257 0.0234 Inf   1.591  0.6046
 StepF1 - StepF3 -0.000418 0.0234 Inf  -0.018  1.0000
 StepF1 - StepF4  0.018617 0.0234 Inf   0.795  0.9685
 StepF1 - StepF5  0.066239 0.0234 Inf   2.829  0.0530
 StepF1 - StepF6  0.070104 0.0234 Inf   2.994  0.0329
 StepF2 - StepF3 -0.037674 0.0234 Inf  -1.609  0.5927
 StepF2 - StepF4 -0.018639 0.0234 Inf  -0.796  0.9683
 StepF2 - StepF5  0.028983 0.0234 Inf   1.238  0.8184
 StepF2 - StepF6  0.032848 0.0234 Inf   1.403  0.7255
 StepF3 - StepF4  0.019035 0.0234 Inf   0.813  0.9653
 StepF3 - StepF5  0.066657 0.0234 Inf   2.846  0.0505
 StepF3 - StepF6  0.070522 0.0234 Inf   3.012  0.0312
 StepF4 - StepF5  0.047622 0.0234 Inf   2.034  0.3231
 StepF4 - StepF6  0.051487 0.0234 Inf   2.199  0.2382
 StepF5 - StepF6  0.003865 0.0234 Inf   0.165  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1 -0.03726 0.0234 Inf  -1.591  0.4306
 StepF3 - StepF2  0.03767 0.0234 Inf   1.609  0.4306
 StepF4 - StepF3 -0.01904 0.0234 Inf  -0.813  0.8326
 StepF5 - StepF4 -0.04762 0.0234 Inf  -2.034  0.2100
 StepF6 - StepF5 -0.00386 0.0234 Inf  -0.165  0.8689

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1 -0.03726 0.0234 Inf  -1.591  0.4306
 StepF3 - StepF2  0.03767 0.0234 Inf   1.609  0.4306
 StepF4 - StepF3 -0.01904 0.0234 Inf  -0.813  0.8326
 StepF5 - StepF4 -0.04762 0.0234 Inf  -2.034  0.2100
 StepF6 - StepF5 -0.00386 0.0234 Inf  -0.165  0.8689

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST | Block 5 | 6 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    52.4900  5   4.28e-10 ***
Accuracy  0.8166  1     0.3662    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.632 0.0569 Inf     0.521     0.744
 2      0.741 0.0569 Inf     0.629     0.853
 3      0.646 0.0569 Inf     0.534     0.757
 4      0.672 0.0569 Inf     0.560     0.783
 5      0.589 0.0569 Inf     0.478     0.701
 6      0.589 0.0569 Inf     0.477     0.700

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.616 0.0571 Inf     0.504     0.728
 2      0.724 0.0571 Inf     0.613     0.836
 3      0.629 0.0571 Inf     0.517     0.741
 4      0.655 0.0571 Inf     0.543     0.767
 5      0.573 0.0571 Inf     0.461     0.685
 6      0.572 0.0571 Inf     0.460     0.684

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast         estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.108740 0.0249 Inf  -4.360  0.0002
 StepF1 - StepF3 -0.013450 0.0249 Inf  -0.539  0.9946
 StepF1 - StepF4 -0.039309 0.0249 Inf  -1.576  0.6143
 StepF1 - StepF5  0.042802 0.0249 Inf   1.716  0.5208
 StepF1 - StepF6  0.043406 0.0249 Inf   1.741  0.5047
 StepF2 - StepF3  0.095291 0.0249 Inf   3.821  0.0018
 StepF2 - StepF4  0.069432 0.0249 Inf   2.784  0.0600
 StepF2 - StepF5  0.151543 0.0249 Inf   6.077  <.0001
 StepF2 - StepF6  0.152147 0.0249 Inf   6.101  <.0001
 StepF3 - StepF4 -0.025859 0.0249 Inf  -1.037  0.9056
 StepF3 - StepF5  0.056252 0.0249 Inf   2.256  0.2125
 StepF3 - StepF6  0.056856 0.0249 Inf   2.280  0.2022
 StepF4 - StepF5  0.082111 0.0249 Inf   3.293  0.0127
 StepF4 - StepF6  0.082715 0.0249 Inf   3.317  0.0117
 StepF5 - StepF6  0.000604 0.0249 Inf   0.024  1.0000

Accuracy = 1:
 contrast         estimate     SE  df z.ratio p.value
 StepF1 - StepF2 -0.108740 0.0249 Inf  -4.360  0.0002
 StepF1 - StepF3 -0.013450 0.0249 Inf  -0.539  0.9946
 StepF1 - StepF4 -0.039309 0.0249 Inf  -1.576  0.6143
 StepF1 - StepF5  0.042802 0.0249 Inf   1.716  0.5208
 StepF1 - StepF6  0.043406 0.0249 Inf   1.741  0.5047
 StepF2 - StepF3  0.095291 0.0249 Inf   3.821  0.0018
 StepF2 - StepF4  0.069432 0.0249 Inf   2.784  0.0600
 StepF2 - StepF5  0.151543 0.0249 Inf   6.077  <.0001
 StepF2 - StepF6  0.152147 0.0249 Inf   6.101  <.0001
 StepF3 - StepF4 -0.025859 0.0249 Inf  -1.037  0.9056
 StepF3 - StepF5  0.056252 0.0249 Inf   2.256  0.2125
 StepF3 - StepF6  0.056856 0.0249 Inf   2.280  0.2022
 StepF4 - StepF5  0.082111 0.0249 Inf   3.293  0.0127
 StepF4 - StepF6  0.082715 0.0249 Inf   3.317  0.0117
 StepF5 - StepF6  0.000604 0.0249 Inf   0.024  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast         estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.108740 0.0249 Inf   4.360  0.0001
 StepF3 - StepF2 -0.095291 0.0249 Inf  -3.821  0.0005
 StepF4 - StepF3  0.025859 0.0249 Inf   1.037  0.5995
 StepF5 - StepF4 -0.082111 0.0249 Inf  -3.293  0.0030
 StepF6 - StepF5 -0.000604 0.0249 Inf  -0.024  0.9807

Accuracy = 1:
 contrast         estimate     SE  df z.ratio p.value
 StepF2 - StepF1  0.108740 0.0249 Inf   4.360  0.0001
 StepF3 - StepF2 -0.095291 0.0249 Inf  -3.821  0.0005
 StepF4 - StepF3  0.025859 0.0249 Inf   1.037  0.5995
 StepF5 - StepF4 -0.082111 0.0249 Inf  -3.293  0.0030
 StepF6 - StepF5 -0.000604 0.0249 Inf  -0.024  0.9807

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 


==============================
TEST | Block 5 | 6 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    46.8370  5  6.133e-09 ***
Accuracy  0.8531  1     0.3557    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.26 0.121 Inf     1.018      1.49
 2       1.46 0.121 Inf     1.223      1.70
 3       1.41 0.121 Inf     1.172      1.65
 4       1.35 0.121 Inf     1.113      1.59
 5       1.24 0.121 Inf     0.998      1.47
 6       1.19 0.121 Inf     0.948      1.42

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.22 0.122 Inf     0.982      1.46
 2       1.43 0.122 Inf     1.188      1.66
 3       1.37 0.122 Inf     1.136      1.61
 4       1.32 0.122 Inf     1.077      1.55
 5       1.20 0.122 Inf     0.962      1.44
 6       1.15 0.122 Inf     0.913      1.39

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2055 0.0498 Inf  -4.129  0.0005
 StepF1 - StepF3  -0.1536 0.0498 Inf  -3.086  0.0248
 StepF1 - StepF4  -0.0948 0.0498 Inf  -1.906  0.3986
 StepF1 - StepF5   0.0205 0.0498 Inf   0.411  0.9985
 StepF1 - StepF6   0.0695 0.0498 Inf   1.397  0.7286
 StepF2 - StepF3   0.0519 0.0498 Inf   1.043  0.9032
 StepF2 - StepF4   0.1107 0.0498 Inf   2.224  0.2266
 StepF2 - StepF5   0.2259 0.0498 Inf   4.541  0.0001
 StepF2 - StepF6   0.2750 0.0498 Inf   5.527  <.0001
 StepF3 - StepF4   0.0587 0.0498 Inf   1.180  0.8464
 StepF3 - StepF5   0.1740 0.0498 Inf   3.497  0.0063
 StepF3 - StepF6   0.2231 0.0498 Inf   4.484  0.0001
 StepF4 - StepF5   0.1153 0.0498 Inf   2.317  0.1870
 StepF4 - StepF6   0.1644 0.0498 Inf   3.303  0.0123
 StepF5 - StepF6   0.0491 0.0498 Inf   0.986  0.9225

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF1 - StepF2  -0.2055 0.0498 Inf  -4.129  0.0005
 StepF1 - StepF3  -0.1536 0.0498 Inf  -3.086  0.0248
 StepF1 - StepF4  -0.0948 0.0498 Inf  -1.906  0.3986
 StepF1 - StepF5   0.0205 0.0498 Inf   0.411  0.9985
 StepF1 - StepF6   0.0695 0.0498 Inf   1.397  0.7286
 StepF2 - StepF3   0.0519 0.0498 Inf   1.043  0.9032
 StepF2 - StepF4   0.1107 0.0498 Inf   2.224  0.2266
 StepF2 - StepF5   0.2259 0.0498 Inf   4.541  0.0001
 StepF2 - StepF6   0.2750 0.0498 Inf   5.527  <.0001
 StepF3 - StepF4   0.0587 0.0498 Inf   1.180  0.8464
 StepF3 - StepF5   0.1740 0.0498 Inf   3.497  0.0063
 StepF3 - StepF6   0.2231 0.0498 Inf   4.484  0.0001
 StepF4 - StepF5   0.1153 0.0498 Inf   2.317  0.1870
 StepF4 - StepF6   0.1644 0.0498 Inf   3.303  0.0123
 StepF5 - StepF6   0.0491 0.0498 Inf   0.986  0.9225

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 6 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2055 0.0498 Inf   4.129  0.0002
 StepF3 - StepF2  -0.0519 0.0498 Inf  -1.043  0.7135
 StepF4 - StepF3  -0.0587 0.0498 Inf  -1.180  0.7135
 StepF5 - StepF4  -0.1153 0.0498 Inf  -2.317  0.0820
 StepF6 - StepF5  -0.0491 0.0498 Inf  -0.986  0.7135

Accuracy = 1:
 contrast        estimate     SE  df z.ratio p.value
 StepF2 - StepF1   0.2055 0.0498 Inf   4.129  0.0002
 StepF3 - StepF2  -0.0519 0.0498 Inf  -1.043  0.7135
 StepF4 - StepF3  -0.0587 0.0498 Inf  -1.180  0.7135
 StepF5 - StepF4  -0.1153 0.0498 Inf  -2.317  0.0820
 StepF6 - StepF5  -0.0491 0.0498 Inf  -0.986  0.7135

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 5 tests 
.report_step_test(sw_b5_12, "5", "12 steps")


==============================
TEST | Block 5 | 12 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    84.4825 11  1.993e-13 ***
Accuracy  0.6423  1     0.4229    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.647 0.0514 Inf     0.546     0.748
 2      0.633 0.0514 Inf     0.532     0.734
 3      0.685 0.0514 Inf     0.585     0.786
 4      0.581 0.0514 Inf     0.480     0.681
 5      0.573 0.0514 Inf     0.473     0.674
 6      0.602 0.0514 Inf     0.501     0.703
 7      0.605 0.0514 Inf     0.504     0.706
 8      0.585 0.0514 Inf     0.484     0.685
 9      0.512 0.0514 Inf     0.411     0.613
 10     0.575 0.0514 Inf     0.474     0.675
 11     0.616 0.0514 Inf     0.515     0.717
 12     0.535 0.0514 Inf     0.434     0.636

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.635 0.0516 Inf     0.534     0.737
 2      0.622 0.0516 Inf     0.520     0.723
 3      0.674 0.0516 Inf     0.573     0.775
 4      0.569 0.0516 Inf     0.468     0.671
 5      0.562 0.0516 Inf     0.461     0.663
 6      0.591 0.0516 Inf     0.489     0.692
 7      0.594 0.0516 Inf     0.493     0.695
 8      0.573 0.0516 Inf     0.472     0.674
 9      0.501 0.0516 Inf     0.400     0.602
 10     0.563 0.0516 Inf     0.462     0.665
 11     0.605 0.0516 Inf     0.504     0.706
 12     0.524 0.0516 Inf     0.423     0.625

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.01389 0.0241 Inf   0.576  1.0000
 StepF1 - StepF3   -0.03861 0.0241 Inf  -1.603  0.9087
 StepF1 - StepF4    0.06607 0.0241 Inf   2.742  0.2055
 StepF1 - StepF5    0.07326 0.0241 Inf   3.040  0.0971
 StepF1 - StepF6    0.04483 0.0241 Inf   1.861  0.7838
 StepF1 - StepF7    0.04161 0.0241 Inf   1.727  0.8562
 StepF1 - StepF8    0.06216 0.0241 Inf   2.580  0.2912
 StepF1 - StepF9    0.13466 0.0241 Inf   5.589  <.0001
 StepF1 - StepF10   0.07206 0.0241 Inf   2.991  0.1111
 StepF1 - StepF11   0.03056 0.0241 Inf   1.268  0.9830
 StepF1 - StepF12   0.11166 0.0241 Inf   4.634  0.0002
 StepF2 - StepF3   -0.05250 0.0241 Inf  -2.179  0.5651
 StepF2 - StepF4    0.05219 0.0241 Inf   2.166  0.5746
 StepF2 - StepF5    0.05937 0.0241 Inf   2.464  0.3629
 StepF2 - StepF6    0.03094 0.0241 Inf   1.284  0.9812
 StepF2 - StepF7    0.02772 0.0241 Inf   1.150  0.9923
 StepF2 - StepF8    0.04827 0.0241 Inf   2.003  0.6914
 StepF2 - StepF9    0.12078 0.0241 Inf   5.013  <.0001
 StepF2 - StepF10   0.05817 0.0241 Inf   2.414  0.3960
 StepF2 - StepF11   0.01667 0.0241 Inf   0.692  0.9999
 StepF2 - StepF12   0.09778 0.0241 Inf   4.058  0.0029
 StepF3 - StepF4    0.10469 0.0241 Inf   4.345  0.0009
 StepF3 - StepF5    0.11187 0.0241 Inf   4.643  0.0002
 StepF3 - StepF6    0.08344 0.0241 Inf   3.463  0.0267
 StepF3 - StepF7    0.08022 0.0241 Inf   3.329  0.0413
 StepF3 - StepF8    0.10077 0.0241 Inf   4.182  0.0017
 StepF3 - StepF9    0.17328 0.0241 Inf   7.192  <.0001
 StepF3 - StepF10   0.11067 0.0241 Inf   4.593  0.0003
 StepF3 - StepF11   0.06917 0.0241 Inf   2.871  0.1513
 StepF3 - StepF12   0.15028 0.0241 Inf   6.237  <.0001
 StepF4 - StepF5    0.00718 0.0241 Inf   0.298  1.0000
 StepF4 - StepF6   -0.02125 0.0241 Inf  -0.882  0.9993
 StepF4 - StepF7   -0.02447 0.0241 Inf  -1.016  0.9974
 StepF4 - StepF8   -0.00392 0.0241 Inf  -0.163  1.0000
 StepF4 - StepF9    0.06859 0.0241 Inf   2.847  0.1606
 StepF4 - StepF10   0.00599 0.0241 Inf   0.248  1.0000
 StepF4 - StepF11  -0.03551 0.0241 Inf  -1.474  0.9478
 StepF4 - StepF12   0.04559 0.0241 Inf   1.892  0.7646
 StepF5 - StepF6   -0.02843 0.0241 Inf  -1.180  0.9905
 StepF5 - StepF7   -0.03165 0.0241 Inf  -1.314  0.9776
 StepF5 - StepF8   -0.01110 0.0241 Inf  -0.461  1.0000
 StepF5 - StepF9    0.06141 0.0241 Inf   2.549  0.3096
 StepF5 - StepF10  -0.00119 0.0241 Inf  -0.050  1.0000
 StepF5 - StepF11  -0.04270 0.0241 Inf  -1.772  0.8335
 StepF5 - StepF12   0.03841 0.0241 Inf   1.594  0.9117
 StepF6 - StepF7   -0.00322 0.0241 Inf  -0.134  1.0000
 StepF6 - StepF8    0.01733 0.0241 Inf   0.719  0.9999
 StepF6 - StepF9    0.08984 0.0241 Inf   3.728  0.0105
 StepF6 - StepF10   0.02723 0.0241 Inf   1.130  0.9934
 StepF6 - StepF11  -0.01427 0.0241 Inf  -0.592  1.0000
 StepF6 - StepF12   0.06683 0.0241 Inf   2.774  0.1912
 StepF7 - StepF8    0.02055 0.0241 Inf   0.853  0.9995
 StepF7 - StepF9    0.09306 0.0241 Inf   3.862  0.0063
 StepF7 - StepF10   0.03045 0.0241 Inf   1.264  0.9834
 StepF7 - StepF11  -0.01105 0.0241 Inf  -0.458  1.0000
 StepF7 - StepF12   0.07006 0.0241 Inf   2.908  0.1380
 StepF8 - StepF9    0.07251 0.0241 Inf   3.009  0.1057
 StepF8 - StepF10   0.00991 0.0241 Inf   0.411  1.0000
 StepF8 - StepF11  -0.03159 0.0241 Inf  -1.311  0.9779
 StepF8 - StepF12   0.04951 0.0241 Inf   2.055  0.6554
 StepF9 - StepF10  -0.06260 0.0241 Inf  -2.598  0.2804
 StepF9 - StepF11  -0.10410 0.0241 Inf  -4.321  0.0009
 StepF9 - StepF12  -0.02300 0.0241 Inf  -0.955  0.9985
 StepF10 - StepF11 -0.04150 0.0241 Inf  -1.722  0.8583
 StepF10 - StepF12  0.03960 0.0241 Inf   1.644  0.8929
 StepF11 - StepF12  0.08110 0.0241 Inf   3.366  0.0367

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.01389 0.0241 Inf   0.576  1.0000
 StepF1 - StepF3   -0.03861 0.0241 Inf  -1.603  0.9087
 StepF1 - StepF4    0.06607 0.0241 Inf   2.742  0.2055
 StepF1 - StepF5    0.07326 0.0241 Inf   3.040  0.0971
 StepF1 - StepF6    0.04483 0.0241 Inf   1.861  0.7838
 StepF1 - StepF7    0.04161 0.0241 Inf   1.727  0.8562
 StepF1 - StepF8    0.06216 0.0241 Inf   2.580  0.2912
 StepF1 - StepF9    0.13466 0.0241 Inf   5.589  <.0001
 StepF1 - StepF10   0.07206 0.0241 Inf   2.991  0.1111
 StepF1 - StepF11   0.03056 0.0241 Inf   1.268  0.9830
 StepF1 - StepF12   0.11166 0.0241 Inf   4.634  0.0002
 StepF2 - StepF3   -0.05250 0.0241 Inf  -2.179  0.5651
 StepF2 - StepF4    0.05219 0.0241 Inf   2.166  0.5746
 StepF2 - StepF5    0.05937 0.0241 Inf   2.464  0.3629
 StepF2 - StepF6    0.03094 0.0241 Inf   1.284  0.9812
 StepF2 - StepF7    0.02772 0.0241 Inf   1.150  0.9923
 StepF2 - StepF8    0.04827 0.0241 Inf   2.003  0.6914
 StepF2 - StepF9    0.12078 0.0241 Inf   5.013  <.0001
 StepF2 - StepF10   0.05817 0.0241 Inf   2.414  0.3960
 StepF2 - StepF11   0.01667 0.0241 Inf   0.692  0.9999
 StepF2 - StepF12   0.09778 0.0241 Inf   4.058  0.0029
 StepF3 - StepF4    0.10469 0.0241 Inf   4.345  0.0009
 StepF3 - StepF5    0.11187 0.0241 Inf   4.643  0.0002
 StepF3 - StepF6    0.08344 0.0241 Inf   3.463  0.0267
 StepF3 - StepF7    0.08022 0.0241 Inf   3.329  0.0413
 StepF3 - StepF8    0.10077 0.0241 Inf   4.182  0.0017
 StepF3 - StepF9    0.17328 0.0241 Inf   7.192  <.0001
 StepF3 - StepF10   0.11067 0.0241 Inf   4.593  0.0003
 StepF3 - StepF11   0.06917 0.0241 Inf   2.871  0.1513
 StepF3 - StepF12   0.15028 0.0241 Inf   6.237  <.0001
 StepF4 - StepF5    0.00718 0.0241 Inf   0.298  1.0000
 StepF4 - StepF6   -0.02125 0.0241 Inf  -0.882  0.9993
 StepF4 - StepF7   -0.02447 0.0241 Inf  -1.016  0.9974
 StepF4 - StepF8   -0.00392 0.0241 Inf  -0.163  1.0000
 StepF4 - StepF9    0.06859 0.0241 Inf   2.847  0.1606
 StepF4 - StepF10   0.00599 0.0241 Inf   0.248  1.0000
 StepF4 - StepF11  -0.03551 0.0241 Inf  -1.474  0.9478
 StepF4 - StepF12   0.04559 0.0241 Inf   1.892  0.7646
 StepF5 - StepF6   -0.02843 0.0241 Inf  -1.180  0.9905
 StepF5 - StepF7   -0.03165 0.0241 Inf  -1.314  0.9776
 StepF5 - StepF8   -0.01110 0.0241 Inf  -0.461  1.0000
 StepF5 - StepF9    0.06141 0.0241 Inf   2.549  0.3096
 StepF5 - StepF10  -0.00119 0.0241 Inf  -0.050  1.0000
 StepF5 - StepF11  -0.04270 0.0241 Inf  -1.772  0.8335
 StepF5 - StepF12   0.03841 0.0241 Inf   1.594  0.9117
 StepF6 - StepF7   -0.00322 0.0241 Inf  -0.134  1.0000
 StepF6 - StepF8    0.01733 0.0241 Inf   0.719  0.9999
 StepF6 - StepF9    0.08984 0.0241 Inf   3.728  0.0105
 StepF6 - StepF10   0.02723 0.0241 Inf   1.130  0.9934
 StepF6 - StepF11  -0.01427 0.0241 Inf  -0.592  1.0000
 StepF6 - StepF12   0.06683 0.0241 Inf   2.774  0.1912
 StepF7 - StepF8    0.02055 0.0241 Inf   0.853  0.9995
 StepF7 - StepF9    0.09306 0.0241 Inf   3.862  0.0063
 StepF7 - StepF10   0.03045 0.0241 Inf   1.264  0.9834
 StepF7 - StepF11  -0.01105 0.0241 Inf  -0.458  1.0000
 StepF7 - StepF12   0.07006 0.0241 Inf   2.908  0.1380
 StepF8 - StepF9    0.07251 0.0241 Inf   3.009  0.1057
 StepF8 - StepF10   0.00991 0.0241 Inf   0.411  1.0000
 StepF8 - StepF11  -0.03159 0.0241 Inf  -1.311  0.9779
 StepF8 - StepF12   0.04951 0.0241 Inf   2.055  0.6554
 StepF9 - StepF10  -0.06260 0.0241 Inf  -2.598  0.2804
 StepF9 - StepF11  -0.10410 0.0241 Inf  -4.321  0.0009
 StepF9 - StepF12  -0.02300 0.0241 Inf  -0.955  0.9985
 StepF10 - StepF11 -0.04150 0.0241 Inf  -1.722  0.8583
 StepF10 - StepF12  0.03960 0.0241 Inf   1.644  0.8929
 StepF11 - StepF12  0.08110 0.0241 Inf   3.366  0.0367

