Analysis prepared by Wesley J.B. Vaught & Makiah P. Torres | secondary data analysis of AI participants’ EEG data from T1000 and NCAIR phase 1.

1 Preparation

1.1 Packages

library(psych) # for descriptive statistics and internacy consistency calcs
library(gmodels) # for frequency calculation and tables for categorical variables
library(dplyr) # for creating tibbles and matrices for correlation matrices

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
library(corrr) # for calculating (Spearman's) correlations
library(corrplot) # for visualizing correlation plots
corrplot 0.95 loaded
library(interactions) # for creating a Johnson-Neyman plot
library(ggplot2) # for data visualization with scatterplots and histograms

Attaching package: 'ggplot2'
The following objects are masked from 'package:psych':

    %+%, alpha
library(ggpmisc) # an extension of ggplot2
Loading required package: ggpp
Registered S3 methods overwritten by 'ggpp':
  method                  from   
  heightDetails.titleGrob ggplot2
  widthDetails.titleGrob  ggplot2

Attaching package: 'ggpp'
The following object is masked from 'package:ggplot2':

    annotate
library(ggpubr) # for data visualization simplified

Attaching package: 'ggpubr'
The following objects are masked from 'package:ggpp':

    as_npc, as_npcx, as_npcy
library(qqplotr) # for QQ plots

Attaching package: 'qqplotr'
The following objects are masked from 'package:ggplot2':

    stat_qq_line, StatQqLine
library(car) # for calculating VIF (variance inflation factor)
Loading required package: carData

Attaching package: 'car'
The following object is masked from 'package:dplyr':

    recode
The following object is masked from 'package:psych':

    logit
library(boot.pval) # for bootstrapping the multiple linear regression and moderation
library(stringr) # for replacing the written scoring for the HLS to numbers

1.2 Setting Working Directory & Reading in Dataframes

setwd("~/01. EEG CORE/05. Papers/Culture & Cognition/finalAnalysis")
dfSST<-read.csv("df_FinalK99Dataset(n59)_051723.csv",header=TRUE)
dfMID<-read.csv("dfMID.csv",header=TRUE)
dfLPP<-read.csv("df_aim2_lpp.csv",header=TRUE)
dfSSTaies<-read.csv("dfSSTaies.csv",header=TRUE)
dfSSTnass<-read.csv("dfSSTnass.csv",header=TRUE)
dfSSTnaas<-read.csv("dfSSTnaas.csv",header=TRUE)
dfSSThls<-read.csv("dfSSThls.csv",header=TRUE)
dfMIDaies<-read.csv("dfMIDaies.csv",header=TRUE)
dfMIDnass<-read.csv("dfMIDnass.csv",header=TRUE)
dfMIDnaas<-read.csv("dfMIDnaas.csv",header=TRUE)
dfMIDhls<-read.csv("dfMIDhls.csv",header=TRUE)
dfLPPhls<-read.csv("dfLPPhls.csv",header=TRUE)
dfLPPaies<-read.csv("dfLPPaies.csv",header=TRUE)
dfLPPnass<-read.csv("dfLPPnass.csv",header=TRUE)
dfLPPnaas<-read.csv("dfLPPnaas.csv",header=TRUE)

Every participant in this sample came from NCAIR phase one; however, they did their scans at different times. For example, participants who did the SST have EEG data from the K99 award period and their self-report comes from the K99 award period too; participants who did the MID have EEG data from the T1000 but their self-report comes the K99 award period; and participants who did the CPV have EEG data and self-report data from the K99. Therefore, we cannot reasonably compare ERP correlates of cognitive processes because they were administered at different times.