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.01389 0.0241 Inf  -0.576  1.0000
 StepF3 - StepF2    0.05250 0.0241 Inf   2.179  0.2054
 StepF4 - StepF3   -0.10469 0.0241 Inf  -4.345  0.0002
 StepF5 - StepF4   -0.00718 0.0241 Inf  -0.298  1.0000
 StepF6 - StepF5    0.02843 0.0241 Inf   1.180  1.0000
 StepF7 - StepF6    0.00322 0.0241 Inf   0.134  1.0000
 StepF8 - StepF7   -0.02055 0.0241 Inf  -0.853  1.0000
 StepF9 - StepF8   -0.07251 0.0241 Inf  -3.009  0.0236
 StepF10 - StepF9   0.06260 0.0241 Inf   2.598  0.0750
 StepF11 - StepF10  0.04150 0.0241 Inf   1.722  0.5100
 StepF12 - StepF11 -0.08110 0.0241 Inf  -3.366  0.0076

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.01389 0.0241 Inf  -0.576  1.0000
 StepF3 - StepF2    0.05250 0.0241 Inf   2.179  0.2054
 StepF4 - StepF3   -0.10469 0.0241 Inf  -4.345  0.0002
 StepF5 - StepF4   -0.00718 0.0241 Inf  -0.298  1.0000
 StepF6 - StepF5    0.02843 0.0241 Inf   1.180  1.0000
 StepF7 - StepF6    0.00322 0.0241 Inf   0.134  1.0000
 StepF8 - StepF7   -0.02055 0.0241 Inf  -0.853  1.0000
 StepF9 - StepF8   -0.07251 0.0241 Inf  -3.009  0.0236
 StepF10 - StepF9   0.06260 0.0241 Inf   2.598  0.0750
 StepF11 - StepF10  0.04150 0.0241 Inf   1.722  0.5100
 StepF12 - StepF11 -0.08110 0.0241 Inf  -3.366  0.0076

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST | Block 5 | 12 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    185.541 11     <2e-16 ***
Accuracy   2.564  1     0.1093    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.620 0.0594 Inf     0.504     0.737
 2      0.789 0.0594 Inf     0.672     0.905
 3      0.685 0.0594 Inf     0.568     0.801
 4      0.683 0.0594 Inf     0.567     0.800
 5      0.604 0.0594 Inf     0.488     0.721
 6      0.522 0.0594 Inf     0.406     0.639
 7      0.601 0.0594 Inf     0.485     0.718
 8      0.632 0.0594 Inf     0.515     0.748
 9      0.551 0.0594 Inf     0.434     0.667
 10     0.644 0.0594 Inf     0.527     0.760
 11     0.619 0.0594 Inf     0.502     0.735
 12     0.549 0.0594 Inf     0.432     0.665

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.598 0.0596 Inf     0.481     0.714
 2      0.766 0.0596 Inf     0.649     0.883
 3      0.662 0.0596 Inf     0.545     0.779
 4      0.660 0.0596 Inf     0.544     0.777
 5      0.581 0.0596 Inf     0.465     0.698
 6      0.500 0.0596 Inf     0.383     0.616
 7      0.578 0.0596 Inf     0.462     0.695
 8      0.609 0.0596 Inf     0.492     0.726
 9      0.528 0.0596 Inf     0.411     0.645
 10     0.621 0.0596 Inf     0.504     0.738
 11     0.596 0.0596 Inf     0.479     0.713
 12     0.526 0.0596 Inf     0.409     0.643

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.16822 0.0248 Inf  -6.786  <.0001
 StepF1 - StepF3   -0.06454 0.0248 Inf  -2.603  0.2775
 StepF1 - StepF4   -0.06290 0.0248 Inf  -2.537  0.3165
 StepF1 - StepF5    0.01615 0.0248 Inf   0.652  1.0000
 StepF1 - StepF6    0.09793 0.0248 Inf   3.950  0.0045
 StepF1 - StepF7    0.01918 0.0248 Inf   0.774  0.9998
 StepF1 - StepF8   -0.01137 0.0248 Inf  -0.458  1.0000
 StepF1 - StepF9    0.06967 0.0248 Inf   2.810  0.1755
 StepF1 - StepF10  -0.02338 0.0248 Inf  -0.943  0.9987
 StepF1 - StepF11   0.00173 0.0248 Inf   0.070  1.0000
 StepF1 - StepF12   0.07136 0.0248 Inf   2.878  0.1486
 StepF2 - StepF3    0.10368 0.0248 Inf   4.182  0.0017
 StepF2 - StepF4    0.10532 0.0248 Inf   4.248  0.0013
 StepF2 - StepF5    0.18438 0.0248 Inf   7.437  <.0001
 StepF2 - StepF6    0.26615 0.0248 Inf  10.736  <.0001
 StepF2 - StepF7    0.18740 0.0248 Inf   7.559  <.0001
 StepF2 - StepF8    0.15686 0.0248 Inf   6.327  <.0001
 StepF2 - StepF9    0.23789 0.0248 Inf   9.596  <.0001
 StepF2 - StepF10   0.14485 0.0248 Inf   5.843  <.0001
 StepF2 - StepF11   0.16995 0.0248 Inf   6.855  <.0001
 StepF2 - StepF12   0.23958 0.0248 Inf   9.664  <.0001
 StepF3 - StepF4    0.00164 0.0248 Inf   0.066  1.0000
 StepF3 - StepF5    0.08069 0.0248 Inf   3.255  0.0520
 StepF3 - StepF6    0.16247 0.0248 Inf   6.554  <.0001
 StepF3 - StepF7    0.08372 0.0248 Inf   3.377  0.0354
 StepF3 - StepF8    0.05318 0.0248 Inf   2.145  0.5900
 StepF3 - StepF9    0.13421 0.0248 Inf   5.414  <.0001
 StepF3 - StepF10   0.04117 0.0248 Inf   1.661  0.8860
 StepF3 - StepF11   0.06627 0.0248 Inf   2.673  0.2396
 StepF3 - StepF12   0.13590 0.0248 Inf   5.482  <.0001
 StepF4 - StepF5    0.07905 0.0248 Inf   3.189  0.0636
 StepF4 - StepF6    0.16083 0.0248 Inf   6.487  <.0001
 StepF4 - StepF7    0.08208 0.0248 Inf   3.311  0.0438
 StepF4 - StepF8    0.05153 0.0248 Inf   2.079  0.6382
 StepF4 - StepF9    0.13257 0.0248 Inf   5.347  <.0001
 StepF4 - StepF10   0.03952 0.0248 Inf   1.594  0.9116
 StepF4 - StepF11   0.06463 0.0248 Inf   2.607  0.2755
 StepF4 - StepF12   0.13426 0.0248 Inf   5.415  <.0001
 StepF5 - StepF6    0.08178 0.0248 Inf   3.299  0.0455
 StepF5 - StepF7    0.00302 0.0248 Inf   0.122  1.0000
 StepF5 - StepF8   -0.02752 0.0248 Inf  -1.110  0.9943
 StepF5 - StepF9    0.05351 0.0248 Inf   2.159  0.5801
 StepF5 - StepF10  -0.03953 0.0248 Inf  -1.594  0.9116
 StepF5 - StepF11  -0.01442 0.0248 Inf  -0.582  1.0000
 StepF5 - StepF12   0.05520 0.0248 Inf   2.227  0.5299
 StepF6 - StepF7   -0.07875 0.0248 Inf  -3.177  0.0659
 StepF6 - StepF8   -0.10930 0.0248 Inf  -4.409  0.0006
 StepF6 - StepF9   -0.02826 0.0248 Inf  -1.140  0.9929
 StepF6 - StepF10  -0.12131 0.0248 Inf  -4.893  0.0001
 StepF6 - StepF11  -0.09620 0.0248 Inf  -3.880  0.0059
 StepF6 - StepF12  -0.02657 0.0248 Inf  -1.072  0.9958
 StepF7 - StepF8   -0.03054 0.0248 Inf  -1.232  0.9865
 StepF7 - StepF9    0.05049 0.0248 Inf   2.037  0.6682
 StepF7 - StepF10  -0.04255 0.0248 Inf  -1.716  0.8611
 StepF7 - StepF11  -0.01745 0.0248 Inf  -0.704  0.9999
 StepF7 - StepF12   0.05218 0.0248 Inf   2.105  0.6193
 StepF8 - StepF9    0.08103 0.0248 Inf   3.269  0.0499
 StepF8 - StepF10  -0.01201 0.0248 Inf  -0.484  1.0000
 StepF8 - StepF11   0.01309 0.0248 Inf   0.528  1.0000
 StepF8 - StepF12   0.08272 0.0248 Inf   3.337  0.0403
 StepF9 - StepF10  -0.09304 0.0248 Inf  -3.753  0.0096
 StepF9 - StepF11  -0.06794 0.0248 Inf  -2.740  0.2064
 StepF9 - StepF12   0.00169 0.0248 Inf   0.068  1.0000
 StepF10 - StepF11  0.02510 0.0248 Inf   1.013  0.9975
 StepF10 - StepF12  0.09473 0.0248 Inf   3.821  0.0074
 StepF11 - StepF12  0.06963 0.0248 Inf   2.809  0.1761

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.16822 0.0248 Inf  -6.786  <.0001
 StepF1 - StepF3   -0.06454 0.0248 Inf  -2.603  0.2775
 StepF1 - StepF4   -0.06290 0.0248 Inf  -2.537  0.3165
 StepF1 - StepF5    0.01615 0.0248 Inf   0.652  1.0000
 StepF1 - StepF6    0.09793 0.0248 Inf   3.950  0.0045
 StepF1 - StepF7    0.01918 0.0248 Inf   0.774  0.9998
 StepF1 - StepF8   -0.01137 0.0248 Inf  -0.458  1.0000
 StepF1 - StepF9    0.06967 0.0248 Inf   2.810  0.1755
 StepF1 - StepF10  -0.02338 0.0248 Inf  -0.943  0.9987
 StepF1 - StepF11   0.00173 0.0248 Inf   0.070  1.0000
 StepF1 - StepF12   0.07136 0.0248 Inf   2.878  0.1486
 StepF2 - StepF3    0.10368 0.0248 Inf   4.182  0.0017
 StepF2 - StepF4    0.10532 0.0248 Inf   4.248  0.0013
 StepF2 - StepF5    0.18438 0.0248 Inf   7.437  <.0001
 StepF2 - StepF6    0.26615 0.0248 Inf  10.736  <.0001
 StepF2 - StepF7    0.18740 0.0248 Inf   7.559  <.0001
 StepF2 - StepF8    0.15686 0.0248 Inf   6.327  <.0001
 StepF2 - StepF9    0.23789 0.0248 Inf   9.596  <.0001
 StepF2 - StepF10   0.14485 0.0248 Inf   5.843  <.0001
 StepF2 - StepF11   0.16995 0.0248 Inf   6.855  <.0001
 StepF2 - StepF12   0.23958 0.0248 Inf   9.664  <.0001
 StepF3 - StepF4    0.00164 0.0248 Inf   0.066  1.0000
 StepF3 - StepF5    0.08069 0.0248 Inf   3.255  0.0520
 StepF3 - StepF6    0.16247 0.0248 Inf   6.554  <.0001
 StepF3 - StepF7    0.08372 0.0248 Inf   3.377  0.0354
 StepF3 - StepF8    0.05318 0.0248 Inf   2.145  0.5900
 StepF3 - StepF9    0.13421 0.0248 Inf   5.414  <.0001
 StepF3 - StepF10   0.04117 0.0248 Inf   1.661  0.8860
 StepF3 - StepF11   0.06627 0.0248 Inf   2.673  0.2396
 StepF3 - StepF12   0.13590 0.0248 Inf   5.482  <.0001
 StepF4 - StepF5    0.07905 0.0248 Inf   3.189  0.0636
 StepF4 - StepF6    0.16083 0.0248 Inf   6.487  <.0001
 StepF4 - StepF7    0.08208 0.0248 Inf   3.311  0.0438
 StepF4 - StepF8    0.05153 0.0248 Inf   2.079  0.6382
 StepF4 - StepF9    0.13257 0.0248 Inf   5.347  <.0001
 StepF4 - StepF10   0.03952 0.0248 Inf   1.594  0.9116
 StepF4 - StepF11   0.06463 0.0248 Inf   2.607  0.2755
 StepF4 - StepF12   0.13426 0.0248 Inf   5.415  <.0001
 StepF5 - StepF6    0.08178 0.0248 Inf   3.299  0.0455
 StepF5 - StepF7    0.00302 0.0248 Inf   0.122  1.0000
 StepF5 - StepF8   -0.02752 0.0248 Inf  -1.110  0.9943
 StepF5 - StepF9    0.05351 0.0248 Inf   2.159  0.5801
 StepF5 - StepF10  -0.03953 0.0248 Inf  -1.594  0.9116
 StepF5 - StepF11  -0.01442 0.0248 Inf  -0.582  1.0000
 StepF5 - StepF12   0.05520 0.0248 Inf   2.227  0.5299
 StepF6 - StepF7   -0.07875 0.0248 Inf  -3.177  0.0659
 StepF6 - StepF8   -0.10930 0.0248 Inf  -4.409  0.0006
 StepF6 - StepF9   -0.02826 0.0248 Inf  -1.140  0.9929
 StepF6 - StepF10  -0.12131 0.0248 Inf  -4.893  0.0001
 StepF6 - StepF11  -0.09620 0.0248 Inf  -3.880  0.0059
 StepF6 - StepF12  -0.02657 0.0248 Inf  -1.072  0.9958
 StepF7 - StepF8   -0.03054 0.0248 Inf  -1.232  0.9865
 StepF7 - StepF9    0.05049 0.0248 Inf   2.037  0.6682
 StepF7 - StepF10  -0.04255 0.0248 Inf  -1.716  0.8611
 StepF7 - StepF11  -0.01745 0.0248 Inf  -0.704  0.9999
 StepF7 - StepF12   0.05218 0.0248 Inf   2.105  0.6193
 StepF8 - StepF9    0.08103 0.0248 Inf   3.269  0.0499
 StepF8 - StepF10  -0.01201 0.0248 Inf  -0.484  1.0000
 StepF8 - StepF11   0.01309 0.0248 Inf   0.528  1.0000
 StepF8 - StepF12   0.08272 0.0248 Inf   3.337  0.0403
 StepF9 - StepF10  -0.09304 0.0248 Inf  -3.753  0.0096
 StepF9 - StepF11  -0.06794 0.0248 Inf  -2.740  0.2064
 StepF9 - StepF12   0.00169 0.0248 Inf   0.068  1.0000
 StepF10 - StepF11  0.02510 0.0248 Inf   1.013  0.9975
 StepF10 - StepF12  0.09473 0.0248 Inf   3.821  0.0074
 StepF11 - StepF12  0.06963 0.0248 Inf   2.809  0.1761

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.16822 0.0248 Inf   6.786  <.0001
 StepF3 - StepF2   -0.10368 0.0248 Inf  -4.182  0.0003
 StepF4 - StepF3   -0.00164 0.0248 Inf  -0.066  0.9472
 StepF5 - StepF4   -0.07905 0.0248 Inf  -3.189  0.0086
 StepF6 - StepF5   -0.08178 0.0248 Inf  -3.299  0.0078
 StepF7 - StepF6    0.07875 0.0248 Inf   3.177  0.0086
 StepF8 - StepF7    0.03054 0.0248 Inf   1.232  0.6539
 StepF9 - StepF8   -0.08103 0.0248 Inf  -3.269  0.0078
 StepF10 - StepF9   0.09304 0.0248 Inf   3.753  0.0016
 StepF11 - StepF10 -0.02510 0.0248 Inf  -1.013  0.6539
 StepF12 - StepF11 -0.06963 0.0248 Inf  -2.809  0.0199

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.16822 0.0248 Inf   6.786  <.0001
 StepF3 - StepF2   -0.10368 0.0248 Inf  -4.182  0.0003
 StepF4 - StepF3   -0.00164 0.0248 Inf  -0.066  0.9472
 StepF5 - StepF4   -0.07905 0.0248 Inf  -3.189  0.0086
 StepF6 - StepF5   -0.08178 0.0248 Inf  -3.299  0.0078
 StepF7 - StepF6    0.07875 0.0248 Inf   3.177  0.0086
 StepF8 - StepF7    0.03054 0.0248 Inf   1.232  0.6539
 StepF9 - StepF8   -0.08103 0.0248 Inf  -3.269  0.0078
 StepF10 - StepF9   0.09304 0.0248 Inf   3.753  0.0016
 StepF11 - StepF10 -0.02510 0.0248 Inf  -1.013  0.6539
 StepF12 - StepF11 -0.06963 0.0248 Inf  -2.809  0.0199

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 


==============================
TEST | Block 5 | 12 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    149.6389 11     <2e-16 ***
Accuracy   0.8579  1     0.3543    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.31 0.137 Inf     1.038      1.57
 2       1.56 0.137 Inf     1.295      1.83
 3       1.40 0.137 Inf     1.128      1.66
 4       1.25 0.137 Inf     0.986      1.52
 5       1.26 0.137 Inf     0.995      1.53
 6       1.24 0.137 Inf     0.967      1.50
 7       1.29 0.137 Inf     1.020      1.56
 8       1.21 0.137 Inf     0.944      1.48
 9       1.18 0.137 Inf     0.911      1.45
 10      1.24 0.137 Inf     0.968      1.50
 11      1.22 0.137 Inf     0.956      1.49
 12      1.13 0.137 Inf     0.859      1.40

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.28 0.137 Inf     1.013      1.55
 2       1.54 0.137 Inf     1.270      1.81
 3       1.37 0.137 Inf     1.103      1.64
 4       1.23 0.137 Inf     0.961      1.50
 5       1.24 0.137 Inf     0.970      1.51
 6       1.21 0.137 Inf     0.942      1.48
 7       1.26 0.137 Inf     0.994      1.53
 8       1.19 0.137 Inf     0.919      1.46
 9       1.15 0.137 Inf     0.886      1.42
 10      1.21 0.137 Inf     0.942      1.48
 11      1.20 0.137 Inf     0.931      1.47
 12      1.10 0.137 Inf     0.834      1.37

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.257079 0.0433 Inf  -5.939  <.0001
 StepF1 - StepF3   -0.090156 0.0433 Inf  -2.083  0.6354
 StepF1 - StepF4    0.052115 0.0433 Inf   1.204  0.9888
 StepF1 - StepF5    0.042898 0.0433 Inf   0.991  0.9979
 StepF1 - StepF6    0.071171 0.0433 Inf   1.644  0.8928
 StepF1 - StepF7    0.018358 0.0433 Inf   0.424  1.0000
 StepF1 - StepF8    0.094084 0.0433 Inf   2.173  0.5692
 StepF1 - StepF9    0.127231 0.0433 Inf   2.939  0.1273
 StepF1 - StepF10   0.070430 0.0433 Inf   1.627  0.8995
 StepF1 - StepF11   0.081979 0.0433 Inf   1.894  0.7635
 StepF1 - StepF12   0.178834 0.0433 Inf   4.131  0.0021
 StepF2 - StepF3    0.166923 0.0433 Inf   3.856  0.0065
 StepF2 - StepF4    0.309194 0.0433 Inf   7.142  <.0001
 StepF2 - StepF5    0.299977 0.0433 Inf   6.930  <.0001
 StepF2 - StepF6    0.328250 0.0433 Inf   7.583  <.0001
 StepF2 - StepF7    0.275437 0.0433 Inf   6.363  <.0001
 StepF2 - StepF8    0.351163 0.0433 Inf   8.112  <.0001
 StepF2 - StepF9    0.384310 0.0433 Inf   8.878  <.0001
 StepF2 - StepF10   0.327509 0.0433 Inf   7.566  <.0001
 StepF2 - StepF11   0.339058 0.0433 Inf   7.832  <.0001
 StepF2 - StepF12   0.435913 0.0433 Inf  10.070  <.0001
 StepF3 - StepF4    0.142271 0.0433 Inf   3.286  0.0472
 StepF3 - StepF5    0.133054 0.0433 Inf   3.074  0.0886
 StepF3 - StepF6    0.161327 0.0433 Inf   3.727  0.0105
 StepF3 - StepF7    0.108514 0.0433 Inf   2.507  0.3355
 StepF3 - StepF8    0.184240 0.0433 Inf   4.256  0.0013
 StepF3 - StepF9    0.217387 0.0433 Inf   5.022  <.0001
 StepF3 - StepF10   0.160586 0.0433 Inf   3.710  0.0112
 StepF3 - StepF11   0.172135 0.0433 Inf   3.976  0.0040
 StepF3 - StepF12   0.268990 0.0433 Inf   6.214  <.0001
 StepF4 - StepF5   -0.009217 0.0433 Inf  -0.213  1.0000
 StepF4 - StepF6    0.019056 0.0433 Inf   0.440  1.0000
 StepF4 - StepF7   -0.033757 0.0433 Inf  -0.780  0.9998
 StepF4 - StepF8    0.041969 0.0433 Inf   0.969  0.9983
 StepF4 - StepF9    0.075116 0.0433 Inf   1.735  0.8521
 StepF4 - StepF10   0.018315 0.0433 Inf   0.423  1.0000
 StepF4 - StepF11   0.029864 0.0433 Inf   0.690  0.9999
 StepF4 - StepF12   0.126719 0.0433 Inf   2.927  0.1312
 StepF5 - StepF6    0.028273 0.0433 Inf   0.653  1.0000
 StepF5 - StepF7   -0.024539 0.0433 Inf  -0.567  1.0000
 StepF5 - StepF8    0.051186 0.0433 Inf   1.182  0.9903
 StepF5 - StepF9    0.084334 0.0433 Inf   1.948  0.7286
 StepF5 - StepF10   0.027532 0.0433 Inf   0.636  1.0000
 StepF5 - StepF11   0.039082 0.0433 Inf   0.903  0.9991
 StepF5 - StepF12   0.135936 0.0433 Inf   3.140  0.0733
 StepF6 - StepF7   -0.052813 0.0433 Inf  -1.220  0.9875
 StepF6 - StepF8    0.022913 0.0433 Inf   0.529  1.0000
 StepF6 - StepF9    0.056060 0.0433 Inf   1.295  0.9799
 StepF6 - StepF10  -0.000741 0.0433 Inf  -0.017  1.0000
 StepF6 - StepF11   0.010808 0.0433 Inf   0.250  1.0000
 StepF6 - StepF12   0.107663 0.0433 Inf   2.487  0.3480
 StepF7 - StepF8    0.075726 0.0433 Inf   1.749  0.8451
 StepF7 - StepF9    0.108873 0.0433 Inf   2.515  0.3303
 StepF7 - StepF10   0.052071 0.0433 Inf   1.203  0.9889
 StepF7 - StepF11   0.063621 0.0433 Inf   1.470  0.9488
 StepF7 - StepF12   0.160476 0.0433 Inf   3.707  0.0113
 StepF8 - StepF9    0.033147 0.0433 Inf   0.766  0.9998
 StepF8 - StepF10  -0.023654 0.0433 Inf  -0.546  1.0000
 StepF8 - StepF11  -0.012105 0.0433 Inf  -0.280  1.0000
 StepF8 - StepF12   0.084750 0.0433 Inf   1.958  0.7222
 StepF9 - StepF10  -0.056801 0.0433 Inf  -1.312  0.9778
 StepF9 - StepF11  -0.045252 0.0433 Inf  -1.045  0.9966
 StepF9 - StepF12   0.051603 0.0433 Inf   1.192  0.9897
 StepF10 - StepF11  0.011550 0.0433 Inf   0.267  1.0000
 StepF10 - StepF12  0.108404 0.0433 Inf   2.504  0.3371
 StepF11 - StepF12  0.096855 0.0433 Inf   2.237  0.5221

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.257079 0.0433 Inf  -5.939  <.0001
 StepF1 - StepF3   -0.090156 0.0433 Inf  -2.083  0.6354
 StepF1 - StepF4    0.052115 0.0433 Inf   1.204  0.9888
 StepF1 - StepF5    0.042898 0.0433 Inf   0.991  0.9979
 StepF1 - StepF6    0.071171 0.0433 Inf   1.644  0.8928
 StepF1 - StepF7    0.018358 0.0433 Inf   0.424  1.0000
 StepF1 - StepF8    0.094084 0.0433 Inf   2.173  0.5692
 StepF1 - StepF9    0.127231 0.0433 Inf   2.939  0.1273
 StepF1 - StepF10   0.070430 0.0433 Inf   1.627  0.8995
 StepF1 - StepF11   0.081979 0.0433 Inf   1.894  0.7635
 StepF1 - StepF12   0.178834 0.0433 Inf   4.131  0.0021
 StepF2 - StepF3    0.166923 0.0433 Inf   3.856  0.0065
 StepF2 - StepF4    0.309194 0.0433 Inf   7.142  <.0001
 StepF2 - StepF5    0.299977 0.0433 Inf   6.930  <.0001
 StepF2 - StepF6    0.328250 0.0433 Inf   7.583  <.0001
 StepF2 - StepF7    0.275437 0.0433 Inf   6.363  <.0001
 StepF2 - StepF8    0.351163 0.0433 Inf   8.112  <.0001
 StepF2 - StepF9    0.384310 0.0433 Inf   8.878  <.0001
 StepF2 - StepF10   0.327509 0.0433 Inf   7.566  <.0001
 StepF2 - StepF11   0.339058 0.0433 Inf   7.832  <.0001
 StepF2 - StepF12   0.435913 0.0433 Inf  10.070  <.0001
 StepF3 - StepF4    0.142271 0.0433 Inf   3.286  0.0472
 StepF3 - StepF5    0.133054 0.0433 Inf   3.074  0.0886
 StepF3 - StepF6    0.161327 0.0433 Inf   3.727  0.0105
 StepF3 - StepF7    0.108514 0.0433 Inf   2.507  0.3355
 StepF3 - StepF8    0.184240 0.0433 Inf   4.256  0.0013
 StepF3 - StepF9    0.217387 0.0433 Inf   5.022  <.0001
 StepF3 - StepF10   0.160586 0.0433 Inf   3.710  0.0112
 StepF3 - StepF11   0.172135 0.0433 Inf   3.976  0.0040
 StepF3 - StepF12   0.268990 0.0433 Inf   6.214  <.0001
 StepF4 - StepF5   -0.009217 0.0433 Inf  -0.213  1.0000
 StepF4 - StepF6    0.019056 0.0433 Inf   0.440  1.0000
 StepF4 - StepF7   -0.033757 0.0433 Inf  -0.780  0.9998
 StepF4 - StepF8    0.041969 0.0433 Inf   0.969  0.9983
 StepF4 - StepF9    0.075116 0.0433 Inf   1.735  0.8521
 StepF4 - StepF10   0.018315 0.0433 Inf   0.423  1.0000
 StepF4 - StepF11   0.029864 0.0433 Inf   0.690  0.9999
 StepF4 - StepF12   0.126719 0.0433 Inf   2.927  0.1312
 StepF5 - StepF6    0.028273 0.0433 Inf   0.653  1.0000
 StepF5 - StepF7   -0.024539 0.0433 Inf  -0.567  1.0000
 StepF5 - StepF8    0.051186 0.0433 Inf   1.182  0.9903
 StepF5 - StepF9    0.084334 0.0433 Inf   1.948  0.7286
 StepF5 - StepF10   0.027532 0.0433 Inf   0.636  1.0000
 StepF5 - StepF11   0.039082 0.0433 Inf   0.903  0.9991
 StepF5 - StepF12   0.135936 0.0433 Inf   3.140  0.0733
 StepF6 - StepF7   -0.052813 0.0433 Inf  -1.220  0.9875
 StepF6 - StepF8    0.022913 0.0433 Inf   0.529  1.0000
 StepF6 - StepF9    0.056060 0.0433 Inf   1.295  0.9799
 StepF6 - StepF10  -0.000741 0.0433 Inf  -0.017  1.0000
 StepF6 - StepF11   0.010808 0.0433 Inf   0.250  1.0000
 StepF6 - StepF12   0.107663 0.0433 Inf   2.487  0.3480
 StepF7 - StepF8    0.075726 0.0433 Inf   1.749  0.8451
 StepF7 - StepF9    0.108873 0.0433 Inf   2.515  0.3303
 StepF7 - StepF10   0.052071 0.0433 Inf   1.203  0.9889
 StepF7 - StepF11   0.063621 0.0433 Inf   1.470  0.9488
 StepF7 - StepF12   0.160476 0.0433 Inf   3.707  0.0113
 StepF8 - StepF9    0.033147 0.0433 Inf   0.766  0.9998
 StepF8 - StepF10  -0.023654 0.0433 Inf  -0.546  1.0000
 StepF8 - StepF11  -0.012105 0.0433 Inf  -0.280  1.0000
 StepF8 - StepF12   0.084750 0.0433 Inf   1.958  0.7222
 StepF9 - StepF10  -0.056801 0.0433 Inf  -1.312  0.9778
 StepF9 - StepF11  -0.045252 0.0433 Inf  -1.045  0.9966
 StepF9 - StepF12   0.051603 0.0433 Inf   1.192  0.9897
 StepF10 - StepF11  0.011550 0.0433 Inf   0.267  1.0000
 StepF10 - StepF12  0.108404 0.0433 Inf   2.504  0.3371
 StepF11 - StepF12  0.096855 0.0433 Inf   2.237  0.5221

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 12 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.25708 0.0433 Inf   5.939  <.0001
 StepF3 - StepF2   -0.16692 0.0433 Inf  -3.856  0.0012
 StepF4 - StepF3   -0.14227 0.0433 Inf  -3.286  0.0091
 StepF5 - StepF4    0.00922 0.0433 Inf   0.213  1.0000
 StepF6 - StepF5   -0.02827 0.0433 Inf  -0.653  1.0000
 StepF7 - StepF6    0.05281 0.0433 Inf   1.220  1.0000
 StepF8 - StepF7   -0.07573 0.0433 Inf  -1.749  0.5617
 StepF9 - StepF8   -0.03315 0.0433 Inf  -0.766  1.0000
 StepF10 - StepF9   0.05680 0.0433 Inf   1.312  1.0000
 StepF11 - StepF10 -0.01155 0.0433 Inf  -0.267  1.0000
 StepF12 - StepF11 -0.09685 0.0433 Inf  -2.237  0.2021

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.25708 0.0433 Inf   5.939  <.0001
 StepF3 - StepF2   -0.16692 0.0433 Inf  -3.856  0.0012
 StepF4 - StepF3   -0.14227 0.0433 Inf  -3.286  0.0091
 StepF5 - StepF4    0.00922 0.0433 Inf   0.213  1.0000
 StepF6 - StepF5   -0.02827 0.0433 Inf  -0.653  1.0000
 StepF7 - StepF6    0.05281 0.0433 Inf   1.220  1.0000
 StepF8 - StepF7   -0.07573 0.0433 Inf  -1.749  0.5617
 StepF9 - StepF8   -0.03315 0.0433 Inf  -0.766  1.0000
 StepF10 - StepF9   0.05680 0.0433 Inf   1.312  1.0000
 StepF11 - StepF10 -0.01155 0.0433 Inf  -0.267  1.0000
 StepF12 - StepF11 -0.09685 0.0433 Inf  -2.237  0.2021

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 11 tests 
.report_step_test(sw_b5_18, "5", "18 steps")


==============================
TEST | Block 5 | 18 steps | Axis X
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    115.8727 17     <2e-16 ***
Accuracy   0.0706  1     0.7905    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.666 0.0513 Inf     0.565     0.766
 2      0.602 0.0513 Inf     0.502     0.703
 3      0.695 0.0513 Inf     0.594     0.796
 4      0.602 0.0513 Inf     0.501     0.702
 5      0.559 0.0513 Inf     0.458     0.660
 6      0.571 0.0513 Inf     0.471     0.672
 7      0.633 0.0513 Inf     0.532     0.733
 8      0.566 0.0513 Inf     0.466     0.667
 9      0.556 0.0513 Inf     0.456     0.657
 10     0.610 0.0513 Inf     0.509     0.710
 11     0.633 0.0513 Inf     0.532     0.734
 12     0.527 0.0513 Inf     0.427     0.628
 13     0.576 0.0513 Inf     0.475     0.676
 14     0.601 0.0513 Inf     0.501     0.702
 15     0.591 0.0513 Inf     0.490     0.691
 16     0.547 0.0513 Inf     0.446     0.647
 17     0.530 0.0513 Inf     0.429     0.630
 18     0.527 0.0513 Inf     0.426     0.627

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.662 0.0515 Inf     0.561     0.763
 2      0.599 0.0515 Inf     0.498     0.700
 3      0.691 0.0515 Inf     0.591     0.792
 4      0.598 0.0515 Inf     0.497     0.699
 5      0.556 0.0515 Inf     0.455     0.656
 6      0.568 0.0515 Inf     0.467     0.668
 7      0.629 0.0515 Inf     0.528     0.730
 8      0.563 0.0515 Inf     0.462     0.664
 9      0.553 0.0515 Inf     0.452     0.654
 10     0.606 0.0515 Inf     0.505     0.707
 11     0.630 0.0515 Inf     0.529     0.730
 12     0.524 0.0515 Inf     0.423     0.625
 13     0.572 0.0515 Inf     0.472     0.673
 14     0.598 0.0515 Inf     0.497     0.699
 15     0.587 0.0515 Inf     0.486     0.688
 16     0.543 0.0515 Inf     0.442     0.644
 17     0.526 0.0515 Inf     0.425     0.627
 18     0.523 0.0515 Inf     0.422     0.624