2 Descriptive statistics

2.1 Descriptive statistics for variables in SST

tibble4SST<-tibble(
  #Subject=dfSST$Subject,
  sex=dfSST$Gender,
  age=dfSST$Age,
  goIncorrERN_FCz=dfSST$ERNFCz_GoIncorr, # We have 52 ERN and Pe entries
  goCorrERN_FCz=dfSST$ERNFCz_GoCorr,
  allIncorrN2_FCz=dfSST$N2FCz_AllIncorrn59,
  allCorrN2_FCz=dfSST$N2FCz_AllCorrn59,
  allIncorrP3_Pz=dfSST$P3Pz_AllIncorrn59,
  allCorrP3_Pz=dfSST$P3Pz_AllCorrn59,
  goIncorrPe_Pz=dfSST$PePz_GoIncorr,
  goCorrPe_Pz=dfSST$PePz_GoCorr,
  #CDDRposRein=dfSST$CDDR_PosReinforcement,
  #CDDRnegRein=dfSST$CDDR_NegReinforcement,
  PROMISanx=dfSST$PROMIS_AnxietyTscore,
  PROMISalcUse=dfSST$PROMIS_AlcoUseTscore,
  PROMISdepress=dfSST$PROMIS_DepressTscore,
  #PROMISappealUse30=dfSST$PROMIS_AppealSubUse30DaysTscore,
  #PROMISappealUse3=dfSST$PROMIS_AppealSubUse3MonthTscore,
  #phqSuicide=dfSST$PHQ9_Suicide,
  #Age=dfSST$Age,
  #Sex=dfSST$Gender,
  #Income=dfSST$Income,
  #Education=dfSST$Education_4levelCategory,
  #MRT=dfSST$ss_mrt_calibration,
  #goErrorEasyRT=dfSST$ss_meanrt_erroreasy,
  #goErrorHardRT=dfSST$ss_meanrt_errorhard,
  AIES=dfSST$AIES_scale,
  NAAS=dfSST$NAAS_scale,
  NASS=dfSST$NASS_scale,
  HLS=dfSST$HLS_scale
)

cleanedTibble4SST<-na.omit(tibble4SST) # retains 52 participants, will exclude sex when correlation matrix

Descriptive statistics of Age in SST sample

describeAgeSST<-describe(cleanedTibble4SST$age)
describeAgeSST
   vars  n  mean    sd median trimmed   mad   min   max range skew kurtosis
X1    1 51 35.36 10.43  33.02   35.08 11.17 18.37 54.88 36.51  0.2    -1.13
     se
X1 1.46

Frequencies of Sex in the SST sample

freqSexSST<-CrossTable(cleanedTibble4SST$sex, format = 'SPSS')

   Cell Contents
|-------------------------|
|                   Count |
|             Row Percent |
|-------------------------|

Total Observations in Table:  51 

          |   Female  |     Male  | 
          |-----------|-----------|
          |       41  |       10  | 
          |   80.392% |   19.608% | 
          |-----------|-----------|

 
freqSexSST
NULL

Descriptive statistics of AIES in the SST sample

describeAIESsst<-describe(cleanedTibble4SST$AIES)
describeAIESsst
   vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
X1    1 51 37.43 14.02     35      36 13.34  18  75    57 0.81    -0.01 1.96

Descriptive statistics of NASS in the SST sample

describeNASSsst<-describe(cleanedTibble4SST$NASS)
describeNASSsst
   vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
X1    1 51 34.96 8.37     37   35.59 5.93  11  50    39 -0.75      0.1 1.17

Descriptive statistics of NAAS in the SST sample

describeNAASsst<-describe(cleanedTibble4SST$NAAS)
describeNAASsst
   vars  n mean   sd median trimmed  mad  min  max range  skew kurtosis   se
X1    1 51 3.86 0.34    3.9    3.86 0.37 3.05 4.45   1.4 -0.12    -0.77 0.05

Descriptive statistics of HLS in the SST sample

describeHLSsst<-describe(cleanedTibble4SST$HLS)
describeHLSsst
   vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
X1    1 51 42.1 4.68     41   42.32 5.93  30  50    20 -0.33     -0.4 0.66