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.063268 0.0255 Inf   2.477  0.5481
 StepF1 - StepF3   -0.029373 0.0255 Inf  -1.150  0.9996
 StepF1 - StepF4    0.063963 0.0255 Inf   2.504  0.5269
 StepF1 - StepF5    0.106536 0.0255 Inf   4.171  0.0040
 StepF1 - StepF6    0.094481 0.0255 Inf   3.699  0.0245
 StepF1 - StepF7    0.033013 0.0255 Inf   1.293  0.9984
 StepF1 - StepF8    0.099413 0.0255 Inf   3.892  0.0121
 StepF1 - StepF9    0.109111 0.0255 Inf   4.272  0.0026
 StepF1 - StepF10   0.056026 0.0255 Inf   2.193  0.7584
 StepF1 - StepF11   0.032532 0.0255 Inf   1.274  0.9986
 StepF1 - StepF12   0.138166 0.0255 Inf   5.409  <.0001
 StepF1 - StepF13   0.089730 0.0255 Inf   3.513  0.0462
 StepF1 - StepF14   0.064347 0.0255 Inf   2.519  0.5153
 StepF1 - StepF15   0.074933 0.0255 Inf   2.934  0.2337
 StepF1 - StepF16   0.118893 0.0255 Inf   4.655  0.0005
 StepF1 - StepF17   0.136041 0.0255 Inf   5.326  <.0001
 StepF1 - StepF18   0.138829 0.0255 Inf   5.435  <.0001
 StepF2 - StepF3   -0.092641 0.0255 Inf  -3.627  0.0315
 StepF2 - StepF4    0.000695 0.0255 Inf   0.027  1.0000
 StepF2 - StepF5    0.043268 0.0255 Inf   1.694  0.9681
 StepF2 - StepF6    0.031213 0.0255 Inf   1.222  0.9992
 StepF2 - StepF7   -0.030255 0.0255 Inf  -1.185  0.9995
 StepF2 - StepF8    0.036145 0.0255 Inf   1.415  0.9952
 StepF2 - StepF9    0.045843 0.0255 Inf   1.795  0.9458
 StepF2 - StepF10  -0.007242 0.0255 Inf  -0.284  1.0000
 StepF2 - StepF11  -0.030735 0.0255 Inf  -1.203  0.9993
 StepF2 - StepF12   0.074898 0.0255 Inf   2.932  0.2344
 StepF2 - StepF13   0.026462 0.0255 Inf   1.036  0.9999
 StepF2 - StepF14   0.001079 0.0255 Inf   0.042  1.0000
 StepF2 - StepF15   0.011665 0.0255 Inf   0.457  1.0000
 StepF2 - StepF16   0.055625 0.0255 Inf   2.178  0.7687
 StepF2 - StepF17   0.072773 0.0255 Inf   2.849  0.2820
 StepF2 - StepF18   0.075561 0.0255 Inf   2.958  0.2207
 StepF3 - StepF4    0.093336 0.0255 Inf   3.654  0.0287
 StepF3 - StepF5    0.135909 0.0255 Inf   5.321  <.0001
 StepF3 - StepF6    0.123854 0.0255 Inf   4.849  0.0002
 StepF3 - StepF7    0.062386 0.0255 Inf   2.443  0.5750
 StepF3 - StepF8    0.128786 0.0255 Inf   5.042  0.0001
 StepF3 - StepF9    0.138484 0.0255 Inf   5.422  <.0001
 StepF3 - StepF10   0.085399 0.0255 Inf   3.343  0.0786
 StepF3 - StepF11   0.061906 0.0255 Inf   2.424  0.5896
 StepF3 - StepF12   0.167539 0.0255 Inf   6.559  <.0001
 StepF3 - StepF13   0.119103 0.0255 Inf   4.663  0.0004
 StepF3 - StepF14   0.093720 0.0255 Inf   3.669  0.0272
 StepF3 - StepF15   0.104306 0.0255 Inf   4.084  0.0057
 StepF3 - StepF16   0.148266 0.0255 Inf   5.805  <.0001
 StepF3 - StepF17   0.165414 0.0255 Inf   6.476  <.0001
 StepF3 - StepF18   0.168202 0.0255 Inf   6.585  <.0001
 StepF4 - StepF5    0.042573 0.0255 Inf   1.667  0.9727
 StepF4 - StepF6    0.030517 0.0255 Inf   1.195  0.9994
 StepF4 - StepF7   -0.030950 0.0255 Inf  -1.212  0.9993
 StepF4 - StepF8    0.035450 0.0255 Inf   1.388  0.9962
 StepF4 - StepF9    0.045147 0.0255 Inf   1.768  0.9527
 StepF4 - StepF10  -0.007938 0.0255 Inf  -0.311  1.0000
 StepF4 - StepF11  -0.031431 0.0255 Inf  -1.231  0.9991
 StepF4 - StepF12   0.074203 0.0255 Inf   2.905  0.2494
 StepF4 - StepF13   0.025767 0.0255 Inf   1.009  0.9999
 StepF4 - StepF14   0.000383 0.0255 Inf   0.015  1.0000
 StepF4 - StepF15   0.010970 0.0255 Inf   0.429  1.0000
 StepF4 - StepF16   0.054930 0.0255 Inf   2.151  0.7861
 StepF4 - StepF17   0.072078 0.0255 Inf   2.822  0.2987
 StepF4 - StepF18   0.074866 0.0255 Inf   2.931  0.2351
 StepF5 - StepF6   -0.012056 0.0255 Inf  -0.472  1.0000
 StepF5 - StepF7   -0.073523 0.0255 Inf  -2.879  0.2646
 StepF5 - StepF8   -0.007123 0.0255 Inf  -0.279  1.0000
 StepF5 - StepF9    0.002574 0.0255 Inf   0.101  1.0000
 StepF5 - StepF10  -0.050511 0.0255 Inf  -1.978  0.8803
 StepF5 - StepF11  -0.074004 0.0255 Inf  -2.897  0.2538
 StepF5 - StepF12   0.031630 0.0255 Inf   1.238  0.9990
 StepF5 - StepF13  -0.016806 0.0255 Inf  -0.658  1.0000
 StepF5 - StepF14  -0.042189 0.0255 Inf  -1.652  0.9750
 StepF5 - StepF15  -0.031603 0.0255 Inf  -1.237  0.9991
 StepF5 - StepF16   0.012357 0.0255 Inf   0.484  1.0000
 StepF5 - StepF17   0.029505 0.0255 Inf   1.155  0.9996
 StepF5 - StepF18   0.032293 0.0255 Inf   1.264  0.9988
 StepF6 - StepF7   -0.061468 0.0255 Inf  -2.407  0.6029
 StepF6 - StepF8    0.004932 0.0255 Inf   0.193  1.0000
 StepF6 - StepF9    0.014630 0.0255 Inf   0.573  1.0000
 StepF6 - StepF10  -0.038455 0.0255 Inf  -1.506  0.9904
 StepF6 - StepF11  -0.061948 0.0255 Inf  -2.425  0.5883
 StepF6 - StepF12   0.043685 0.0255 Inf   1.710  0.9650
 StepF6 - StepF13  -0.004751 0.0255 Inf  -0.186  1.0000
 StepF6 - StepF14  -0.030134 0.0255 Inf  -1.180  0.9995
 StepF6 - StepF15  -0.019548 0.0255 Inf  -0.765  1.0000
 StepF6 - StepF16   0.024412 0.0255 Inf   0.956  1.0000
 StepF6 - StepF17   0.041560 0.0255 Inf   1.627  0.9785
 StepF6 - StepF18   0.044348 0.0255 Inf   1.736  0.9598
 StepF7 - StepF8    0.066400 0.0255 Inf   2.600  0.4537
 StepF7 - StepF9    0.076098 0.0255 Inf   2.979  0.2100
 StepF7 - StepF10   0.023013 0.0255 Inf   0.901  1.0000
 StepF7 - StepF11  -0.000480 0.0255 Inf  -0.019  1.0000
 StepF7 - StepF12   0.105153 0.0255 Inf   4.117  0.0050
 StepF7 - StepF13   0.056717 0.0255 Inf   2.221  0.7401
 StepF7 - StepF14   0.031334 0.0255 Inf   1.227  0.9991
 StepF7 - StepF15   0.041920 0.0255 Inf   1.641  0.9765
 StepF7 - StepF16   0.085880 0.0255 Inf   3.362  0.0743
 StepF7 - StepF17   0.103028 0.0255 Inf   4.034  0.0070
 StepF7 - StepF18   0.105816 0.0255 Inf   4.143  0.0045
 StepF8 - StepF9    0.009698 0.0255 Inf   0.380  1.0000
 StepF8 - StepF10  -0.043387 0.0255 Inf  -1.699  0.9672
 StepF8 - StepF11  -0.066880 0.0255 Inf  -2.618  0.4395
 StepF8 - StepF12   0.038753 0.0255 Inf   1.517  0.9896
 StepF8 - StepF13  -0.009683 0.0255 Inf  -0.379  1.0000
 StepF8 - StepF14  -0.035066 0.0255 Inf  -1.373  0.9966
 StepF8 - StepF15  -0.024480 0.0255 Inf  -0.958  1.0000
 StepF8 - StepF16   0.019480 0.0255 Inf   0.763  1.0000
 StepF8 - StepF17   0.036628 0.0255 Inf   1.434  0.9944
 StepF8 - StepF18   0.039416 0.0255 Inf   1.543  0.9875
 StepF9 - StepF10  -0.053085 0.0255 Inf  -2.078  0.8291
 StepF9 - StepF11  -0.076578 0.0255 Inf  -2.998  0.2007
 StepF9 - StepF12   0.029055 0.0255 Inf   1.138  0.9997
 StepF9 - StepF13  -0.019381 0.0255 Inf  -0.759  1.0000
 StepF9 - StepF14  -0.044764 0.0255 Inf  -1.753  0.9562
 StepF9 - StepF15  -0.034178 0.0255 Inf  -1.338  0.9975
 StepF9 - StepF16   0.009782 0.0255 Inf   0.383  1.0000
 StepF9 - StepF17   0.026930 0.0255 Inf   1.054  0.9999
 StepF9 - StepF18   0.029718 0.0255 Inf   1.164  0.9996
 StepF10 - StepF11 -0.023493 0.0255 Inf  -0.920  1.0000
 StepF10 - StepF12  0.082140 0.0255 Inf   3.216  0.1138
 StepF10 - StepF13  0.033704 0.0255 Inf   1.320  0.9979
 StepF10 - StepF14  0.008321 0.0255 Inf   0.326  1.0000
 StepF10 - StepF15  0.018907 0.0255 Inf   0.740  1.0000
 StepF10 - StepF16  0.062867 0.0255 Inf   2.461  0.5603
 StepF10 - StepF17  0.080015 0.0255 Inf   3.133  0.1427
 StepF10 - StepF18  0.082803 0.0255 Inf   3.242  0.1057
 StepF11 - StepF12  0.105633 0.0255 Inf   4.136  0.0046
 StepF11 - StepF13  0.057197 0.0255 Inf   2.239  0.7271
 StepF11 - StepF14  0.031814 0.0255 Inf   1.246  0.9990
 StepF11 - StepF15  0.042401 0.0255 Inf   1.660  0.9737
 StepF11 - StepF16  0.086360 0.0255 Inf   3.381  0.0701
 StepF11 - StepF17  0.103508 0.0255 Inf   4.052  0.0065
 StepF11 - StepF18  0.106296 0.0255 Inf   4.162  0.0041
 StepF12 - StepF13 -0.048436 0.0255 Inf  -1.896  0.9137
 StepF12 - StepF14 -0.073819 0.0255 Inf  -2.890  0.2579
 StepF12 - StepF15 -0.063233 0.0255 Inf  -2.476  0.5492
 StepF12 - StepF16 -0.019273 0.0255 Inf  -0.755  1.0000
 StepF12 - StepF17 -0.002125 0.0255 Inf  -0.083  1.0000
 StepF12 - StepF18  0.000663 0.0255 Inf   0.026  1.0000
 StepF13 - StepF14 -0.025383 0.0255 Inf  -0.994  0.9999
 StepF13 - StepF15 -0.014797 0.0255 Inf  -0.579  1.0000
 StepF13 - StepF16  0.029163 0.0255 Inf   1.142  0.9997
 StepF13 - StepF17  0.046311 0.0255 Inf   1.813  0.9407
 StepF13 - StepF18  0.049099 0.0255 Inf   1.922  0.9038
 StepF14 - StepF15  0.010586 0.0255 Inf   0.414  1.0000
 StepF14 - StepF16  0.054546 0.0255 Inf   2.136  0.7955
 StepF14 - StepF17  0.071694 0.0255 Inf   2.807  0.3082
 StepF14 - StepF18  0.074482 0.0255 Inf   2.916  0.2433
 StepF15 - StepF16  0.043960 0.0255 Inf   1.721  0.9629
 StepF15 - StepF17  0.061108 0.0255 Inf   2.392  0.6138
 StepF15 - StepF18  0.063896 0.0255 Inf   2.502  0.5290
 StepF16 - StepF17  0.017148 0.0255 Inf   0.671  1.0000
 StepF16 - StepF18  0.019936 0.0255 Inf   0.781  1.0000
 StepF17 - StepF18  0.002788 0.0255 Inf   0.109  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2    0.063268 0.0255 Inf   2.477  0.5481
 StepF1 - StepF3   -0.029373 0.0255 Inf  -1.150  0.9996
 StepF1 - StepF4    0.063963 0.0255 Inf   2.504  0.5269
 StepF1 - StepF5    0.106536 0.0255 Inf   4.171  0.0040
 StepF1 - StepF6    0.094481 0.0255 Inf   3.699  0.0245
 StepF1 - StepF7    0.033013 0.0255 Inf   1.293  0.9984
 StepF1 - StepF8    0.099413 0.0255 Inf   3.892  0.0121
 StepF1 - StepF9    0.109111 0.0255 Inf   4.272  0.0026
 StepF1 - StepF10   0.056026 0.0255 Inf   2.193  0.7584
 StepF1 - StepF11   0.032532 0.0255 Inf   1.274  0.9986
 StepF1 - StepF12   0.138166 0.0255 Inf   5.409  <.0001
 StepF1 - StepF13   0.089730 0.0255 Inf   3.513  0.0462
 StepF1 - StepF14   0.064347 0.0255 Inf   2.519  0.5153
 StepF1 - StepF15   0.074933 0.0255 Inf   2.934  0.2337
 StepF1 - StepF16   0.118893 0.0255 Inf   4.655  0.0005
 StepF1 - StepF17   0.136041 0.0255 Inf   5.326  <.0001
 StepF1 - StepF18   0.138829 0.0255 Inf   5.435  <.0001
 StepF2 - StepF3   -0.092641 0.0255 Inf  -3.627  0.0315
 StepF2 - StepF4    0.000695 0.0255 Inf   0.027  1.0000
 StepF2 - StepF5    0.043268 0.0255 Inf   1.694  0.9681
 StepF2 - StepF6    0.031213 0.0255 Inf   1.222  0.9992
 StepF2 - StepF7   -0.030255 0.0255 Inf  -1.185  0.9995
 StepF2 - StepF8    0.036145 0.0255 Inf   1.415  0.9952
 StepF2 - StepF9    0.045843 0.0255 Inf   1.795  0.9458
 StepF2 - StepF10  -0.007242 0.0255 Inf  -0.284  1.0000
 StepF2 - StepF11  -0.030735 0.0255 Inf  -1.203  0.9993
 StepF2 - StepF12   0.074898 0.0255 Inf   2.932  0.2344
 StepF2 - StepF13   0.026462 0.0255 Inf   1.036  0.9999
 StepF2 - StepF14   0.001079 0.0255 Inf   0.042  1.0000
 StepF2 - StepF15   0.011665 0.0255 Inf   0.457  1.0000
 StepF2 - StepF16   0.055625 0.0255 Inf   2.178  0.7687
 StepF2 - StepF17   0.072773 0.0255 Inf   2.849  0.2820
 StepF2 - StepF18   0.075561 0.0255 Inf   2.958  0.2207
 StepF3 - StepF4    0.093336 0.0255 Inf   3.654  0.0287
 StepF3 - StepF5    0.135909 0.0255 Inf   5.321  <.0001
 StepF3 - StepF6    0.123854 0.0255 Inf   4.849  0.0002
 StepF3 - StepF7    0.062386 0.0255 Inf   2.443  0.5750
 StepF3 - StepF8    0.128786 0.0255 Inf   5.042  0.0001
 StepF3 - StepF9    0.138484 0.0255 Inf   5.422  <.0001
 StepF3 - StepF10   0.085399 0.0255 Inf   3.343  0.0786
 StepF3 - StepF11   0.061906 0.0255 Inf   2.424  0.5896
 StepF3 - StepF12   0.167539 0.0255 Inf   6.559  <.0001
 StepF3 - StepF13   0.119103 0.0255 Inf   4.663  0.0004
 StepF3 - StepF14   0.093720 0.0255 Inf   3.669  0.0272
 StepF3 - StepF15   0.104306 0.0255 Inf   4.084  0.0057
 StepF3 - StepF16   0.148266 0.0255 Inf   5.805  <.0001
 StepF3 - StepF17   0.165414 0.0255 Inf   6.476  <.0001
 StepF3 - StepF18   0.168202 0.0255 Inf   6.585  <.0001
 StepF4 - StepF5    0.042573 0.0255 Inf   1.667  0.9727
 StepF4 - StepF6    0.030517 0.0255 Inf   1.195  0.9994
 StepF4 - StepF7   -0.030950 0.0255 Inf  -1.212  0.9993
 StepF4 - StepF8    0.035450 0.0255 Inf   1.388  0.9962
 StepF4 - StepF9    0.045147 0.0255 Inf   1.768  0.9527
 StepF4 - StepF10  -0.007938 0.0255 Inf  -0.311  1.0000
 StepF4 - StepF11  -0.031431 0.0255 Inf  -1.231  0.9991
 StepF4 - StepF12   0.074203 0.0255 Inf   2.905  0.2494
 StepF4 - StepF13   0.025767 0.0255 Inf   1.009  0.9999
 StepF4 - StepF14   0.000383 0.0255 Inf   0.015  1.0000
 StepF4 - StepF15   0.010970 0.0255 Inf   0.429  1.0000
 StepF4 - StepF16   0.054930 0.0255 Inf   2.151  0.7861
 StepF4 - StepF17   0.072078 0.0255 Inf   2.822  0.2987
 StepF4 - StepF18   0.074866 0.0255 Inf   2.931  0.2351
 StepF5 - StepF6   -0.012056 0.0255 Inf  -0.472  1.0000
 StepF5 - StepF7   -0.073523 0.0255 Inf  -2.879  0.2646
 StepF5 - StepF8   -0.007123 0.0255 Inf  -0.279  1.0000
 StepF5 - StepF9    0.002574 0.0255 Inf   0.101  1.0000
 StepF5 - StepF10  -0.050511 0.0255 Inf  -1.978  0.8803
 StepF5 - StepF11  -0.074004 0.0255 Inf  -2.897  0.2538
 StepF5 - StepF12   0.031630 0.0255 Inf   1.238  0.9990
 StepF5 - StepF13  -0.016806 0.0255 Inf  -0.658  1.0000
 StepF5 - StepF14  -0.042189 0.0255 Inf  -1.652  0.9750
 StepF5 - StepF15  -0.031603 0.0255 Inf  -1.237  0.9991
 StepF5 - StepF16   0.012357 0.0255 Inf   0.484  1.0000
 StepF5 - StepF17   0.029505 0.0255 Inf   1.155  0.9996
 StepF5 - StepF18   0.032293 0.0255 Inf   1.264  0.9988
 StepF6 - StepF7   -0.061468 0.0255 Inf  -2.407  0.6029
 StepF6 - StepF8    0.004932 0.0255 Inf   0.193  1.0000
 StepF6 - StepF9    0.014630 0.0255 Inf   0.573  1.0000
 StepF6 - StepF10  -0.038455 0.0255 Inf  -1.506  0.9904
 StepF6 - StepF11  -0.061948 0.0255 Inf  -2.425  0.5883
 StepF6 - StepF12   0.043685 0.0255 Inf   1.710  0.9650
 StepF6 - StepF13  -0.004751 0.0255 Inf  -0.186  1.0000
 StepF6 - StepF14  -0.030134 0.0255 Inf  -1.180  0.9995
 StepF6 - StepF15  -0.019548 0.0255 Inf  -0.765  1.0000
 StepF6 - StepF16   0.024412 0.0255 Inf   0.956  1.0000
 StepF6 - StepF17   0.041560 0.0255 Inf   1.627  0.9785
 StepF6 - StepF18   0.044348 0.0255 Inf   1.736  0.9598
 StepF7 - StepF8    0.066400 0.0255 Inf   2.600  0.4537
 StepF7 - StepF9    0.076098 0.0255 Inf   2.979  0.2100
 StepF7 - StepF10   0.023013 0.0255 Inf   0.901  1.0000
 StepF7 - StepF11  -0.000480 0.0255 Inf  -0.019  1.0000
 StepF7 - StepF12   0.105153 0.0255 Inf   4.117  0.0050
 StepF7 - StepF13   0.056717 0.0255 Inf   2.221  0.7401
 StepF7 - StepF14   0.031334 0.0255 Inf   1.227  0.9991
 StepF7 - StepF15   0.041920 0.0255 Inf   1.641  0.9765
 StepF7 - StepF16   0.085880 0.0255 Inf   3.362  0.0743
 StepF7 - StepF17   0.103028 0.0255 Inf   4.034  0.0070
 StepF7 - StepF18   0.105816 0.0255 Inf   4.143  0.0045
 StepF8 - StepF9    0.009698 0.0255 Inf   0.380  1.0000
 StepF8 - StepF10  -0.043387 0.0255 Inf  -1.699  0.9672
 StepF8 - StepF11  -0.066880 0.0255 Inf  -2.618  0.4395
 StepF8 - StepF12   0.038753 0.0255 Inf   1.517  0.9896
 StepF8 - StepF13  -0.009683 0.0255 Inf  -0.379  1.0000
 StepF8 - StepF14  -0.035066 0.0255 Inf  -1.373  0.9966
 StepF8 - StepF15  -0.024480 0.0255 Inf  -0.958  1.0000
 StepF8 - StepF16   0.019480 0.0255 Inf   0.763  1.0000
 StepF8 - StepF17   0.036628 0.0255 Inf   1.434  0.9944
 StepF8 - StepF18   0.039416 0.0255 Inf   1.543  0.9875
 StepF9 - StepF10  -0.053085 0.0255 Inf  -2.078  0.8291
 StepF9 - StepF11  -0.076578 0.0255 Inf  -2.998  0.2007
 StepF9 - StepF12   0.029055 0.0255 Inf   1.138  0.9997
 StepF9 - StepF13  -0.019381 0.0255 Inf  -0.759  1.0000
 StepF9 - StepF14  -0.044764 0.0255 Inf  -1.753  0.9562
 StepF9 - StepF15  -0.034178 0.0255 Inf  -1.338  0.9975
 StepF9 - StepF16   0.009782 0.0255 Inf   0.383  1.0000
 StepF9 - StepF17   0.026930 0.0255 Inf   1.054  0.9999
 StepF9 - StepF18   0.029718 0.0255 Inf   1.164  0.9996
 StepF10 - StepF11 -0.023493 0.0255 Inf  -0.920  1.0000
 StepF10 - StepF12  0.082140 0.0255 Inf   3.216  0.1138
 StepF10 - StepF13  0.033704 0.0255 Inf   1.320  0.9979
 StepF10 - StepF14  0.008321 0.0255 Inf   0.326  1.0000
 StepF10 - StepF15  0.018907 0.0255 Inf   0.740  1.0000
 StepF10 - StepF16  0.062867 0.0255 Inf   2.461  0.5603
 StepF10 - StepF17  0.080015 0.0255 Inf   3.133  0.1427
 StepF10 - StepF18  0.082803 0.0255 Inf   3.242  0.1057
 StepF11 - StepF12  0.105633 0.0255 Inf   4.136  0.0046
 StepF11 - StepF13  0.057197 0.0255 Inf   2.239  0.7271
 StepF11 - StepF14  0.031814 0.0255 Inf   1.246  0.9990
 StepF11 - StepF15  0.042401 0.0255 Inf   1.660  0.9737
 StepF11 - StepF16  0.086360 0.0255 Inf   3.381  0.0701
 StepF11 - StepF17  0.103508 0.0255 Inf   4.052  0.0065
 StepF11 - StepF18  0.106296 0.0255 Inf   4.162  0.0041
 StepF12 - StepF13 -0.048436 0.0255 Inf  -1.896  0.9137
 StepF12 - StepF14 -0.073819 0.0255 Inf  -2.890  0.2579
 StepF12 - StepF15 -0.063233 0.0255 Inf  -2.476  0.5492
 StepF12 - StepF16 -0.019273 0.0255 Inf  -0.755  1.0000
 StepF12 - StepF17 -0.002125 0.0255 Inf  -0.083  1.0000
 StepF12 - StepF18  0.000663 0.0255 Inf   0.026  1.0000
 StepF13 - StepF14 -0.025383 0.0255 Inf  -0.994  0.9999
 StepF13 - StepF15 -0.014797 0.0255 Inf  -0.579  1.0000
 StepF13 - StepF16  0.029163 0.0255 Inf   1.142  0.9997
 StepF13 - StepF17  0.046311 0.0255 Inf   1.813  0.9407
 StepF13 - StepF18  0.049099 0.0255 Inf   1.922  0.9038
 StepF14 - StepF15  0.010586 0.0255 Inf   0.414  1.0000
 StepF14 - StepF16  0.054546 0.0255 Inf   2.136  0.7955
 StepF14 - StepF17  0.071694 0.0255 Inf   2.807  0.3082
 StepF14 - StepF18  0.074482 0.0255 Inf   2.916  0.2433
 StepF15 - StepF16  0.043960 0.0255 Inf   1.721  0.9629
 StepF15 - StepF17  0.061108 0.0255 Inf   2.392  0.6138
 StepF15 - StepF18  0.063896 0.0255 Inf   2.502  0.5290
 StepF16 - StepF17  0.017148 0.0255 Inf   0.671  1.0000
 StepF16 - StepF18  0.019936 0.0255 Inf   0.781  1.0000
 StepF17 - StepF18  0.002788 0.0255 Inf   0.109  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.06327 0.0255 Inf  -2.477  0.1722
 StepF3 - StepF2    0.09264 0.0255 Inf   3.627  0.0043
 StepF4 - StepF3   -0.09334 0.0255 Inf  -3.654  0.0041
 StepF5 - StepF4   -0.04257 0.0255 Inf  -1.667  0.7671
 StepF6 - StepF5    0.01206 0.0255 Inf   0.472  1.0000
 StepF7 - StepF6    0.06147 0.0255 Inf   2.407  0.1932
 StepF8 - StepF7   -0.06640 0.0255 Inf  -2.600  0.1306
 StepF9 - StepF8   -0.00970 0.0255 Inf  -0.380  1.0000
 StepF10 - StepF9   0.05309 0.0255 Inf   2.078  0.4144
 StepF11 - StepF10  0.02349 0.0255 Inf   0.920  1.0000
 StepF12 - StepF11 -0.10563 0.0255 Inf  -4.136  0.0006
 StepF13 - StepF12  0.04844 0.0255 Inf   1.896  0.5792
 StepF14 - StepF13  0.02538 0.0255 Inf   0.994  1.0000
 StepF15 - StepF14 -0.01059 0.0255 Inf  -0.414  1.0000
 StepF16 - StepF15 -0.04396 0.0255 Inf  -1.721  0.7671
 StepF17 - StepF16 -0.01715 0.0255 Inf  -0.671  1.0000
 StepF18 - StepF17 -0.00279 0.0255 Inf  -0.109  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1   -0.06327 0.0255 Inf  -2.477  0.1722
 StepF3 - StepF2    0.09264 0.0255 Inf   3.627  0.0043
 StepF4 - StepF3   -0.09334 0.0255 Inf  -3.654  0.0041
 StepF5 - StepF4   -0.04257 0.0255 Inf  -1.667  0.7671
 StepF6 - StepF5    0.01206 0.0255 Inf   0.472  1.0000
 StepF7 - StepF6    0.06147 0.0255 Inf   2.407  0.1932
 StepF8 - StepF7   -0.06640 0.0255 Inf  -2.600  0.1306
 StepF9 - StepF8   -0.00970 0.0255 Inf  -0.380  1.0000
 StepF10 - StepF9   0.05309 0.0255 Inf   2.078  0.4144
 StepF11 - StepF10  0.02349 0.0255 Inf   0.920  1.0000
 StepF12 - StepF11 -0.10563 0.0255 Inf  -4.136  0.0006
 StepF13 - StepF12  0.04844 0.0255 Inf   1.896  0.5792
 StepF14 - StepF13  0.02538 0.0255 Inf   0.994  1.0000
 StepF15 - StepF14 -0.01059 0.0255 Inf  -0.414  1.0000
 StepF16 - StepF15 -0.04396 0.0255 Inf  -1.721  0.7671
 StepF17 - StepF16 -0.01715 0.0255 Inf  -0.671  1.0000
 StepF18 - StepF17 -0.00279 0.0255 Inf  -0.109  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST | Block 5 | 18 steps | Axis Y
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
           Chisq Df Pr(>Chisq)    
StepF    82.4532 17  1.402e-10 ***
Accuracy  0.0996  1     0.7523    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.617 0.0719 Inf     0.476     0.758
 2      0.807 0.0719 Inf     0.666     0.948
 3      0.748 0.0719 Inf     0.607     0.889
 4      0.643 0.0719 Inf     0.502     0.784
 5      0.556 0.0719 Inf     0.415     0.697
 6      0.604 0.0719 Inf     0.463     0.745
 7      0.620 0.0719 Inf     0.479     0.761
 8      0.687 0.0719 Inf     0.546     0.828
 9      0.742 0.0719 Inf     0.601     0.883
 10     0.744 0.0719 Inf     0.603     0.885
 11     0.693 0.0719 Inf     0.552     0.834
 12     0.581 0.0719 Inf     0.440     0.722
 13     0.534 0.0719 Inf     0.393     0.675
 14     0.606 0.0719 Inf     0.465     0.747
 15     0.637 0.0719 Inf     0.496     0.778
 16     0.597 0.0719 Inf     0.456     0.738
 17     0.542 0.0719 Inf     0.401     0.683
 18     0.532 0.0719 Inf     0.391     0.673

Accuracy = 1:
 StepF emmean     SE  df asymp.LCL asymp.UCL
 1      0.608 0.0724 Inf     0.467     0.750
 2      0.799 0.0724 Inf     0.657     0.941
 3      0.740 0.0724 Inf     0.598     0.882
 4      0.635 0.0724 Inf     0.493     0.776
 5      0.548 0.0724 Inf     0.406     0.689
 6      0.595 0.0724 Inf     0.453     0.737
 7      0.611 0.0724 Inf     0.469     0.753
 8      0.678 0.0724 Inf     0.536     0.820
 9      0.733 0.0724 Inf     0.591     0.875
 10     0.736 0.0724 Inf     0.594     0.878
 11     0.684 0.0724 Inf     0.543     0.826
 12     0.573 0.0724 Inf     0.431     0.715
 13     0.525 0.0724 Inf     0.383     0.667
 14     0.597 0.0724 Inf     0.456     0.739
 15     0.629 0.0724 Inf     0.487     0.770
 16     0.589 0.0724 Inf     0.447     0.731
 17     0.533 0.0724 Inf     0.391     0.675
 18     0.524 0.0724 Inf     0.382     0.666