Descriptive statistics of PROMIS Depression in the SST sample

describeDepSST<-describe(cleanedTibble4SST$PROMISdepress)
describeDepSST
   vars  n  mean   sd median trimmed  mad  min  max range skew kurtosis   se
X1    1 51 55.33 7.61   56.3   55.85 6.38 34.2 69.5  35.3 -0.6     0.11 1.07

Descriptive statistics of PROMIS Anxiety in the SST sample

describeAnxSST<-describe(cleanedTibble4SST$PROMISanx)
describeAnxSST
   vars  n  mean   sd median trimmed  mad  min  max range  skew kurtosis   se
X1    1 51 57.45 9.09     58   58.23 7.86 32.9 75.3  42.4 -0.75     0.57 1.27

Descriptive statistics of PROMIS Alcohol Use in the SST sample

describeAlcUseSST<-describe(cleanedTibble4SST$PROMISalcUse)
describeAlcUseSST
   vars  n  mean   sd median trimmed mad  min  max range skew kurtosis   se
X1    1 51 49.17 5.07     50   49.26   0 37.5 62.4  24.9 -0.1        1 0.71

2.2 Descriptive statistics for variables in MID

tibble4MID<-tibble(
  #Subject=dfMID$Subject,
  Age=dfMID$Age,
  #Sex=dfMID$Gender,
  "P300 Pz Loss"=dfMID$P3pzMIDcueLoss,
  #cueNogainPzP3=dfMID$P3pzMIDcueNogain,
  "P300 Pz Gain"=dfMID$P3pzMIDcueGain,
  "SPN Fz Success"=dfMID$SPNfzMIDfeedbackSuccess,
  #failFzSPN=dfMID$SPNfzMIDfeedbackFail,
  'RewP FCz Gain'=dfMID$RewPfczMIDfeedbackGain,
  #CDDRposRein=dfMID$CDDR_PosReinforcement,
  #CDDRnegRein=dfMID$CDDR_NegReinforcement,
  "PROMIS Anxiety"=dfMID$PROMIS_AnxietyTscore,
  "PROMIS Alcohol Use"=dfMID$PROMIS_AlcoUseTscore,
  "PROMIS Depression"=dfMID$PROMIS_DepressTscore,
  #PROMISappealUse30=dfMID$PROMIS_AppealSubUse30DaysTscore,
  #PROMISappealUse3=dfMID$PROMIS_AppealSubUse3MonthTscore,
  #phqSuicide=dfMID$PHQ9_Suicide,
  #Age=dfMID$Age,
  #Sex=dfMID$Gender,
  #Income=dfMID$Income,
  #Education=dfMID$Education_4levelCategory,
  #MRT=dfMID$ss_mrt_calibration,
  #goErrorEasyRT=dfMID$ss_meanrt_erroreasy,
  #goErrorHardRT=dfMID$ss_meanrt_errorhard,
  "AIES"=dfMID$AIES_scale,
  "NAAS"=dfMID$NAAS_scale,
  "NASS"=dfMID$NASS_scale,
  "HLS"=dfMID$HLS_scale
)
cleanedData4Hyp1b<-na.omit(tibble4MID) # retains 44participants

tibble4MIDcalc<-tibble(
  Age=dfMID$Age,
  Sex=dfMID$Gender,
  P3PzLoss=tibble4MID$`P300 Pz Loss`,
  P3PzGain=tibble4MID$`P300 Pz Gain`,
  RewPFCzGain=tibble4MID$`RewP FCz Gain`,
  successSPN=tibble4MID$`SPN Fz Success`,
  promisDep=tibble4MID$`PROMIS Depression`,
  promisAnx=tibble4MID$`PROMIS Anxiety`,
  promisAlcUse=tibble4MID$`PROMIS Alcohol Use`,
  AIES=tibble4MID$AIES,
  NAAS=tibble4MID$NAAS,
  NASS=tibble4MID$NASS,
  HLS=tibble4MID$HLS
)
cleanedTibble4MIDcalc<-na.omit(tibble4MIDcalc)