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.19042 0.0526 Inf  -3.618  0.0325
 StepF1 - StepF3   -0.13133 0.0526 Inf  -2.495  0.5337
 StepF1 - StepF4   -0.02627 0.0526 Inf  -0.499  1.0000
 StepF1 - StepF5    0.06084 0.0526 Inf   1.156  0.9996
 StepF1 - StepF6    0.01336 0.0526 Inf   0.254  1.0000
 StepF1 - StepF7   -0.00263 0.0526 Inf  -0.050  1.0000
 StepF1 - StepF8   -0.06959 0.0526 Inf  -1.322  0.9978
 StepF1 - StepF9   -0.12483 0.0526 Inf  -2.372  0.6295
 StepF1 - StepF10  -0.12729 0.0526 Inf  -2.419  0.5935
 StepF1 - StepF11  -0.07609 0.0526 Inf  -1.446  0.9939
 StepF1 - StepF12   0.03560 0.0526 Inf   0.676  1.0000
 StepF1 - StepF13   0.08335 0.0526 Inf   1.584  0.9836
 StepF1 - StepF14   0.01104 0.0526 Inf   0.210  1.0000
 StepF1 - StepF15  -0.02016 0.0526 Inf  -0.383  1.0000
 StepF1 - StepF16   0.01964 0.0526 Inf   0.373  1.0000
 StepF1 - StepF17   0.07513 0.0526 Inf   1.428  0.9947
 StepF1 - StepF18   0.08457 0.0526 Inf   1.607  0.9810
 StepF2 - StepF3    0.05908 0.0526 Inf   1.123  0.9997
 StepF2 - StepF4    0.16415 0.0526 Inf   3.119  0.1479
 StepF2 - StepF5    0.25126 0.0526 Inf   4.774  0.0003
 StepF2 - StepF6    0.20378 0.0526 Inf   3.872  0.0130
 StepF2 - StepF7    0.18779 0.0526 Inf   3.568  0.0385
 StepF2 - StepF8    0.12083 0.0526 Inf   2.296  0.6865
 StepF2 - StepF9    0.06559 0.0526 Inf   1.246  0.9990
 StepF2 - StepF10   0.06313 0.0526 Inf   1.199  0.9994
 StepF2 - StepF11   0.11433 0.0526 Inf   2.172  0.7723
 StepF2 - StepF12   0.22601 0.0526 Inf   4.294  0.0024
 StepF2 - StepF13   0.27377 0.0526 Inf   5.202  <.0001
 StepF2 - StepF14   0.20146 0.0526 Inf   3.828  0.0154
 StepF2 - StepF15   0.17026 0.0526 Inf   3.235  0.1078
 StepF2 - StepF16   0.21006 0.0526 Inf   3.991  0.0082
 StepF2 - StepF17   0.26555 0.0526 Inf   5.046  0.0001
 StepF2 - StepF18   0.27499 0.0526 Inf   5.225  <.0001
 StepF3 - StepF4    0.10507 0.0526 Inf   1.996  0.8715
 StepF3 - StepF5    0.19217 0.0526 Inf   3.651  0.0290
 StepF3 - StepF6    0.14470 0.0526 Inf   2.749  0.3460
 StepF3 - StepF7    0.12870 0.0526 Inf   2.445  0.5727
 StepF3 - StepF8    0.06175 0.0526 Inf   1.173  0.9995
 StepF3 - StepF9    0.00650 0.0526 Inf   0.124  1.0000
 StepF3 - StepF10   0.00404 0.0526 Inf   0.077  1.0000
 StepF3 - StepF11   0.05524 0.0526 Inf   1.050  0.9999
 StepF3 - StepF12   0.16693 0.0526 Inf   3.172  0.1285
 StepF3 - StepF13   0.21468 0.0526 Inf   4.079  0.0058
 StepF3 - StepF14   0.14237 0.0526 Inf   2.705  0.3765
 StepF3 - StepF15   0.11117 0.0526 Inf   2.112  0.8094
 StepF3 - StepF16   0.15098 0.0526 Inf   2.869  0.2703
 StepF3 - StepF17   0.20647 0.0526 Inf   3.923  0.0107
 StepF3 - StepF18   0.21590 0.0526 Inf   4.102  0.0053
 StepF4 - StepF5    0.08710 0.0526 Inf   1.655  0.9745
 StepF4 - StepF6    0.03963 0.0526 Inf   0.753  1.0000
 StepF4 - StepF7    0.02363 0.0526 Inf   0.449  1.0000
 StepF4 - StepF8   -0.04332 0.0526 Inf  -0.823  1.0000
 StepF4 - StepF9   -0.09856 0.0526 Inf  -1.873  0.9221
 StepF4 - StepF10  -0.10103 0.0526 Inf  -1.920  0.9049
 StepF4 - StepF11  -0.04983 0.0526 Inf  -0.947  1.0000
 StepF4 - StepF12   0.06186 0.0526 Inf   1.175  0.9995
 StepF4 - StepF13   0.10961 0.0526 Inf   2.083  0.8266
 StepF4 - StepF14   0.03730 0.0526 Inf   0.709  1.0000
 StepF4 - StepF15   0.00611 0.0526 Inf   0.116  1.0000
 StepF4 - StepF16   0.04591 0.0526 Inf   0.872  1.0000
 StepF4 - StepF17   0.10140 0.0526 Inf   1.927  0.9020
 StepF4 - StepF18   0.11083 0.0526 Inf   2.106  0.8133
 StepF5 - StepF6   -0.04748 0.0526 Inf  -0.902  1.0000
 StepF5 - StepF7   -0.06347 0.0526 Inf  -1.206  0.9993
 StepF5 - StepF8   -0.13042 0.0526 Inf  -2.478  0.5472
 StepF5 - StepF9   -0.18567 0.0526 Inf  -3.528  0.0440
 StepF5 - StepF10  -0.18813 0.0526 Inf  -3.575  0.0377
 StepF5 - StepF11  -0.13693 0.0526 Inf  -2.602  0.4520
 StepF5 - StepF12  -0.02524 0.0526 Inf  -0.480  1.0000
 StepF5 - StepF13   0.02251 0.0526 Inf   0.428  1.0000
 StepF5 - StepF14  -0.04980 0.0526 Inf  -0.946  1.0000
 StepF5 - StepF15  -0.08100 0.0526 Inf  -1.539  0.9879
 StepF5 - StepF16  -0.04120 0.0526 Inf  -0.783  1.0000
 StepF5 - StepF17   0.01429 0.0526 Inf   0.272  1.0000
 StepF5 - StepF18   0.02373 0.0526 Inf   0.451  1.0000
 StepF6 - StepF7   -0.01599 0.0526 Inf  -0.304  1.0000
 StepF6 - StepF8   -0.08295 0.0526 Inf  -1.576  0.9844
 StepF6 - StepF9   -0.13819 0.0526 Inf  -2.626  0.4341
 StepF6 - StepF10  -0.14065 0.0526 Inf  -2.673  0.3998
 StepF6 - StepF11  -0.08945 0.0526 Inf  -1.700  0.9670
 StepF6 - StepF12   0.02223 0.0526 Inf   0.422  1.0000
 StepF6 - StepF13   0.06999 0.0526 Inf   1.330  0.9977
 StepF6 - StepF14  -0.00232 0.0526 Inf  -0.044  1.0000
 StepF6 - StepF15  -0.03352 0.0526 Inf  -0.637  1.0000
 StepF6 - StepF16   0.00628 0.0526 Inf   0.119  1.0000
 StepF6 - StepF17   0.06177 0.0526 Inf   1.174  0.9995
 StepF6 - StepF18   0.07121 0.0526 Inf   1.353  0.9972
 StepF7 - StepF8   -0.06695 0.0526 Inf  -1.272  0.9987
 StepF7 - StepF9   -0.12220 0.0526 Inf  -2.322  0.6673
 StepF7 - StepF10  -0.12466 0.0526 Inf  -2.369  0.6320
 StepF7 - StepF11  -0.07346 0.0526 Inf  -1.396  0.9959
 StepF7 - StepF12   0.03823 0.0526 Inf   0.726  1.0000
 StepF7 - StepF13   0.08598 0.0526 Inf   1.634  0.9776
 StepF7 - StepF14   0.01367 0.0526 Inf   0.260  1.0000
 StepF7 - StepF15  -0.01753 0.0526 Inf  -0.333  1.0000
 StepF7 - StepF16   0.02227 0.0526 Inf   0.423  1.0000
 StepF7 - StepF17   0.07777 0.0526 Inf   1.478  0.9922
 StepF7 - StepF18   0.08720 0.0526 Inf   1.657  0.9742
 StepF8 - StepF9   -0.05524 0.0526 Inf  -1.050  0.9999
 StepF8 - StepF10  -0.05771 0.0526 Inf  -1.096  0.9998
 StepF8 - StepF11  -0.00651 0.0526 Inf  -0.124  1.0000
 StepF8 - StepF12   0.10518 0.0526 Inf   1.999  0.8705
 StepF8 - StepF13   0.15293 0.0526 Inf   2.906  0.2490
 StepF8 - StepF14   0.08062 0.0526 Inf   1.532  0.9884
 StepF8 - StepF15   0.04943 0.0526 Inf   0.939  1.0000
 StepF8 - StepF16   0.08923 0.0526 Inf   1.695  0.9678
 StepF8 - StepF17   0.14472 0.0526 Inf   2.750  0.3457
 StepF8 - StepF18   0.15415 0.0526 Inf   2.929  0.2362
 StepF9 - StepF10  -0.00246 0.0526 Inf  -0.047  1.0000
 StepF9 - StepF11   0.04874 0.0526 Inf   0.926  1.0000
 StepF9 - StepF12   0.16043 0.0526 Inf   3.048  0.1775
 StepF9 - StepF13   0.20818 0.0526 Inf   3.956  0.0095
 StepF9 - StepF14   0.13587 0.0526 Inf   2.582  0.4673
 StepF9 - StepF15   0.10467 0.0526 Inf   1.989  0.8751
 StepF9 - StepF16   0.14447 0.0526 Inf   2.745  0.3489
 StepF9 - StepF17   0.19996 0.0526 Inf   3.800  0.0171
 StepF9 - StepF18   0.20940 0.0526 Inf   3.979  0.0086
 StepF10 - StepF11  0.05120 0.0526 Inf   0.973  1.0000
 StepF10 - StepF12  0.16289 0.0526 Inf   3.095  0.1575
 StepF10 - StepF13  0.21064 0.0526 Inf   4.002  0.0079
 StepF10 - StepF14  0.13833 0.0526 Inf   2.628  0.4321
 StepF10 - StepF15  0.10713 0.0526 Inf   2.036  0.8521
 StepF10 - StepF16  0.14693 0.0526 Inf   2.792  0.3179
 StepF10 - StepF17  0.20242 0.0526 Inf   3.846  0.0144
 StepF10 - StepF18  0.21186 0.0526 Inf   4.026  0.0072
 StepF11 - StepF12  0.11169 0.0526 Inf   2.122  0.8036
 StepF11 - StepF13  0.15944 0.0526 Inf   3.030  0.1859
 StepF11 - StepF14  0.08713 0.0526 Inf   1.656  0.9744
 StepF11 - StepF15  0.05593 0.0526 Inf   1.063  0.9999
 StepF11 - StepF16  0.09573 0.0526 Inf   1.819  0.9390
 StepF11 - StepF17  0.15123 0.0526 Inf   2.873  0.2675
 StepF11 - StepF18  0.16066 0.0526 Inf   3.053  0.1755
 StepF12 - StepF13  0.04775 0.0526 Inf   0.907  1.0000
 StepF12 - StepF14 -0.02456 0.0526 Inf  -0.467  1.0000
 StepF12 - StepF15 -0.05575 0.0526 Inf  -1.059  0.9999
 StepF12 - StepF16 -0.01595 0.0526 Inf  -0.303  1.0000
 StepF12 - StepF17  0.03954 0.0526 Inf   0.751  1.0000
 StepF12 - StepF18  0.04897 0.0526 Inf   0.931  1.0000
 StepF13 - StepF14 -0.07231 0.0526 Inf  -1.374  0.9966
 StepF13 - StepF15 -0.10351 0.0526 Inf  -1.967  0.8852
 StepF13 - StepF16 -0.06371 0.0526 Inf  -1.211  0.9993
 StepF13 - StepF17 -0.00821 0.0526 Inf  -0.156  1.0000
 StepF13 - StepF18  0.00122 0.0526 Inf   0.023  1.0000
 StepF14 - StepF15 -0.03120 0.0526 Inf  -0.593  1.0000
 StepF14 - StepF16  0.00860 0.0526 Inf   0.163  1.0000
 StepF14 - StepF17  0.06410 0.0526 Inf   1.218  0.9992
 StepF14 - StepF18  0.07353 0.0526 Inf   1.397  0.9959
 StepF15 - StepF16  0.03980 0.0526 Inf   0.756  1.0000
 StepF15 - StepF17  0.09529 0.0526 Inf   1.811  0.9414
 StepF15 - StepF18  0.10473 0.0526 Inf   1.990  0.8746
 StepF16 - StepF17  0.05549 0.0526 Inf   1.054  0.9999
 StepF16 - StepF18  0.06493 0.0526 Inf   1.234  0.9991
 StepF17 - StepF18  0.00943 0.0526 Inf   0.179  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.19042 0.0526 Inf  -3.618  0.0325
 StepF1 - StepF3   -0.13133 0.0526 Inf  -2.495  0.5337
 StepF1 - StepF4   -0.02627 0.0526 Inf  -0.499  1.0000
 StepF1 - StepF5    0.06084 0.0526 Inf   1.156  0.9996
 StepF1 - StepF6    0.01336 0.0526 Inf   0.254  1.0000
 StepF1 - StepF7   -0.00263 0.0526 Inf  -0.050  1.0000
 StepF1 - StepF8   -0.06959 0.0526 Inf  -1.322  0.9978
 StepF1 - StepF9   -0.12483 0.0526 Inf  -2.372  0.6295
 StepF1 - StepF10  -0.12729 0.0526 Inf  -2.419  0.5935
 StepF1 - StepF11  -0.07609 0.0526 Inf  -1.446  0.9939
 StepF1 - StepF12   0.03560 0.0526 Inf   0.676  1.0000
 StepF1 - StepF13   0.08335 0.0526 Inf   1.584  0.9836
 StepF1 - StepF14   0.01104 0.0526 Inf   0.210  1.0000
 StepF1 - StepF15  -0.02016 0.0526 Inf  -0.383  1.0000
 StepF1 - StepF16   0.01964 0.0526 Inf   0.373  1.0000
 StepF1 - StepF17   0.07513 0.0526 Inf   1.428  0.9947
 StepF1 - StepF18   0.08457 0.0526 Inf   1.607  0.9810
 StepF2 - StepF3    0.05908 0.0526 Inf   1.123  0.9997
 StepF2 - StepF4    0.16415 0.0526 Inf   3.119  0.1479
 StepF2 - StepF5    0.25126 0.0526 Inf   4.774  0.0003
 StepF2 - StepF6    0.20378 0.0526 Inf   3.872  0.0130
 StepF2 - StepF7    0.18779 0.0526 Inf   3.568  0.0385
 StepF2 - StepF8    0.12083 0.0526 Inf   2.296  0.6865
 StepF2 - StepF9    0.06559 0.0526 Inf   1.246  0.9990
 StepF2 - StepF10   0.06313 0.0526 Inf   1.199  0.9994
 StepF2 - StepF11   0.11433 0.0526 Inf   2.172  0.7723
 StepF2 - StepF12   0.22601 0.0526 Inf   4.294  0.0024
 StepF2 - StepF13   0.27377 0.0526 Inf   5.202  <.0001
 StepF2 - StepF14   0.20146 0.0526 Inf   3.828  0.0154
 StepF2 - StepF15   0.17026 0.0526 Inf   3.235  0.1078
 StepF2 - StepF16   0.21006 0.0526 Inf   3.991  0.0082
 StepF2 - StepF17   0.26555 0.0526 Inf   5.046  0.0001
 StepF2 - StepF18   0.27499 0.0526 Inf   5.225  <.0001
 StepF3 - StepF4    0.10507 0.0526 Inf   1.996  0.8715
 StepF3 - StepF5    0.19217 0.0526 Inf   3.651  0.0290
 StepF3 - StepF6    0.14470 0.0526 Inf   2.749  0.3460
 StepF3 - StepF7    0.12870 0.0526 Inf   2.445  0.5727
 StepF3 - StepF8    0.06175 0.0526 Inf   1.173  0.9995
 StepF3 - StepF9    0.00650 0.0526 Inf   0.124  1.0000
 StepF3 - StepF10   0.00404 0.0526 Inf   0.077  1.0000
 StepF3 - StepF11   0.05524 0.0526 Inf   1.050  0.9999
 StepF3 - StepF12   0.16693 0.0526 Inf   3.172  0.1285
 StepF3 - StepF13   0.21468 0.0526 Inf   4.079  0.0058
 StepF3 - StepF14   0.14237 0.0526 Inf   2.705  0.3765
 StepF3 - StepF15   0.11117 0.0526 Inf   2.112  0.8094
 StepF3 - StepF16   0.15098 0.0526 Inf   2.869  0.2703
 StepF3 - StepF17   0.20647 0.0526 Inf   3.923  0.0107
 StepF3 - StepF18   0.21590 0.0526 Inf   4.102  0.0053
 StepF4 - StepF5    0.08710 0.0526 Inf   1.655  0.9745
 StepF4 - StepF6    0.03963 0.0526 Inf   0.753  1.0000
 StepF4 - StepF7    0.02363 0.0526 Inf   0.449  1.0000
 StepF4 - StepF8   -0.04332 0.0526 Inf  -0.823  1.0000
 StepF4 - StepF9   -0.09856 0.0526 Inf  -1.873  0.9221
 StepF4 - StepF10  -0.10103 0.0526 Inf  -1.920  0.9049
 StepF4 - StepF11  -0.04983 0.0526 Inf  -0.947  1.0000
 StepF4 - StepF12   0.06186 0.0526 Inf   1.175  0.9995
 StepF4 - StepF13   0.10961 0.0526 Inf   2.083  0.8266
 StepF4 - StepF14   0.03730 0.0526 Inf   0.709  1.0000
 StepF4 - StepF15   0.00611 0.0526 Inf   0.116  1.0000
 StepF4 - StepF16   0.04591 0.0526 Inf   0.872  1.0000
 StepF4 - StepF17   0.10140 0.0526 Inf   1.927  0.9020
 StepF4 - StepF18   0.11083 0.0526 Inf   2.106  0.8133
 StepF5 - StepF6   -0.04748 0.0526 Inf  -0.902  1.0000
 StepF5 - StepF7   -0.06347 0.0526 Inf  -1.206  0.9993
 StepF5 - StepF8   -0.13042 0.0526 Inf  -2.478  0.5472
 StepF5 - StepF9   -0.18567 0.0526 Inf  -3.528  0.0440
 StepF5 - StepF10  -0.18813 0.0526 Inf  -3.575  0.0377
 StepF5 - StepF11  -0.13693 0.0526 Inf  -2.602  0.4520
 StepF5 - StepF12  -0.02524 0.0526 Inf  -0.480  1.0000
 StepF5 - StepF13   0.02251 0.0526 Inf   0.428  1.0000
 StepF5 - StepF14  -0.04980 0.0526 Inf  -0.946  1.0000
 StepF5 - StepF15  -0.08100 0.0526 Inf  -1.539  0.9879
 StepF5 - StepF16  -0.04120 0.0526 Inf  -0.783  1.0000
 StepF5 - StepF17   0.01429 0.0526 Inf   0.272  1.0000
 StepF5 - StepF18   0.02373 0.0526 Inf   0.451  1.0000
 StepF6 - StepF7   -0.01599 0.0526 Inf  -0.304  1.0000
 StepF6 - StepF8   -0.08295 0.0526 Inf  -1.576  0.9844
 StepF6 - StepF9   -0.13819 0.0526 Inf  -2.626  0.4341
 StepF6 - StepF10  -0.14065 0.0526 Inf  -2.673  0.3998
 StepF6 - StepF11  -0.08945 0.0526 Inf  -1.700  0.9670
 StepF6 - StepF12   0.02223 0.0526 Inf   0.422  1.0000
 StepF6 - StepF13   0.06999 0.0526 Inf   1.330  0.9977
 StepF6 - StepF14  -0.00232 0.0526 Inf  -0.044  1.0000
 StepF6 - StepF15  -0.03352 0.0526 Inf  -0.637  1.0000
 StepF6 - StepF16   0.00628 0.0526 Inf   0.119  1.0000
 StepF6 - StepF17   0.06177 0.0526 Inf   1.174  0.9995
 StepF6 - StepF18   0.07121 0.0526 Inf   1.353  0.9972
 StepF7 - StepF8   -0.06695 0.0526 Inf  -1.272  0.9987
 StepF7 - StepF9   -0.12220 0.0526 Inf  -2.322  0.6673
 StepF7 - StepF10  -0.12466 0.0526 Inf  -2.369  0.6320
 StepF7 - StepF11  -0.07346 0.0526 Inf  -1.396  0.9959
 StepF7 - StepF12   0.03823 0.0526 Inf   0.726  1.0000
 StepF7 - StepF13   0.08598 0.0526 Inf   1.634  0.9776
 StepF7 - StepF14   0.01367 0.0526 Inf   0.260  1.0000
 StepF7 - StepF15  -0.01753 0.0526 Inf  -0.333  1.0000
 StepF7 - StepF16   0.02227 0.0526 Inf   0.423  1.0000
 StepF7 - StepF17   0.07777 0.0526 Inf   1.478  0.9922
 StepF7 - StepF18   0.08720 0.0526 Inf   1.657  0.9742
 StepF8 - StepF9   -0.05524 0.0526 Inf  -1.050  0.9999
 StepF8 - StepF10  -0.05771 0.0526 Inf  -1.096  0.9998
 StepF8 - StepF11  -0.00651 0.0526 Inf  -0.124  1.0000
 StepF8 - StepF12   0.10518 0.0526 Inf   1.999  0.8705
 StepF8 - StepF13   0.15293 0.0526 Inf   2.906  0.2490
 StepF8 - StepF14   0.08062 0.0526 Inf   1.532  0.9884
 StepF8 - StepF15   0.04943 0.0526 Inf   0.939  1.0000
 StepF8 - StepF16   0.08923 0.0526 Inf   1.695  0.9678
 StepF8 - StepF17   0.14472 0.0526 Inf   2.750  0.3457
 StepF8 - StepF18   0.15415 0.0526 Inf   2.929  0.2362
 StepF9 - StepF10  -0.00246 0.0526 Inf  -0.047  1.0000
 StepF9 - StepF11   0.04874 0.0526 Inf   0.926  1.0000
 StepF9 - StepF12   0.16043 0.0526 Inf   3.048  0.1775
 StepF9 - StepF13   0.20818 0.0526 Inf   3.956  0.0095
 StepF9 - StepF14   0.13587 0.0526 Inf   2.582  0.4673
 StepF9 - StepF15   0.10467 0.0526 Inf   1.989  0.8751
 StepF9 - StepF16   0.14447 0.0526 Inf   2.745  0.3489
 StepF9 - StepF17   0.19996 0.0526 Inf   3.800  0.0171
 StepF9 - StepF18   0.20940 0.0526 Inf   3.979  0.0086
 StepF10 - StepF11  0.05120 0.0526 Inf   0.973  1.0000
 StepF10 - StepF12  0.16289 0.0526 Inf   3.095  0.1575
 StepF10 - StepF13  0.21064 0.0526 Inf   4.002  0.0079
 StepF10 - StepF14  0.13833 0.0526 Inf   2.628  0.4321
 StepF10 - StepF15  0.10713 0.0526 Inf   2.036  0.8521
 StepF10 - StepF16  0.14693 0.0526 Inf   2.792  0.3179
 StepF10 - StepF17  0.20242 0.0526 Inf   3.846  0.0144
 StepF10 - StepF18  0.21186 0.0526 Inf   4.026  0.0072
 StepF11 - StepF12  0.11169 0.0526 Inf   2.122  0.8036
 StepF11 - StepF13  0.15944 0.0526 Inf   3.030  0.1859
 StepF11 - StepF14  0.08713 0.0526 Inf   1.656  0.9744
 StepF11 - StepF15  0.05593 0.0526 Inf   1.063  0.9999
 StepF11 - StepF16  0.09573 0.0526 Inf   1.819  0.9390
 StepF11 - StepF17  0.15123 0.0526 Inf   2.873  0.2675
 StepF11 - StepF18  0.16066 0.0526 Inf   3.053  0.1755
 StepF12 - StepF13  0.04775 0.0526 Inf   0.907  1.0000
 StepF12 - StepF14 -0.02456 0.0526 Inf  -0.467  1.0000
 StepF12 - StepF15 -0.05575 0.0526 Inf  -1.059  0.9999
 StepF12 - StepF16 -0.01595 0.0526 Inf  -0.303  1.0000
 StepF12 - StepF17  0.03954 0.0526 Inf   0.751  1.0000
 StepF12 - StepF18  0.04897 0.0526 Inf   0.931  1.0000
 StepF13 - StepF14 -0.07231 0.0526 Inf  -1.374  0.9966
 StepF13 - StepF15 -0.10351 0.0526 Inf  -1.967  0.8852
 StepF13 - StepF16 -0.06371 0.0526 Inf  -1.211  0.9993
 StepF13 - StepF17 -0.00821 0.0526 Inf  -0.156  1.0000
 StepF13 - StepF18  0.00122 0.0526 Inf   0.023  1.0000
 StepF14 - StepF15 -0.03120 0.0526 Inf  -0.593  1.0000
 StepF14 - StepF16  0.00860 0.0526 Inf   0.163  1.0000
 StepF14 - StepF17  0.06410 0.0526 Inf   1.218  0.9992
 StepF14 - StepF18  0.07353 0.0526 Inf   1.397  0.9959
 StepF15 - StepF16  0.03980 0.0526 Inf   0.756  1.0000
 StepF15 - StepF17  0.09529 0.0526 Inf   1.811  0.9414
 StepF15 - StepF18  0.10473 0.0526 Inf   1.990  0.8746
 StepF16 - StepF17  0.05549 0.0526 Inf   1.054  0.9999
 StepF16 - StepF18  0.06493 0.0526 Inf   1.234  0.9991
 StepF17 - StepF18  0.00943 0.0526 Inf   0.179  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.19042 0.0526 Inf   3.618  0.0050
 StepF3 - StepF2   -0.05908 0.0526 Inf  -1.123  1.0000
 StepF4 - StepF3   -0.10507 0.0526 Inf  -1.996  0.6883
 StepF5 - StepF4   -0.08710 0.0526 Inf  -1.655  1.0000
 StepF6 - StepF5    0.04748 0.0526 Inf   0.902  1.0000
 StepF7 - StepF6    0.01599 0.0526 Inf   0.304  1.0000
 StepF8 - StepF7    0.06695 0.0526 Inf   1.272  1.0000
 StepF9 - StepF8    0.05524 0.0526 Inf   1.050  1.0000
 StepF10 - StepF9   0.00246 0.0526 Inf   0.047  1.0000
 StepF11 - StepF10 -0.05120 0.0526 Inf  -0.973  1.0000
 StepF12 - StepF11 -0.11169 0.0526 Inf  -2.122  0.5412
 StepF13 - StepF12 -0.04775 0.0526 Inf  -0.907  1.0000
 StepF14 - StepF13  0.07231 0.0526 Inf   1.374  1.0000
 StepF15 - StepF14  0.03120 0.0526 Inf   0.593  1.0000
 StepF16 - StepF15 -0.03980 0.0526 Inf  -0.756  1.0000
 StepF17 - StepF16 -0.05549 0.0526 Inf  -1.054  1.0000
 StepF18 - StepF17 -0.00943 0.0526 Inf  -0.179  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1    0.19042 0.0526 Inf   3.618  0.0050
 StepF3 - StepF2   -0.05908 0.0526 Inf  -1.123  1.0000
 StepF4 - StepF3   -0.10507 0.0526 Inf  -1.996  0.6883
 StepF5 - StepF4   -0.08710 0.0526 Inf  -1.655  1.0000
 StepF6 - StepF5    0.04748 0.0526 Inf   0.902  1.0000
 StepF7 - StepF6    0.01599 0.0526 Inf   0.304  1.0000
 StepF8 - StepF7    0.06695 0.0526 Inf   1.272  1.0000
 StepF9 - StepF8    0.05524 0.0526 Inf   1.050  1.0000
 StepF10 - StepF9   0.00246 0.0526 Inf   0.047  1.0000
 StepF11 - StepF10 -0.05120 0.0526 Inf  -0.973  1.0000
 StepF12 - StepF11 -0.11169 0.0526 Inf  -2.122  0.5412
 StepF13 - StepF12 -0.04775 0.0526 Inf  -0.907  1.0000
 StepF14 - StepF13  0.07231 0.0526 Inf   1.374  1.0000
 StepF15 - StepF14  0.03120 0.0526 Inf   0.593  1.0000
 StepF16 - StepF15 -0.03980 0.0526 Inf  -0.756  1.0000
 StepF17 - StepF16 -0.05549 0.0526 Inf  -1.054  1.0000
 StepF18 - StepF17 -0.00943 0.0526 Inf  -0.179  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 