Descriptive statistics of Age in the MID sample

describeAgeMID<-describe(cleanedTibble4MIDcalc$Age)
describeAgeMID
   vars  n  mean    sd median trimmed   mad   min   max range skew kurtosis
X1    1 44 34.32 10.19  32.83   33.88 12.15 18.37 54.88 36.51 0.24    -1.02
     se
X1 1.54

Frequencies of Sex in the MID sample

freqSexMID<-CrossTable(cleanedTibble4MIDcalc$Sex, format = 'SPSS')

   Cell Contents
|-------------------------|
|                   Count |
|             Row Percent |
|-------------------------|

Total Observations in Table:  44 

          |   Female  |     Male  | 
          |-----------|-----------|
          |       34  |       10  | 
          |   77.273% |   22.727% | 
          |-----------|-----------|

 
freqSexMID
NULL

Descriptive statistics of AIES in the MID sample

describeAIESmid<-describe(cleanedTibble4MIDcalc$AIES)
describeAIESmid
   vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
X1    1 44 34.32 11.71     32   33.08 11.86  19  66    47 0.82     0.08 1.76

Descriptive statistics of NASS in the MID sample

describeNASSmid<-describe(cleanedTibble4MIDcalc$NASS)
describeNASSmid
   vars  n  mean   sd median trimmed  mad min max range  skew kurtosis  se
X1    1 44 33.36 9.31     36   34.33 6.67   9  49    40 -0.95      0.2 1.4

Descriptive statistics of NAAS in the MID sample

describeNAASmid<-describe(cleanedTibble4MIDcalc$NAAS)
describeNAASmid
   vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
X1    1 44 3.95 0.33      4    3.95 0.37 3.3 4.5   1.2 -0.18    -1.04 0.05

Descriptive statistics of HLS in the MID sample

describeHLSmid<-describe(cleanedTibble4MIDcalc$HLS)
describeHLSmid
   vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
X1    1 44 42.07 4.79   41.5   42.36 5.19  30  50    20 -0.44    -0.45 0.72

Descriptive statistics of PROMIS Depression in the MID sample

describeDepMID<-describe(cleanedTibble4MIDcalc$promisDep)
describeDepMID
   vars  n  mean   sd median trimmed  mad min  max range  skew kurtosis   se
X1    1 44 56.31 7.79   57.4   56.74 7.19  39 69.5  30.5 -0.46    -0.51 1.17

Descriptive statistics of PROMIS Anxiety in the MID sample

describeAnxMID<-describe(cleanedTibble4MIDcalc$promisAnx)
describeAnxMID
   vars  n  mean   sd median trimmed  mad  min  max range  skew kurtosis   se
X1    1 44 57.57 9.41  57.85   58.05 8.08 32.9 75.3  42.4 -0.42    -0.22 1.42

Descriptive statistics of PROMIS Alcohol Use in the MID sample

describeAlcUseMID<-describe(cleanedTibble4MIDcalc$promisAlcUse)
describeAlcUseMID
   vars  n mean   sd median trimmed mad  min  max range  skew kurtosis   se
X1    1 44 49.5 4.69     50   49.52   0 38.2 61.2    23 -0.09     1.04 0.71

2.3 Descriptive statistics for variables in CPV

Frequencies of Sex in the CPV sample

freqSexCPV<-CrossTable(dfLPP$Sex, format = 'SPSS')

   Cell Contents
|-------------------------|
|                   Count |
|             Row Percent |
|-------------------------|

Total Observations in Table:  40 

          |        1  |        2  | 
          |-----------|-----------|
          |       32  |        8  | 
          |   80.000% |   20.000% | 
          |-----------|-----------|

 
freqSexCPV
NULL

Descriptive statistics of Age

describeAgeCPV<-describe(dfLPP$Age)
describeAgeCPV
   vars  n mean    sd median trimmed  mad min max range skew kurtosis  se
X1    1 40 35.6 10.12     36   35.38 12.6  21  53    32 0.13    -1.28 1.6

Descriptive statistics of AIES

describeAIEScpv<-describe(dfLPP$AIES_scale)
describeAIEScpv
   vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
X1    1 40 41.02 20.12   36.5   37.69 14.08  20 108    88 1.73     3.04 3.18

Descriptive statistics of NASS

describeNASScpv<-describe(dfLPP$NASS_scale)
describeNASScpv
   vars  n  mean    sd median trimmed  mad min max range skew kurtosis   se
X1    1 40 33.25 10.87   33.5   33.12 12.6  14  54    40 0.05    -1.11 1.72

Descriptive statistics of NAAS

describeNAAScpv<-describe(dfLPP$NAAS_scale)
describeNAAScpv
   vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
X1    1 40 3.85 0.46   3.95    3.88 0.41 2.4 4.5   2.1 -0.85     0.63 0.07

Descriptive statistics of HLS

describeHLScpv<-describe(dfLPP$HLS_scale)
describeHLScpv
   vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
X1    1 40 44.52 4.69     44   44.31 3.71  30  55    25 -0.01      1.2 0.74

Descriptive statistics of PROMIS Anxiety

describeAnxCPV<-describe(dfLPP$PROMIS_AnxietyTscore)
describeAnxCPV
   vars  n  mean   sd median trimmed  mad  min  max range  skew kurtosis   se
X1    1 40 53.72 8.55  53.65   53.73 7.12 36.6 71.3  34.7 -0.04     -0.5 1.35

Descriptive statistics of PROMIS Depression

describeDepCPV<-describe(dfLPP$PROMIS_DepressTscore)
describeDepCPV
   vars  n  mean   sd median trimmed  mad  min  max range skew kurtosis   se
X1    1 40 51.61 9.33   50.9   50.89 7.12 34.2 81.6  47.4 0.81     1.33 1.47

Descriptive statistics of Alcohol Use

describeAlcUseCPV<-describe(dfLPP$PROMIS_AlcoUseTscore)
describeAlcUseCPV
   vars  n  mean   sd median trimmed  mad  min  max range  skew kurtosis   se
X1    1 40 47.71 5.43     50   48.27 3.26 33.4 58.3  24.9 -0.88     0.32 0.86

3 Tests of Normality

3.1 Shapiro-Wilk tests for variables in SST

shapiro.test(dfSST$AIES_scale)

    Shapiro-Wilk normality test

data:  dfSST$AIES_scale
W = 0.92412, p-value = 0.001255
shapiro.test(dfSST$NAAS_scale)

    Shapiro-Wilk normality test

data:  dfSST$NAAS_scale
W = 0.97612, p-value = 0.297
shapiro.test(dfSST$NASS_scale)

    Shapiro-Wilk normality test

data:  dfSST$NASS_scale
W = 0.93388, p-value = 0.003208
shapiro.test(dfSST$HLS_scale)

    Shapiro-Wilk normality test

data:  dfSST$HLS_scale
W = 0.96593, p-value = 0.09718
shapiro.test(dfSST$PROMIS_AlcoUseTscore)

    Shapiro-Wilk normality test

data:  dfSST$PROMIS_AlcoUseTscore
W = 0.87187, p-value = 1.66e-05
shapiro.test(dfSST$PROMIS_AnxietyTscore)

    Shapiro-Wilk normality test

data:  dfSST$PROMIS_AnxietyTscore
W = 0.95281, p-value = 0.02277
shapiro.test(dfSST$PROMIS_DepressTscore)

    Shapiro-Wilk normality test

data:  dfSST$PROMIS_DepressTscore
W = 0.96793, p-value = 0.1214

3.2 Shapiro-Wilk tests for variables in MID

shapiro.test(dfMID$AIES_scale)

    Shapiro-Wilk normality test

data:  dfMID$AIES_scale
W = 0.92412, p-value = 0.001255
shapiro.test(dfMID$NAAS_scale)