==============================
TEST | Block 5 | 18 steps | Axis Z
==============================

Type II Wald χ² (StepF & Accuracy):
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
            Chisq Df Pr(>Chisq)    
StepF    134.3915 17     <2e-16 ***
Accuracy   0.1139  1     0.7357    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

EMMs per step | Accuracy:
Accuracy = 0:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.37 0.168 Inf     1.046      1.70
 2       1.64 0.168 Inf     1.313      1.97
 3       1.49 0.168 Inf     1.163      1.82
 4       1.41 0.168 Inf     1.081      1.74
 5       1.36 0.168 Inf     1.027      1.68
 6       1.29 0.168 Inf     0.965      1.62
 7       1.46 0.168 Inf     1.130      1.79
 8       1.44 0.168 Inf     1.109      1.77
 9       1.34 0.168 Inf     1.015      1.67
 10      1.42 0.168 Inf     1.095      1.75
 11      1.29 0.168 Inf     0.963      1.62
 12      1.19 0.168 Inf     0.863      1.52
 13      1.26 0.168 Inf     0.933      1.59
 14      1.36 0.168 Inf     1.028      1.69
 15      1.29 0.168 Inf     0.963      1.62
 16      1.22 0.168 Inf     0.891      1.55
 17      1.14 0.168 Inf     0.816      1.47
 18      1.18 0.168 Inf     0.851      1.51

Accuracy = 1:
 StepF emmean    SE  df asymp.LCL asymp.UCL
 1       1.36 0.168 Inf     1.034      1.69
 2       1.63 0.168 Inf     1.302      1.96
 3       1.48 0.168 Inf     1.152      1.81
 4       1.40 0.168 Inf     1.070      1.73
 5       1.34 0.168 Inf     1.015      1.67
 6       1.28 0.168 Inf     0.953      1.61
 7       1.45 0.168 Inf     1.119      1.78
 8       1.43 0.168 Inf     1.098      1.76
 9       1.33 0.168 Inf     1.004      1.66
 10      1.41 0.168 Inf     1.083      1.74
 11      1.28 0.168 Inf     0.952      1.61
 12      1.18 0.168 Inf     0.851      1.51
 13      1.25 0.168 Inf     0.921      1.58
 14      1.35 0.168 Inf     1.016      1.67
 15      1.28 0.168 Inf     0.952      1.61
 16      1.21 0.168 Inf     0.880      1.54
 17      1.13 0.168 Inf     0.805      1.46
 18      1.17 0.168 Inf     0.840      1.50

Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

All-pairs (Tukey) among steps | Accuracy:
Accuracy = 0:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.267506 0.0627 Inf  -4.264  0.0027
 StepF1 - StepF3   -0.117392 0.0627 Inf  -1.871  0.9226
 StepF1 - StepF4   -0.035197 0.0627 Inf  -0.561  1.0000
 StepF1 - StepF5    0.019139 0.0627 Inf   0.305  1.0000
 StepF1 - StepF6    0.081051 0.0627 Inf   1.292  0.9984
 StepF1 - StepF7   -0.084321 0.0627 Inf  -1.344  0.9974
 StepF1 - StepF8   -0.063343 0.0627 Inf  -1.010  0.9999
 StepF1 - StepF9    0.030592 0.0627 Inf   0.488  1.0000
 StepF1 - StepF10  -0.048773 0.0627 Inf  -0.777  1.0000
 StepF1 - StepF11   0.082387 0.0627 Inf   1.313  0.9980
 StepF1 - StepF12   0.182847 0.0627 Inf   2.915  0.2441
 StepF1 - StepF13   0.112883 0.0627 Inf   1.799  0.9445
 StepF1 - StepF14   0.017971 0.0627 Inf   0.286  1.0000
 StepF1 - StepF15   0.082635 0.0627 Inf   1.317  0.9979
 StepF1 - StepF16   0.154461 0.0627 Inf   2.462  0.5597
 StepF1 - StepF17   0.229657 0.0627 Inf   3.661  0.0281
 StepF1 - StepF18   0.194802 0.0627 Inf   3.105  0.1534
 StepF2 - StepF3    0.150114 0.0627 Inf   2.393  0.6134
 StepF2 - StepF4    0.232309 0.0627 Inf   3.703  0.0242
 StepF2 - StepF5    0.286645 0.0627 Inf   4.569  0.0007
 StepF2 - StepF6    0.348557 0.0627 Inf   5.556  <.0001
 StepF2 - StepF7    0.183186 0.0627 Inf   2.920  0.2411
 StepF2 - StepF8    0.204163 0.0627 Inf   3.254  0.1020
 StepF2 - StepF9    0.298098 0.0627 Inf   4.752  0.0003
 StepF2 - StepF10   0.218733 0.0627 Inf   3.487  0.0503
 StepF2 - StepF11   0.349892 0.0627 Inf   5.577  <.0001
 StepF2 - StepF12   0.450353 0.0627 Inf   7.179  <.0001
 StepF2 - StepF13   0.380389 0.0627 Inf   6.064  <.0001
 StepF2 - StepF14   0.285477 0.0627 Inf   4.551  0.0008
 StepF2 - StepF15   0.350141 0.0627 Inf   5.581  <.0001
 StepF2 - StepF16   0.421967 0.0627 Inf   6.726  <.0001
 StepF2 - StepF17   0.497163 0.0627 Inf   7.925  <.0001
 StepF2 - StepF18   0.462308 0.0627 Inf   7.369  <.0001
 StepF3 - StepF4    0.082195 0.0627 Inf   1.310  0.9981
 StepF3 - StepF5    0.136532 0.0627 Inf   2.176  0.7696
 StepF3 - StepF6    0.198443 0.0627 Inf   3.163  0.1315
 StepF3 - StepF7    0.033072 0.0627 Inf   0.527  1.0000
 StepF3 - StepF8    0.054049 0.0627 Inf   0.862  1.0000
 StepF3 - StepF9    0.147985 0.0627 Inf   2.359  0.6394
 StepF3 - StepF10   0.068620 0.0627 Inf   1.094  0.9998
 StepF3 - StepF11   0.199779 0.0627 Inf   3.185  0.1241
 StepF3 - StepF12   0.300239 0.0627 Inf   4.786  0.0002
 StepF3 - StepF13   0.230275 0.0627 Inf   3.671  0.0271
 StepF3 - StepF14   0.135364 0.0627 Inf   2.158  0.7816
 StepF3 - StepF15   0.200028 0.0627 Inf   3.189  0.1227
 StepF3 - StepF16   0.271853 0.0627 Inf   4.333  0.0020
 StepF3 - StepF17   0.347050 0.0627 Inf   5.532  <.0001
 StepF3 - StepF18   0.312194 0.0627 Inf   4.977  0.0001
 StepF4 - StepF5    0.054337 0.0627 Inf   0.866  1.0000
 StepF4 - StepF6    0.116248 0.0627 Inf   1.853  0.9286
 StepF4 - StepF7   -0.049123 0.0627 Inf  -0.783  1.0000
 StepF4 - StepF8   -0.028146 0.0627 Inf  -0.449  1.0000
 StepF4 - StepF9    0.065790 0.0627 Inf   1.049  0.9999
 StepF4 - StepF10  -0.013575 0.0627 Inf  -0.216  1.0000
 StepF4 - StepF11   0.117584 0.0627 Inf   1.874  0.9215
 StepF4 - StepF12   0.218044 0.0627 Inf   3.476  0.0521
 StepF4 - StepF13   0.148080 0.0627 Inf   2.360  0.6382
 StepF4 - StepF14   0.053169 0.0627 Inf   0.848  1.0000
 StepF4 - StepF15   0.117833 0.0627 Inf   1.878  0.9201
 StepF4 - StepF16   0.189658 0.0627 Inf   3.023  0.1888
 StepF4 - StepF17   0.264854 0.0627 Inf   4.222  0.0032
 StepF4 - StepF18   0.229999 0.0627 Inf   3.666  0.0275
 StepF5 - StepF6    0.061912 0.0627 Inf   0.987  1.0000
 StepF5 - StepF7   -0.103460 0.0627 Inf  -1.649  0.9754
 StepF5 - StepF8   -0.082483 0.0627 Inf  -1.315  0.9980
 StepF5 - StepF9    0.011453 0.0627 Inf   0.183  1.0000
 StepF5 - StepF10  -0.067912 0.0627 Inf  -1.083  0.9998
 StepF5 - StepF11   0.063247 0.0627 Inf   1.008  0.9999
 StepF5 - StepF12   0.163707 0.0627 Inf   2.610  0.4462
 StepF5 - StepF13   0.093743 0.0627 Inf   1.494  0.9912
 StepF5 - StepF14  -0.001168 0.0627 Inf  -0.019  1.0000
 StepF5 - StepF15   0.063496 0.0627 Inf   1.012  0.9999
 StepF5 - StepF16   0.135321 0.0627 Inf   2.157  0.7820
 StepF5 - StepF17   0.210518 0.0627 Inf   3.356  0.0757
 StepF5 - StepF18   0.175663 0.0627 Inf   2.800  0.3125
 StepF6 - StepF7   -0.165371 0.0627 Inf  -2.636  0.4264
 StepF6 - StepF8   -0.144394 0.0627 Inf  -2.302  0.6823
 StepF6 - StepF9   -0.050459 0.0627 Inf  -0.804  1.0000
 StepF6 - StepF10  -0.129823 0.0627 Inf  -2.069  0.8341
 StepF6 - StepF11   0.001336 0.0627 Inf   0.021  1.0000
 StepF6 - StepF12   0.101796 0.0627 Inf   1.623  0.9790
 StepF6 - StepF13   0.031832 0.0627 Inf   0.507  1.0000
 StepF6 - StepF14  -0.063080 0.0627 Inf  -1.006  0.9999
 StepF6 - StepF15   0.001584 0.0627 Inf   0.025  1.0000
 StepF6 - StepF16   0.073410 0.0627 Inf   1.170  0.9995
 StepF6 - StepF17   0.148606 0.0627 Inf   2.369  0.6319
 StepF6 - StepF18   0.113751 0.0627 Inf   1.813  0.9407
 StepF7 - StepF8    0.020977 0.0627 Inf   0.334  1.0000
 StepF7 - StepF9    0.114913 0.0627 Inf   1.832  0.9353
 StepF7 - StepF10   0.035548 0.0627 Inf   0.567  1.0000
 StepF7 - StepF11   0.166707 0.0627 Inf   2.657  0.4108
 StepF7 - StepF12   0.267167 0.0627 Inf   4.259  0.0027
 StepF7 - StepF13   0.197203 0.0627 Inf   3.144  0.1387
 StepF7 - StepF14   0.102292 0.0627 Inf   1.631  0.9780
 StepF7 - StepF15   0.166956 0.0627 Inf   2.661  0.4079
 StepF7 - StepF16   0.238781 0.0627 Inf   3.806  0.0167
 StepF7 - StepF17   0.313978 0.0627 Inf   5.005  0.0001
 StepF7 - StepF18   0.279122 0.0627 Inf   4.449  0.0012
 StepF8 - StepF9    0.093936 0.0627 Inf   1.497  0.9910
 StepF8 - StepF10   0.014571 0.0627 Inf   0.232  1.0000
 StepF8 - StepF11   0.145730 0.0627 Inf   2.323  0.6665
 StepF8 - StepF12   0.246190 0.0627 Inf   3.924  0.0107
 StepF8 - StepF13   0.176226 0.0627 Inf   2.809  0.3068
 StepF8 - StepF14   0.081314 0.0627 Inf   1.296  0.9983
 StepF8 - StepF15   0.145979 0.0627 Inf   2.327  0.6635
 StepF8 - StepF16   0.217804 0.0627 Inf   3.472  0.0528
 StepF8 - StepF17   0.293000 0.0627 Inf   4.671  0.0004
 StepF8 - StepF18   0.258145 0.0627 Inf   4.115  0.0050
 StepF9 - StepF10  -0.079365 0.0627 Inf  -1.265  0.9987
 StepF9 - StepF11   0.051794 0.0627 Inf   0.826  1.0000
 StepF9 - StepF12   0.152254 0.0627 Inf   2.427  0.5870
 StepF9 - StepF13   0.082291 0.0627 Inf   1.312  0.9980
 StepF9 - StepF14  -0.012621 0.0627 Inf  -0.201  1.0000
 StepF9 - StepF15   0.052043 0.0627 Inf   0.830  1.0000
 StepF9 - StepF16   0.123869 0.0627 Inf   1.975  0.8817
 StepF9 - StepF17   0.199065 0.0627 Inf   3.173  0.1280
 StepF9 - StepF18   0.164210 0.0627 Inf   2.618  0.4402
 StepF10 - StepF11  0.131159 0.0627 Inf   2.091  0.8221
 StepF10 - StepF12  0.231619 0.0627 Inf   3.692  0.0251
 StepF10 - StepF13  0.161655 0.0627 Inf   2.577  0.4709
 StepF10 - StepF14  0.066744 0.0627 Inf   1.064  0.9999
 StepF10 - StepF15  0.131408 0.0627 Inf   2.095  0.8198
 StepF10 - StepF16  0.203233 0.0627 Inf   3.240  0.1064
 StepF10 - StepF17  0.278430 0.0627 Inf   4.438  0.0013
 StepF10 - StepF18  0.243574 0.0627 Inf   3.883  0.0125
 StepF11 - StepF12  0.100460 0.0627 Inf   1.601  0.9817
 StepF11 - StepF13  0.030496 0.0627 Inf   0.486  1.0000
 StepF11 - StepF14 -0.064415 0.0627 Inf  -1.027  0.9999
 StepF11 - StepF15  0.000249 0.0627 Inf   0.004  1.0000
 StepF11 - StepF16  0.072074 0.0627 Inf   1.149  0.9996
 StepF11 - StepF17  0.147271 0.0627 Inf   2.348  0.6480
 StepF11 - StepF18  0.112416 0.0627 Inf   1.792  0.9465
 StepF12 - StepF13 -0.069964 0.0627 Inf  -1.115  0.9998
 StepF12 - StepF14 -0.164876 0.0627 Inf  -2.628  0.4323
 StepF12 - StepF15 -0.100211 0.0627 Inf  -1.597  0.9821
 StepF12 - StepF16 -0.028386 0.0627 Inf  -0.452  1.0000
 StepF12 - StepF17  0.046810 0.0627 Inf   0.746  1.0000
 StepF12 - StepF18  0.011955 0.0627 Inf   0.191  1.0000
 StepF13 - StepF14 -0.094911 0.0627 Inf  -1.513  0.9899
 StepF13 - StepF15 -0.030248 0.0627 Inf  -0.482  1.0000
 StepF13 - StepF16  0.041578 0.0627 Inf   0.663  1.0000
 StepF13 - StepF17  0.116774 0.0627 Inf   1.861  0.9259
 StepF13 - StepF18  0.081919 0.0627 Inf   1.306  0.9981
 StepF14 - StepF15  0.064664 0.0627 Inf   1.031  0.9999
 StepF14 - StepF16  0.136490 0.0627 Inf   2.176  0.7701
 StepF14 - StepF17  0.211686 0.0627 Inf   3.374  0.0716
 StepF14 - StepF18  0.176831 0.0627 Inf   2.819  0.3007
 StepF15 - StepF16  0.071826 0.0627 Inf   1.145  0.9997
 StepF15 - StepF17  0.147022 0.0627 Inf   2.344  0.6510
 StepF15 - StepF18  0.112167 0.0627 Inf   1.788  0.9476
 StepF16 - StepF17  0.075196 0.0627 Inf   1.199  0.9994
 StepF16 - StepF18  0.040341 0.0627 Inf   0.643  1.0000
 StepF17 - StepF18 -0.034855 0.0627 Inf  -0.556  1.0000