    Shapiro-Wilk normality test

data:  dfMID$NAAS_scale
W = 0.97612, p-value = 0.297
shapiro.test(dfMID$NASS_scale)

    Shapiro-Wilk normality test

data:  dfMID$NASS_scale
W = 0.93388, p-value = 0.003208
shapiro.test(dfMID$HLS_scale)

    Shapiro-Wilk normality test

data:  dfMID$HLS_scale
W = 0.96593, p-value = 0.09718
shapiro.test(dfMID$PROMIS_AlcoUseTscore)

    Shapiro-Wilk normality test

data:  dfMID$PROMIS_AlcoUseTscore
W = 0.87187, p-value = 1.66e-05
shapiro.test(dfMID$PROMIS_AnxietyTscore)

    Shapiro-Wilk normality test

data:  dfMID$PROMIS_AnxietyTscore
W = 0.95281, p-value = 0.02277
shapiro.test(dfMID$PROMIS_DepressTscore)

    Shapiro-Wilk normality test

data:  dfMID$PROMIS_DepressTscore
W = 0.96793, p-value = 0.1214

3.3 Shapiro-Wilk tests for variables in CPV

shapiro.test(dfLPP$AIES_scale)

    Shapiro-Wilk normality test

data:  dfLPP$AIES_scale
W = 0.81075, p-value = 1.144e-05
shapiro.test(dfLPP$NAAS_scale)

    Shapiro-Wilk normality test

data:  dfLPP$NAAS_scale
W = 0.93969, p-value = 0.03375
shapiro.test(dfLPP$NASS_scale)

    Shapiro-Wilk normality test

data:  dfLPP$NASS_scale
W = 0.96939, p-value = 0.3441
shapiro.test(dfLPP$HLS_scale)

    Shapiro-Wilk normality test

data:  dfLPP$HLS_scale
W = 0.93393, p-value = 0.02168
shapiro.test(dfLPP$PROMIS_AlcoUseTscore)

    Shapiro-Wilk normality test

data:  dfLPP$PROMIS_AlcoUseTscore
W = 0.88176, p-value = 0.0005875
shapiro.test(dfLPP$PROMIS_AnxietyTscore)

    Shapiro-Wilk normality test

data:  dfLPP$PROMIS_AnxietyTscore
W = 0.97951, p-value = 0.6713
shapiro.test(dfLPP$PROMIS_DepressTscore)

    Shapiro-Wilk normality test

data:  dfLPP$PROMIS_DepressTscore
W = 0.94602, p-value = 0.05537

4 Internal consistency

4.1 Cronbach’s alpha and MacDonald’s omega for SST cultural self-reports

omega(dfSSTaies)
Loading required namespace: GPArotation

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.89 
G.6:                   0.94 
Omega Hierarchical:    0.56 
Omega H asymptotic:    0.6 
Omega Total            0.93 

Schmid Leiman Factor loadings greater than  0.2 
           g   F1*   F2*   F3*   h2   h2   u2   p2  com
aies_1  0.31  0.40             0.27 0.27 0.73 0.36 1.99
aies_2  0.60  0.67             0.82 0.82 0.18 0.43 2.03
aies_3  0.59  0.55             0.67 0.67 0.33 0.53 2.07
aies_4  0.42        0.54       0.49 0.49 0.51 0.36 2.01
aies_5  0.46  0.22        0.27 0.37 0.37 0.63 0.58 2.52
aies_6  0.37        0.39       0.31 0.31 0.69 0.44 2.22
aies_7  0.57  0.60             0.69 0.69 0.31 0.47 2.01
aies_8  0.52  0.31        0.21 0.45 0.45 0.55 0.60 2.34
aies_9  0.43  0.45             0.41 0.41 0.59 0.46 2.18
aies_10 0.44              0.67 0.65 0.65 0.35 0.30 1.78
aies_11 0.55  0.37        0.35 0.56 0.56 0.44 0.53 2.54
aies_12 0.37              0.83 0.83 0.83 0.17 0.16 1.40
aies_13 0.47        0.46       0.46 0.46 0.54 0.48 2.30
aies_14 0.60  0.65             0.79 0.79 0.21 0.45 2.02
aies_15 0.28        0.44       0.27 0.27 0.73 0.28 1.73
aies_16 0.49        0.56  0.20 0.60 0.60 0.40 0.40 2.25
aies_17 0.24        0.68       0.54 0.54 0.46 0.11 1.38