Accuracy = 1:
 contrast           estimate     SE  df z.ratio p.value
 StepF1 - StepF2   -0.267506 0.0627 Inf  -4.264  0.0027
 StepF1 - StepF3   -0.117392 0.0627 Inf  -1.871  0.9226
 StepF1 - StepF4   -0.035197 0.0627 Inf  -0.561  1.0000
 StepF1 - StepF5    0.019139 0.0627 Inf   0.305  1.0000
 StepF1 - StepF6    0.081051 0.0627 Inf   1.292  0.9984
 StepF1 - StepF7   -0.084321 0.0627 Inf  -1.344  0.9974
 StepF1 - StepF8   -0.063343 0.0627 Inf  -1.010  0.9999
 StepF1 - StepF9    0.030592 0.0627 Inf   0.488  1.0000
 StepF1 - StepF10  -0.048773 0.0627 Inf  -0.777  1.0000
 StepF1 - StepF11   0.082387 0.0627 Inf   1.313  0.9980
 StepF1 - StepF12   0.182847 0.0627 Inf   2.915  0.2441
 StepF1 - StepF13   0.112883 0.0627 Inf   1.799  0.9445
 StepF1 - StepF14   0.017971 0.0627 Inf   0.286  1.0000
 StepF1 - StepF15   0.082635 0.0627 Inf   1.317  0.9979
 StepF1 - StepF16   0.154461 0.0627 Inf   2.462  0.5597
 StepF1 - StepF17   0.229657 0.0627 Inf   3.661  0.0281
 StepF1 - StepF18   0.194802 0.0627 Inf   3.105  0.1534
 StepF2 - StepF3    0.150114 0.0627 Inf   2.393  0.6134
 StepF2 - StepF4    0.232309 0.0627 Inf   3.703  0.0242
 StepF2 - StepF5    0.286645 0.0627 Inf   4.569  0.0007
 StepF2 - StepF6    0.348557 0.0627 Inf   5.556  <.0001
 StepF2 - StepF7    0.183186 0.0627 Inf   2.920  0.2411
 StepF2 - StepF8    0.204163 0.0627 Inf   3.254  0.1020
 StepF2 - StepF9    0.298098 0.0627 Inf   4.752  0.0003
 StepF2 - StepF10   0.218733 0.0627 Inf   3.487  0.0503
 StepF2 - StepF11   0.349892 0.0627 Inf   5.577  <.0001
 StepF2 - StepF12   0.450353 0.0627 Inf   7.179  <.0001
 StepF2 - StepF13   0.380389 0.0627 Inf   6.064  <.0001
 StepF2 - StepF14   0.285477 0.0627 Inf   4.551  0.0008
 StepF2 - StepF15   0.350141 0.0627 Inf   5.581  <.0001
 StepF2 - StepF16   0.421967 0.0627 Inf   6.726  <.0001
 StepF2 - StepF17   0.497163 0.0627 Inf   7.925  <.0001
 StepF2 - StepF18   0.462308 0.0627 Inf   7.369  <.0001
 StepF3 - StepF4    0.082195 0.0627 Inf   1.310  0.9981
 StepF3 - StepF5    0.136532 0.0627 Inf   2.176  0.7696
 StepF3 - StepF6    0.198443 0.0627 Inf   3.163  0.1315
 StepF3 - StepF7    0.033072 0.0627 Inf   0.527  1.0000
 StepF3 - StepF8    0.054049 0.0627 Inf   0.862  1.0000
 StepF3 - StepF9    0.147985 0.0627 Inf   2.359  0.6394
 StepF3 - StepF10   0.068620 0.0627 Inf   1.094  0.9998
 StepF3 - StepF11   0.199779 0.0627 Inf   3.185  0.1241
 StepF3 - StepF12   0.300239 0.0627 Inf   4.786  0.0002
 StepF3 - StepF13   0.230275 0.0627 Inf   3.671  0.0271
 StepF3 - StepF14   0.135364 0.0627 Inf   2.158  0.7816
 StepF3 - StepF15   0.200028 0.0627 Inf   3.189  0.1227
 StepF3 - StepF16   0.271853 0.0627 Inf   4.333  0.0020
 StepF3 - StepF17   0.347050 0.0627 Inf   5.532  <.0001
 StepF3 - StepF18   0.312194 0.0627 Inf   4.977  0.0001
 StepF4 - StepF5    0.054337 0.0627 Inf   0.866  1.0000
 StepF4 - StepF6    0.116248 0.0627 Inf   1.853  0.9286
 StepF4 - StepF7   -0.049123 0.0627 Inf  -0.783  1.0000
 StepF4 - StepF8   -0.028146 0.0627 Inf  -0.449  1.0000
 StepF4 - StepF9    0.065790 0.0627 Inf   1.049  0.9999
 StepF4 - StepF10  -0.013575 0.0627 Inf  -0.216  1.0000
 StepF4 - StepF11   0.117584 0.0627 Inf   1.874  0.9215
 StepF4 - StepF12   0.218044 0.0627 Inf   3.476  0.0521
 StepF4 - StepF13   0.148080 0.0627 Inf   2.360  0.6382
 StepF4 - StepF14   0.053169 0.0627 Inf   0.848  1.0000
 StepF4 - StepF15   0.117833 0.0627 Inf   1.878  0.9201
 StepF4 - StepF16   0.189658 0.0627 Inf   3.023  0.1888
 StepF4 - StepF17   0.264854 0.0627 Inf   4.222  0.0032
 StepF4 - StepF18   0.229999 0.0627 Inf   3.666  0.0275
 StepF5 - StepF6    0.061912 0.0627 Inf   0.987  1.0000
 StepF5 - StepF7   -0.103460 0.0627 Inf  -1.649  0.9754
 StepF5 - StepF8   -0.082483 0.0627 Inf  -1.315  0.9980
 StepF5 - StepF9    0.011453 0.0627 Inf   0.183  1.0000
 StepF5 - StepF10  -0.067912 0.0627 Inf  -1.083  0.9998
 StepF5 - StepF11   0.063247 0.0627 Inf   1.008  0.9999
 StepF5 - StepF12   0.163707 0.0627 Inf   2.610  0.4462
 StepF5 - StepF13   0.093743 0.0627 Inf   1.494  0.9912
 StepF5 - StepF14  -0.001168 0.0627 Inf  -0.019  1.0000
 StepF5 - StepF15   0.063496 0.0627 Inf   1.012  0.9999
 StepF5 - StepF16   0.135321 0.0627 Inf   2.157  0.7820
 StepF5 - StepF17   0.210518 0.0627 Inf   3.356  0.0757
 StepF5 - StepF18   0.175663 0.0627 Inf   2.800  0.3125
 StepF6 - StepF7   -0.165371 0.0627 Inf  -2.636  0.4264
 StepF6 - StepF8   -0.144394 0.0627 Inf  -2.302  0.6823
 StepF6 - StepF9   -0.050459 0.0627 Inf  -0.804  1.0000
 StepF6 - StepF10  -0.129823 0.0627 Inf  -2.069  0.8341
 StepF6 - StepF11   0.001336 0.0627 Inf   0.021  1.0000
 StepF6 - StepF12   0.101796 0.0627 Inf   1.623  0.9790
 StepF6 - StepF13   0.031832 0.0627 Inf   0.507  1.0000
 StepF6 - StepF14  -0.063080 0.0627 Inf  -1.006  0.9999
 StepF6 - StepF15   0.001584 0.0627 Inf   0.025  1.0000
 StepF6 - StepF16   0.073410 0.0627 Inf   1.170  0.9995
 StepF6 - StepF17   0.148606 0.0627 Inf   2.369  0.6319
 StepF6 - StepF18   0.113751 0.0627 Inf   1.813  0.9407
 StepF7 - StepF8    0.020977 0.0627 Inf   0.334  1.0000
 StepF7 - StepF9    0.114913 0.0627 Inf   1.832  0.9353
 StepF7 - StepF10   0.035548 0.0627 Inf   0.567  1.0000
 StepF7 - StepF11   0.166707 0.0627 Inf   2.657  0.4108
 StepF7 - StepF12   0.267167 0.0627 Inf   4.259  0.0027
 StepF7 - StepF13   0.197203 0.0627 Inf   3.144  0.1387
 StepF7 - StepF14   0.102292 0.0627 Inf   1.631  0.9780
 StepF7 - StepF15   0.166956 0.0627 Inf   2.661  0.4079
 StepF7 - StepF16   0.238781 0.0627 Inf   3.806  0.0167
 StepF7 - StepF17   0.313978 0.0627 Inf   5.005  0.0001
 StepF7 - StepF18   0.279122 0.0627 Inf   4.449  0.0012
 StepF8 - StepF9    0.093936 0.0627 Inf   1.497  0.9910
 StepF8 - StepF10   0.014571 0.0627 Inf   0.232  1.0000
 StepF8 - StepF11   0.145730 0.0627 Inf   2.323  0.6665
 StepF8 - StepF12   0.246190 0.0627 Inf   3.924  0.0107
 StepF8 - StepF13   0.176226 0.0627 Inf   2.809  0.3068
 StepF8 - StepF14   0.081314 0.0627 Inf   1.296  0.9983
 StepF8 - StepF15   0.145979 0.0627 Inf   2.327  0.6635
 StepF8 - StepF16   0.217804 0.0627 Inf   3.472  0.0528
 StepF8 - StepF17   0.293000 0.0627 Inf   4.671  0.0004
 StepF8 - StepF18   0.258145 0.0627 Inf   4.115  0.0050
 StepF9 - StepF10  -0.079365 0.0627 Inf  -1.265  0.9987
 StepF9 - StepF11   0.051794 0.0627 Inf   0.826  1.0000
 StepF9 - StepF12   0.152254 0.0627 Inf   2.427  0.5870
 StepF9 - StepF13   0.082291 0.0627 Inf   1.312  0.9980
 StepF9 - StepF14  -0.012621 0.0627 Inf  -0.201  1.0000
 StepF9 - StepF15   0.052043 0.0627 Inf   0.830  1.0000
 StepF9 - StepF16   0.123869 0.0627 Inf   1.975  0.8817
 StepF9 - StepF17   0.199065 0.0627 Inf   3.173  0.1280
 StepF9 - StepF18   0.164210 0.0627 Inf   2.618  0.4402
 StepF10 - StepF11  0.131159 0.0627 Inf   2.091  0.8221
 StepF10 - StepF12  0.231619 0.0627 Inf   3.692  0.0251
 StepF10 - StepF13  0.161655 0.0627 Inf   2.577  0.4709
 StepF10 - StepF14  0.066744 0.0627 Inf   1.064  0.9999
 StepF10 - StepF15  0.131408 0.0627 Inf   2.095  0.8198
 StepF10 - StepF16  0.203233 0.0627 Inf   3.240  0.1064
 StepF10 - StepF17  0.278430 0.0627 Inf   4.438  0.0013
 StepF10 - StepF18  0.243574 0.0627 Inf   3.883  0.0125
 StepF11 - StepF12  0.100460 0.0627 Inf   1.601  0.9817
 StepF11 - StepF13  0.030496 0.0627 Inf   0.486  1.0000
 StepF11 - StepF14 -0.064415 0.0627 Inf  -1.027  0.9999
 StepF11 - StepF15  0.000249 0.0627 Inf   0.004  1.0000
 StepF11 - StepF16  0.072074 0.0627 Inf   1.149  0.9996
 StepF11 - StepF17  0.147271 0.0627 Inf   2.348  0.6480
 StepF11 - StepF18  0.112416 0.0627 Inf   1.792  0.9465
 StepF12 - StepF13 -0.069964 0.0627 Inf  -1.115  0.9998
 StepF12 - StepF14 -0.164876 0.0627 Inf  -2.628  0.4323
 StepF12 - StepF15 -0.100211 0.0627 Inf  -1.597  0.9821
 StepF12 - StepF16 -0.028386 0.0627 Inf  -0.452  1.0000
 StepF12 - StepF17  0.046810 0.0627 Inf   0.746  1.0000
 StepF12 - StepF18  0.011955 0.0627 Inf   0.191  1.0000
 StepF13 - StepF14 -0.094911 0.0627 Inf  -1.513  0.9899
 StepF13 - StepF15 -0.030248 0.0627 Inf  -0.482  1.0000
 StepF13 - StepF16  0.041578 0.0627 Inf   0.663  1.0000
 StepF13 - StepF17  0.116774 0.0627 Inf   1.861  0.9259
 StepF13 - StepF18  0.081919 0.0627 Inf   1.306  0.9981
 StepF14 - StepF15  0.064664 0.0627 Inf   1.031  0.9999
 StepF14 - StepF16  0.136490 0.0627 Inf   2.176  0.7701
 StepF14 - StepF17  0.211686 0.0627 Inf   3.374  0.0716
 StepF14 - StepF18  0.176831 0.0627 Inf   2.819  0.3007
 StepF15 - StepF16  0.071826 0.0627 Inf   1.145  0.9997
 StepF15 - StepF17  0.147022 0.0627 Inf   2.344  0.6510
 StepF15 - StepF18  0.112167 0.0627 Inf   1.788  0.9476
 StepF16 - StepF17  0.075196 0.0627 Inf   1.199  0.9994
 StepF16 - StepF18  0.040341 0.0627 Inf   0.643  1.0000
 StepF17 - StepF18 -0.034855 0.0627 Inf  -0.556  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 18 estimates 

Adjacent steps (consec; Holm) | Accuracy:
Accuracy = 0:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.2675 0.0627 Inf   4.264  0.0003
 StepF3 - StepF2    -0.1501 0.0627 Inf  -2.393  0.2507
 StepF4 - StepF3    -0.0822 0.0627 Inf  -1.310  1.0000
 StepF5 - StepF4    -0.0543 0.0627 Inf  -0.866  1.0000
 StepF6 - StepF5    -0.0619 0.0627 Inf  -0.987  1.0000
 StepF7 - StepF6     0.1654 0.0627 Inf   2.636  0.1342
 StepF8 - StepF7    -0.0210 0.0627 Inf  -0.334  1.0000
 StepF9 - StepF8    -0.0939 0.0627 Inf  -1.497  1.0000
 StepF10 - StepF9    0.0794 0.0627 Inf   1.265  1.0000
 StepF11 - StepF10  -0.1312 0.0627 Inf  -2.091  0.5117
 StepF12 - StepF11  -0.1005 0.0627 Inf  -1.601  1.0000
 StepF13 - StepF12   0.0700 0.0627 Inf   1.115  1.0000
 StepF14 - StepF13   0.0949 0.0627 Inf   1.513  1.0000
 StepF15 - StepF14  -0.0647 0.0627 Inf  -1.031  1.0000
 StepF16 - StepF15  -0.0718 0.0627 Inf  -1.145  1.0000
 StepF17 - StepF16  -0.0752 0.0627 Inf  -1.199  1.0000
 StepF18 - StepF17   0.0349 0.0627 Inf   0.556  1.0000

Accuracy = 1:
 contrast          estimate     SE  df z.ratio p.value
 StepF2 - StepF1     0.2675 0.0627 Inf   4.264  0.0003
 StepF3 - StepF2    -0.1501 0.0627 Inf  -2.393  0.2507
 StepF4 - StepF3    -0.0822 0.0627 Inf  -1.310  1.0000
 StepF5 - StepF4    -0.0543 0.0627 Inf  -0.866  1.0000
 StepF6 - StepF5    -0.0619 0.0627 Inf  -0.987  1.0000
 StepF7 - StepF6     0.1654 0.0627 Inf   2.636  0.1342
 StepF8 - StepF7    -0.0210 0.0627 Inf  -0.334  1.0000
 StepF9 - StepF8    -0.0939 0.0627 Inf  -1.497  1.0000
 StepF10 - StepF9    0.0794 0.0627 Inf   1.265  1.0000
 StepF11 - StepF10  -0.1312 0.0627 Inf  -2.091  0.5117
 StepF12 - StepF11  -0.1005 0.0627 Inf  -1.601  1.0000
 StepF13 - StepF12   0.0700 0.0627 Inf   1.115  1.0000
 StepF14 - StepF13   0.0949 0.0627 Inf   1.513  1.0000
 StepF15 - StepF14  -0.0647 0.0627 Inf  -1.031  1.0000
 StepF16 - StepF15  -0.0718 0.0627 Inf  -1.145  1.0000
 StepF17 - StepF16  -0.0752 0.0627 Inf  -1.199  1.0000
 StepF18 - StepF17   0.0349 0.0627 Inf   0.556  1.0000

Degrees-of-freedom method: asymptotic 
P value adjustment: holm method for 17 tests 

3.2 Concatenation plots

# ==== TRAINING (Blocks 1–3): Step-wise EMM ± SD (Correct-only) + All-axes overlay ====
suppressPackageStartupMessages({
  library(dplyr); library(ggplot2); library(lme4); library(emmeans); library(patchwork)
})
emm_options(lmer.df = "asymptotic")

.get_emm_sd_correct <- function(df_axis) {
  if (nrow(df_axis) == 0) return(NULL)
  dd <- df_axis %>%
    filter(as.character(Accuracy) == "1") %>%
    mutate(
      StepF    = factor(Step, levels = sort(unique(Step))),
      subject  = factor(subject),
      trial_id = factor(trial_id)
    )
  if (nrow(dd) == 0) return(NULL)

  m <- suppressWarnings(lmer(RMS ~ StepF + (1|subject) + (1|trial_id), data = dd, REML = TRUE))

  em_df <- as.data.frame(emmeans(m, ~ StepF)) %>%
    transmute(Step = as.numeric(as.character(StepF)),
              emmean = emmean)

  sd_df <- dd %>%
    group_by(StepF) %>%
    summarise(sd = sd(RMS, na.rm = TRUE), .groups = "drop") %>%
    transmute(Step = as.numeric(as.character(StepF)), sd = sd)

  em_df %>%
    left_join(sd_df, by = "Step") %>%
    mutate(ymin = pmax(0, emmean - sd),
           ymax = emmean + sd)
}

.plot_block_stepwise_sd_correct <- function(df_block, block_title) {
  axes_map <- c("x"="X","y"="Y","z"="Z")
  out <- lapply(names(axes_map), function(ax) {
    tbl <- .get_emm_sd_correct(df_block %>% filter(Axis == ax))
    if (is.null(tbl)) return(NULL)
    tbl %>% mutate(Axis = axes_map[[ax]])
  })
  emms_tbl <- bind_rows(out)
  if (nrow(emms_tbl) == 0) return(invisible(NULL))

  # (1) Faceted by Axis (as before)
  p_facets <- ggplot(emms_tbl, aes(x = Step, y = emmean)) +
    geom_ribbon(aes(ymin = ymin, ymax = ymax), alpha = 0.18) +
    geom_line(size = 0.9) +
    geom_point(size = 1.2) +
    facet_wrap(~ Axis, nrow = 1, scales = "free_y") +
    labs(title = paste0(block_title, " — Step-wise EMMs (±SD) — Correct trials"),
         x = "Step", y = "EMM RMS") +
    theme_classic() +
    theme(legend.position = "none")

  # (2) All axes in one panel
  p_overlay <- ggplot(emms_tbl, aes(x = Step, y = emmean, color = Axis, fill = Axis, group = Axis)) +
    geom_ribbon(aes(ymin = ymin, ymax = ymax), alpha = 0.15, color = NA) +
    geom_line(size = 0.9) +
    geom_point(size = 1.2) +
    labs(title = paste0(block_title, " — Step-wise EMMs (±SD) — Correct trials (X/Y/Z overlaid)"),
         x = "Step", y = "EMM RMS") +
    theme_classic() +
    theme(legend.position = "bottom")

  list(facets = p_facets, overlay = p_overlay)
}

# Render for each training block
res_b1 <- .plot_block_stepwise_sd_correct(stepwise_6,  "Block 1 (6 steps)")
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
res_b2 <- .plot_block_stepwise_sd_correct(stepwise_12, "Block 2 (12 steps)")
res_b3 <- .plot_block_stepwise_sd_correct(stepwise_18, "Block 3 (18 steps)")

if (!is.null(res_b1)) { print(res_b1$facets); print(res_b1$overlay) }

if (!is.null(res_b2)) { print(res_b2$facets); print(res_b2$overlay) }

if (!is.null(res_b3)) { print(res_b3$facets); print(res_b3$overlay) }

# ==== TEST (Blocks 4–5): Step-wise EMM ± SD (Correct-only) + All-axes overlay per seq length ====
suppressPackageStartupMessages({
  library(dplyr); library(ggplot2); library(lme4); library(emmeans); library(patchwork)
})
emm_options(lmer.df = "asymptotic")

.get_emm_sd_correct <- function(df_axis) {
  if (nrow(df_axis) == 0) return(NULL)
  dd <- df_axis %>%
    filter(as.character(Accuracy) == "1") %>%
    mutate(
      StepF    = factor(Step, levels = sort(unique(Step))),
      subject  = factor(subject),
      trial_id = factor(trial_id)
    )
  if (nrow(dd) == 0) return(NULL)

  m <- suppressWarnings(lmer(RMS ~ StepF + (1|subject) + (1|trial_id), data = dd, REML = TRUE))

  em_df <- as.data.frame(emmeans(m, ~ StepF)) %>%
    transmute(Step = as.numeric(as.character(StepF)),
              emmean = emmean)

  sd_df <- dd %>%
    group_by(StepF) %>%
    summarise(sd = sd(RMS, na.rm = TRUE), .groups = "drop") %>%
    transmute(Step = as.numeric(as.character(StepF)), sd = sd)

  em_df %>%
    left_join(sd_df, by = "Step") %>%
    mutate(ymin = pmax(0, emmean - sd),
           ymax = emmean + sd)
}

.plot_block_len_sd_correct <- function(df_block, title_prefix) {
  axes_map <- c("x"="X","y"="Y","z"="Z")
  out <- lapply(names(axes_map), function(ax) {
    tbl <- .get_emm_sd_correct(df_block %>% filter(Axis == ax))
    if (is.null(tbl)) return(NULL)
    tbl %>% mutate(Axis = axes_map[[ax]])
  })
  emms_tbl <- bind_rows(out)
  if (nrow(emms_tbl) == 0) return(invisible(NULL))

  # (1) Faceted by Axis (as before)
  p_facets <- ggplot(emms_tbl, aes(x = Step, y = emmean)) +
    geom_ribbon(aes(ymin = ymin, ymax = ymax), alpha = 0.18) +
    geom_line(size = 0.9) +
    geom_point(size = 1.2) +
    facet_wrap(~ Axis, nrow = 1, scales = "free_y") +
    labs(title = paste0(title_prefix, " — Step-wise EMMs (±SD) — Correct trials"),
         x = "Step", y = "EMM RMS") +
    theme_classic() +
    theme(legend.position = "none")

  # (2) All axes in one panel
  p_overlay <- ggplot(emms_tbl, aes(x = Step, y = emmean, color = Axis, fill = Axis, group = Axis)) +
    geom_ribbon(aes(ymin = ymin, ymax = ymax), alpha = 0.15, color = NA) +
    geom_line(size = 0.9) +
    geom_point(size = 1.2) +
    labs(title = paste0(title_prefix, " — Step-wise EMMs (±SD) — Correct trials (X/Y/Z overlaid)"),
         x = "Step", y = "EMM RMS") +
    theme_classic() +
    theme(legend.position = "bottom")

  list(facets = p_facets, overlay = p_overlay)
}

# Block 4
res_b4_6  <- .plot_block_len_sd_correct(sw_b4_6,  "Block 4 — 6 steps")
res_b4_12 <- .plot_block_len_sd_correct(sw_b4_12, "Block 4 — 12 steps")
res_b4_18 <- .plot_block_len_sd_correct(sw_b4_18, "Block 4 — 18 steps")

if (!is.null(res_b4_6))  { print(res_b4_6$facets);  print(res_b4_6$overlay) }

if (!is.null(res_b4_12)) { print(res_b4_12$facets); print(res_b4_12$overlay) }

if (!is.null(res_b4_18)) { print(res_b4_18$facets); print(res_b4_18$overlay) }

# Block 5
res_b5_6  <- .plot_block_len_sd_correct(sw_b5_6,  "Block 5 — 6 steps")
res_b5_12 <- .plot_block_len_sd_correct(sw_b5_12, "Block 5 — 12 steps")
res_b5_18 <- .plot_block_len_sd_correct(sw_b5_18, "Block 5 — 18 steps")

if (!is.null(res_b5_6))  { print(res_b5_6$facets);  print(res_b5_6$overlay) }

if (!is.null(res_b5_12)) { print(res_b5_12$facets); print(res_b5_12$overlay) }

if (!is.null(res_b5_18)) { print(res_b5_18$facets); print(res_b5_18$overlay) }

#additional analysis comparing which axis shows the highest variability

# ==== #1.3bis: RMS differences among axes (X/Y/Z) across blocks ====

#   RMS ~ Axis * Block + Accuracy + (1 | subject) + (1 | Trial)

# and EMMs + Tukey pairwise comparisons for Axis (overall and per block).
suppressPackageStartupMessages({
  library(dplyr); library(tidyr)
  library(lme4); library(lmerTest)
  library(emmeans); library(car)
})
emm_options(lmer.df = "asymptotic")

# Prepare long format once
axes_long <- rms_combined %>%
  dplyr::select(subject, Trial, Block, phase, Accuracy, rms_x, rms_y, rms_z) %>%
  tidyr::pivot_longer(
    cols = c(rms_x, rms_y, rms_z),
    names_to = "Axis",
    values_to = "RMS"
  ) %>%
  mutate(
    Axis  = dplyr::recode(Axis, rms_x = "X", rms_y = "Y", rms_z = "Z"),
    Axis  = factor(Axis, levels = c("X","Y","Z")),
    Block = factor(Block),  # already factor upstream
    phase = factor(phase, levels = c("Preparation","Execution"))
  ) %>%
  tidyr::drop_na(RMS) %>%
  droplevels()

analyze_axes_vs_blocks <- function(df, label = "OVERALL (collapsed across phase)") {
  cat("\n\n==============================\n",
      "AXES × BLOCKS — ", label,
      "\n==============================\n", sep = "")

  m <- lmer(RMS ~ Axis * Block + Accuracy + (1 | subject) + (1 | Trial), data = df, REML = TRUE)

  cat("\n--- Model Summary (lmerTest; Satterthwaite t-tests) ---\n")
  print(summary(m))

  cat("\n--- lmerTest ANOVA (F-tests; Satterthwaite) ---\n")
  print(anova(m))

  cat("\n--- Type II Wald χ² (car::Anova) ---\n")
  print(car::Anova(m, type = 2, test.statistic = "Chisq"))

  cat("\n--- Type III Wald χ² (car::Anova; sum contrasts) ---\n")
  print(car::Anova(m, type = 3, test.statistic = "Chisq"))

  # EMMs for Axis (averaged over Blocks & Accuracy levels present)
  em_axis <- emmeans(m, ~ Axis)
  cat("\n--- EMMs by Axis (averaged over Blocks) ---\n")
  print(summary(em_axis))

  cat("\n--- Pairwise (Tukey) Axis comparisons (overall) ---\n")
  print(pairs(em_axis, adjust = "tukey"))

  # Simple effects: Axis differences within each Block
  em_axis_by_block <- emmeans(m, ~ Axis | Block)
  cat("\n--- EMMs by Axis within each Block ---\n")
  print(summary(em_axis_by_block))

  cat("\n--- Pairwise (Tukey) Axis comparisons within each Block ---\n")
  print(pairs(em_axis_by_block, adjust = "tukey"))

  invisible(TRUE)
}

# 1) Collapsed across phase (overall)
analyze_axes_vs_blocks(axes_long, label = "OVERALL")


==============================
AXES × BLOCKS — OVERALL
==============================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Axis * Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: df

REML criterion at convergence: 54387.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.2450 -0.7332 -0.0719  0.5559 13.7440 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.001358 0.03684 
 subject  (Intercept) 0.029239 0.17099 
 Residual             0.278967 0.52817 
Number of obs: 34656, groups:  Trial, 48; subject, 18

Fixed effects:
               Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)   4.891e-01  4.076e-02  1.761e+01  12.000 6.59e-10 ***
Axis1        -9.296e-02  4.029e-03  3.457e+04 -23.073  < 2e-16 ***
Axis2        -7.535e-02  4.029e-03  3.457e+04 -18.701  < 2e-16 ***
Block1        1.759e-02  6.125e-03  3.462e+04   2.871  0.00409 ** 
Block2        2.802e-02  5.699e-03  3.462e+04   4.916 8.88e-07 ***
Block3       -1.481e-02  5.738e-03  3.442e+04  -2.580  0.00987 ** 
Block4        2.674e-02  5.740e-03  3.461e+04   4.659 3.19e-06 ***
Accuracy1    -2.407e-02  3.040e-03  3.329e+04  -7.915 2.54e-15 ***
Axis1:Block1  1.025e-03  8.502e-03  3.457e+04   0.121  0.90405    
Axis2:Block1  6.267e-03  8.502e-03  3.457e+04   0.737  0.46102    
Axis1:Block2 -1.060e-02  8.044e-03  3.457e+04  -1.317  0.18772    
Axis2:Block2 -2.157e-03  8.044e-03  3.457e+04  -0.268  0.78857    
Axis1:Block3 -2.407e-04  8.013e-03  3.457e+04  -0.030  0.97604    
Axis2:Block3  5.460e-04  8.013e-03  3.457e+04   0.068  0.94568    
Axis1:Block4 -4.620e-03  8.072e-03  3.457e+04  -0.572  0.56712    
Axis2:Block4 -1.201e-02  8.072e-03  3.457e+04  -1.487  0.13692    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 16 > 12.
Use print(summary(m), correlation=TRUE)  or
    vcov(summary(m))        if you need it

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
           Sum Sq Mean Sq NumDF DenDF  F value    Pr(>F)    
Axis       488.58 244.289     2 34569 875.6926 < 2.2e-16 ***
Block       38.11   9.527     4 34619  34.1505 < 2.2e-16 ***
Accuracy    17.48  17.479     1 33291  62.6548 2.539e-15 ***
Axis:Block   3.79   0.473     8 34569   1.6972   0.09349 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
Axis       1755.332  2  < 2.2e-16 ***
Block       136.602  4  < 2.2e-16 ***
Accuracy     62.655  1  2.463e-15 ***
Axis:Block   13.578  8    0.09345 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
               Chisq Df Pr(>Chisq)    
(Intercept)  144.003  1  < 2.2e-16 ***
Axis        1751.385  2  < 2.2e-16 ***
Block        136.602  4  < 2.2e-16 ***
Accuracy      62.655  1  2.463e-15 ***
Axis:Block    13.578  8    0.09345 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
NOTE: Results may be misleading due to involvement in interactions

--- EMMs by Axis (averaged over Blocks) ---
 Axis emmean    SE  df asymp.LCL asymp.UCL
 X     0.396 0.041 Inf     0.316     0.476
 Y     0.414 0.041 Inf     0.334     0.494
 Z     0.657 0.041 Inf     0.577     0.738

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons (overall) ---
 contrast estimate      SE  df z.ratio p.value
 X - Y     -0.0176 0.00698 Inf  -2.524  0.0312
 X - Z     -0.2613 0.00698 Inf -37.439  <.0001
 Y - Z     -0.2436 0.00698 Inf -34.915  <.0001

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 

--- EMMs by Axis within each Block ---
Block = 1:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.415 0.0424 Inf     0.332     0.498
 Y     0.438 0.0424 Inf     0.355     0.521
 Z     0.668 0.0424 Inf     0.585     0.751

Block = 2:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.414 0.0421 Inf     0.331     0.496
 Y     0.440 0.0421 Inf     0.357     0.522
 Z     0.698 0.0421 Inf     0.616     0.781

Block = 3:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.381 0.0421 Inf     0.299     0.464
 Y     0.400 0.0421 Inf     0.317     0.482
 Z     0.642 0.0421 Inf     0.560     0.725

Block = 4:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.418 0.0421 Inf     0.336     0.501
 Y     0.429 0.0421 Inf     0.346     0.511
 Z     0.701 0.0421 Inf     0.618     0.783

Block = 5:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.353 0.0419 Inf     0.271     0.435
 Y     0.364 0.0419 Inf     0.281     0.446
 Z     0.578 0.0419 Inf     0.496     0.660

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons within each Block ---
Block = 1:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0229 0.0167 Inf  -1.365  0.3592
 X - Z     -0.2529 0.0167 Inf -15.110  <.0001
 Y - Z     -0.2301 0.0167 Inf -13.745  <.0001

Block = 2:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0261 0.0156 Inf  -1.673  0.2154
 X - Z     -0.2846 0.0156 Inf -18.282  <.0001
 Y - Z     -0.2586 0.0156 Inf -16.608  <.0001

Block = 3:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0184 0.0155 Inf  -1.188  0.4603
 X - Z     -0.2612 0.0155 Inf -16.865  <.0001
 Y - Z     -0.2428 0.0155 Inf -15.677  <.0001

Block = 4:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0102 0.0156 Inf  -0.654  0.7901
 X - Z     -0.2825 0.0156 Inf -18.063  <.0001
 Y - Z     -0.2723 0.0156 Inf -17.410  <.0001

Block = 5:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0105 0.0145 Inf  -0.726  0.7480
 X - Z     -0.2250 0.0145 Inf -15.516  <.0001
 Y - Z     -0.2145 0.0145 Inf -14.790  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 
# 2) Within each phase (to match your within-phase reporting elsewhere)
for (ph in c("Preparation","Execution")) {
  df_ph <- axes_long %>% filter(phase == ph) %>% droplevels()
  if (nrow(df_ph) > 0) analyze_axes_vs_blocks(df_ph, label = paste("PHASE:", ph))
}


==============================
AXES × BLOCKS — PHASE: Preparation
==============================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Axis * Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: df

REML criterion at convergence: 2758.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.0492 -0.3806 -0.1162  0.1486 21.5763 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.011441 0.10696 
 subject  (Intercept) 0.001264 0.03556 
 Residual             0.067024 0.25889 
Number of obs: 17613, groups:  Trial, 48; subject, 18

Fixed effects:
               Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)   1.372e-01  1.769e-02  6.214e+01   7.755 1.04e-10 ***
Axis1        -1.253e-02  2.768e-03  1.753e+04  -4.526 6.05e-06 ***
Axis2        -1.094e-02  2.768e-03  1.753e+04  -3.952 7.78e-05 ***
Block1       -7.772e-02  4.180e-03  1.754e+04 -18.595  < 2e-16 ***
Block2        4.705e-03  3.926e-03  1.755e+04   1.198 0.230754    
Block3        7.096e-02  3.956e-03  1.755e+04  17.934  < 2e-16 ***
Block4        2.978e-03  3.957e-03  1.754e+04   0.753 0.451728    
Accuracy1    -7.036e-03  2.096e-03  1.751e+04  -3.356 0.000792 ***
Axis1:Block1  1.349e-02  5.798e-03  1.753e+04   2.326 0.020021 *  
Axis2:Block1  1.144e-02  5.798e-03  1.753e+04   1.973 0.048547 *  
Axis1:Block2 -6.818e-03  5.535e-03  1.753e+04  -1.232 0.218004    
Axis2:Block2 -5.683e-04  5.535e-03  1.753e+04  -0.103 0.918224    
Axis1:Block3 -1.523e-02  5.516e-03  1.753e+04  -2.762 0.005755 ** 
Axis2:Block3 -4.979e-03  5.516e-03  1.753e+04  -0.903 0.366649    
Axis1:Block4  2.938e-03  5.560e-03  1.753e+04   0.528 0.597286    
Axis2:Block4 -3.952e-03  5.560e-03  1.753e+04  -0.711 0.477288    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 16 > 12.
Use print(summary(m), correlation=TRUE)  or
    vcov(summary(m))        if you need it

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
           Sum Sq Mean Sq NumDF DenDF  F value    Pr(>F)    
Axis        4.825  2.4123     2 17533  35.9918 2.517e-16 ***
Block      34.989  8.7473     4 17545 130.5101 < 2.2e-16 ***
Accuracy    0.755  0.7550     1 17506  11.2649 0.0007915 ***
Axis:Block  1.959  0.2449     8 17533   3.6544 0.0002906 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
             Chisq Df Pr(>Chisq)    
Axis        75.547  2  < 2.2e-16 ***
Block      522.040  4  < 2.2e-16 ***
Accuracy    11.265  1  0.0007899 ***
Axis:Block  29.235  8  0.0002883 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
(Intercept)  60.136  1  8.853e-15 ***
Axis         71.984  2  2.339e-16 ***
Block       522.040  4  < 2.2e-16 ***
Accuracy     11.265  1  0.0007899 ***
Axis:Block   29.235  8  0.0002883 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
NOTE: Results may be misleading due to involvement in interactions

--- EMMs by Axis (averaged over Blocks) ---
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.125 0.0179 Inf    0.0896     0.160
 Y     0.126 0.0179 Inf    0.0912     0.161
 Z     0.161 0.0179 Inf    0.1256     0.196

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons (overall) ---
 contrast estimate      SE  df z.ratio p.value
 X - Y    -0.00159 0.00479 Inf  -0.331  0.9413
 X - Z    -0.03600 0.00479 Inf  -7.508  <.0001
 Y - Z    -0.03441 0.00479 Inf  -7.176  <.0001

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 

--- EMMs by Axis within each Block ---
Block = 1:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X    0.0604 0.0194 Inf    0.0225    0.0984
 Y    0.0600 0.0194 Inf    0.0220    0.0979
 Z    0.0580 0.0194 Inf    0.0201    0.0960

Block = 2:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X    0.1226 0.0191 Inf    0.0850    0.1601
 Y    0.1304 0.0191 Inf    0.0929    0.1679
 Z    0.1728 0.0191 Inf    0.1352    0.2103

Block = 3:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X    0.1804 0.0191 Inf    0.1429    0.2179
 Y    0.1922 0.0191 Inf    0.1547    0.2298
 Z    0.2518 0.0191 Inf    0.2143    0.2894

Block = 4:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X    0.1306 0.0192 Inf    0.0930    0.1682
 Y    0.1253 0.0192 Inf    0.0877    0.1629
 Z    0.1647 0.0192 Inf    0.1271    0.2022

Block = 5:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X    0.1294 0.0190 Inf    0.0922    0.1665
 Y    0.1234 0.0190 Inf    0.0862    0.1606
 Z    0.1561 0.0190 Inf    0.1189    0.1932

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons within each Block ---
Block = 1:
 contrast  estimate     SE  df z.ratio p.value
 X - Y     0.000461 0.0114 Inf   0.040  0.9991
 X - Z     0.002415 0.0114 Inf   0.212  0.9755
 Y - Z     0.001954 0.0114 Inf   0.172  0.9839

Block = 2:
 contrast  estimate     SE  df z.ratio p.value
 X - Y    -0.007839 0.0107 Inf  -0.731  0.7448
 X - Z    -0.050202 0.0107 Inf  -4.684  <.0001
 Y - Z    -0.042363 0.0107 Inf  -3.953  0.0002

Block = 3:
 contrast  estimate     SE  df z.ratio p.value
 X - Y    -0.011842 0.0107 Inf  -1.110  0.5078
 X - Z    -0.071442 0.0107 Inf  -6.697  <.0001
 Y - Z    -0.059600 0.0107 Inf  -5.587  <.0001

Block = 4:
 contrast  estimate     SE  df z.ratio p.value
 X - Y     0.005300 0.0108 Inf   0.492  0.8753
 X - Z    -0.034073 0.0108 Inf  -3.160  0.0045
 Y - Z    -0.039374 0.0108 Inf  -3.652  0.0008

Block = 5:
 contrast  estimate     SE  df z.ratio p.value
 X - Y     0.005976 0.0100 Inf   0.598  0.8214
 X - Z    -0.026682 0.0100 Inf  -2.668  0.0209
 Y - Z    -0.032658 0.0100 Inf  -3.265  0.0031

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 


==============================
AXES × BLOCKS — PHASE: Execution
==============================

--- Model Summary (lmerTest; Satterthwaite t-tests) ---
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: RMS ~ Axis * Block + Accuracy + (1 | subject) + (1 | Trial)
   Data: df

REML criterion at convergence: 14946.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-5.3930 -0.4971 -0.0242  0.4173 18.2710 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.008388 0.09159 
 subject  (Intercept) 0.104887 0.32386 
 Residual             0.137640 0.37100 
Number of obs: 17043, groups:  Trial, 48; subject, 18

Fixed effects:
               Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)   8.538e-01  7.753e-02  1.803e+01  11.012 1.94e-09 ***
Axis1        -1.764e-01  4.039e-03  1.695e+04 -43.663  < 2e-16 ***
Axis2        -1.421e-01  4.039e-03  1.695e+04 -35.176  < 2e-16 ***
Block1        1.373e-01  6.195e-03  1.697e+04  22.171  < 2e-16 ***
Block2        4.779e-02  5.708e-03  1.697e+04   8.372  < 2e-16 ***
Block3       -1.081e-01  5.755e-03  1.699e+04 -18.783  < 2e-16 ***
Block4        4.479e-02  5.739e-03  1.697e+04   7.803 6.38e-15 ***
Accuracy1    -3.904e-02  3.055e-03  1.701e+04 -12.778  < 2e-16 ***
Axis1:Block1 -1.574e-02  8.590e-03  1.695e+04  -1.833   0.0669 .  
Axis2:Block1 -2.024e-03  8.590e-03  1.695e+04  -0.236   0.8137    
Axis1:Block2 -1.378e-02  8.051e-03  1.695e+04  -1.712   0.0869 .  
Axis2:Block2 -3.281e-03  8.051e-03  1.695e+04  -0.408   0.6836    
Axis1:Block3  1.601e-02  8.017e-03  1.695e+04   1.997   0.0459 *  
Axis2:Block3  6.858e-03  8.017e-03  1.695e+04   0.855   0.3923    
Axis1:Block4 -1.116e-02  8.070e-03  1.695e+04  -1.383   0.1667    
Axis2:Block4 -1.934e-02  8.070e-03  1.695e+04  -2.397   0.0166 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 16 > 12.
Use print(summary(m), correlation=TRUE)  or
    vcov(summary(m))        if you need it

--- lmerTest ANOVA (F-tests; Satterthwaite) ---
Type III Analysis of Variance Table with Satterthwaite's method
           Sum Sq Mean Sq NumDF DenDF   F value    Pr(>F)    
Axis       858.81  429.40     2 16955 3119.7640 < 2.2e-16 ***
Block      155.50   38.87     4 16972  282.4317 < 2.2e-16 ***
Accuracy    22.47   22.47     1 17005  163.2750 < 2.2e-16 ***
Axis:Block   7.21    0.90     8 16955    6.5458 1.476e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type II Wald χ² (car::Anova) ---
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
              Chisq Df Pr(>Chisq)    
Axis       6223.795  2  < 2.2e-16 ***
Block      1129.727  4  < 2.2e-16 ***
Accuracy    163.275  1  < 2.2e-16 ***
Axis:Block   52.367  8   1.43e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--- Type III Wald χ² (car::Anova; sum contrasts) ---
Analysis of Deviance Table (Type III Wald chisquare tests)

Response: RMS
               Chisq Df Pr(>Chisq)    
(Intercept)  121.272  1  < 2.2e-16 ***
Axis        6239.528  2  < 2.2e-16 ***
Block       1129.727  4  < 2.2e-16 ***
Accuracy     163.275  1  < 2.2e-16 ***
Axis:Block    52.367  8   1.43e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
NOTE: Results may be misleading due to involvement in interactions

--- EMMs by Axis (averaged over Blocks) ---
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.677 0.0776 Inf     0.525     0.830
 Y     0.712 0.0776 Inf     0.560     0.864
 Z     1.172 0.0776 Inf     1.020     1.324

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons (overall) ---
 contrast estimate    SE  df z.ratio p.value
 X - Y     -0.0343 0.007 Inf  -4.900  <.0001
 X - Z     -0.4948 0.007 Inf -70.726  <.0001
 Y - Z     -0.4605 0.007 Inf -65.826  <.0001

Results are averaged over the levels of: Block, Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates 

--- EMMs by Axis within each Block ---
Block = 1:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.799 0.0784 Inf     0.645     0.953
 Y     0.847 0.0784 Inf     0.693     1.001
 Z     1.327 0.0784 Inf     1.174     1.481

Block = 2:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.711 0.0783 Inf     0.558     0.865
 Y     0.756 0.0783 Inf     0.603     0.910
 Z     1.237 0.0783 Inf     1.084     1.390

Block = 3:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.585 0.0783 Inf     0.432     0.739
 Y     0.610 0.0783 Inf     0.457     0.764
 Z     1.041 0.0783 Inf     0.888     1.195

Block = 4:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.711 0.0783 Inf     0.558     0.864
 Y     0.737 0.0783 Inf     0.584     0.891
 Z     1.248 0.0783 Inf     1.094     1.401

Block = 5:
 Axis emmean     SE  df asymp.LCL asymp.UCL
 X     0.580 0.0782 Inf     0.427     0.733
 Y     0.608 0.0782 Inf     0.455     0.761
 Z     1.008 0.0782 Inf     0.855     1.161

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
Confidence level used: 0.95 

--- Pairwise (Tukey) Axis comparisons within each Block ---
Block = 1:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0480 0.0170 Inf  -2.832  0.0129
 X - Z     -0.5283 0.0170 Inf -31.165  <.0001
 Y - Z     -0.4803 0.0170 Inf -28.334  <.0001

Block = 2:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0448 0.0156 Inf  -2.875  0.0113
 X - Z     -0.5256 0.0156 Inf -33.752  <.0001
 Y - Z     -0.4809 0.0156 Inf -30.876  <.0001

Block = 3:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0251 0.0155 Inf  -1.623  0.2360
 X - Z     -0.4559 0.0155 Inf -29.442  <.0001
 Y - Z     -0.4308 0.0155 Inf -27.819  <.0001

Block = 4:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0261 0.0156 Inf  -1.671  0.2165
 X - Z     -0.5364 0.0156 Inf -34.339  <.0001
 Y - Z     -0.5103 0.0156 Inf -32.669  <.0001

Block = 5:
 contrast estimate     SE  df z.ratio p.value
 X - Y     -0.0274 0.0145 Inf  -1.891  0.1413
 X - Z     -0.4276 0.0145 Inf -29.523  <.0001
 Y - Z     -0.4003 0.0145 Inf -27.632  <.0001

Results are averaged over the levels of: Accuracy 
Degrees-of-freedom method: asymptotic 
P value adjustment: tukey method for comparing a family of 3 estimates