With Sums of squares  of:
  g F1* F2* F3*  h2 
3.7 2.3 1.7 1.5 5.5 

general/max  0.67   max/min =   3.68
mean percent general =  0.41    with sd =  0.14 and cv of  0.33 
Explained Common Variance of the general factor =  0.4 

The degrees of freedom are 88  and the fit is  3.23 
The number of observations was  52  with Chi Square =  137.38  with prob <  6e-04
The root mean square of the residuals is  0.07 
The df corrected root mean square of the residuals is  0.09
RMSEA index =  0.102  and the 90 % confidence intervals are  0.069 0.138
BIC =  -210.33

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 119  and the fit is  6.62 
The number of observations was  52  with Chi Square =  289.97  with prob <  2.7e-16
The root mean square of the residuals is  0.19 
The df corrected root mean square of the residuals is  0.2 

RMSEA index =  0.165  and the 90 % confidence intervals are  0.143 0.192
BIC =  -180.23 

Measures of factor score adequacy             
                                                 g  F1*  F2*  F3*
Correlation of scores with factors            0.76 0.77 0.82 0.88
Multiple R square of scores with factors      0.57 0.59 0.68 0.78
Minimum correlation of factor score estimates 0.14 0.19 0.35 0.56

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.93 0.90 0.81 0.79
Omega general for total scores and subscales  0.56 0.47 0.29 0.27
Omega group for total scores and subscales    0.27 0.43 0.52 0.52
omega(dfSSThls)

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.93 
G.6:                   0.95 
Omega Hierarchical:    0.77 
Omega H asymptotic:    0.81 
Omega Total            0.95 

Schmid Leiman Factor loadings greater than  0.2 
          g   F1*   F2*   F3*   h2   h2   u2   p2  com
hls_1  0.57  0.57             0.67 0.67 0.33 0.49 2.08
hls_2  0.60  0.55             0.67 0.67 0.33 0.54 2.00
hls_3  0.60  0.60             0.73 0.73 0.27 0.49 2.03
hls_4  0.67  0.51             0.72 0.72 0.28 0.61 1.97
hls_5  0.71        0.28  0.23 0.63 0.63 0.37 0.79 1.55
hls_6  0.60        0.36       0.50 0.50 0.50 0.72 1.70
hls_7  0.66        0.57       0.76 0.76 0.24 0.57 1.97
hls_8  0.67        0.40       0.62 0.62 0.38 0.72 1.71
hls_9  0.70              0.45 0.70 0.70 0.30 0.71 1.70
hls_10 0.79              0.56 0.94 0.94 0.06 0.66 1.81
hls_11 0.67              0.40 0.62 0.62 0.38 0.73 1.66
hls_12 0.68        0.29       0.58 0.58 0.42 0.79 1.56

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
5.26 1.31 0.81 0.76 5.65 

general/max  0.93   max/min =   7.43
mean percent general =  0.65    with sd =  0.11 and cv of  0.17 
Explained Common Variance of the general factor =  0.65 

The degrees of freedom are 33  and the fit is  1.28 
The number of observations was  52  with Chi Square =  56.36  with prob <  0.0069
The root mean square of the residuals is  0.05 
The df corrected root mean square of the residuals is  0.07
RMSEA index =  0.115  and the 90 % confidence intervals are  0.062 0.169
BIC =  -74.03

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 54  and the fit is  3.29 
The number of observations was  52  with Chi Square =  149.54  with prob <  6.6e-11
The root mean square of the residuals is  0.14 
The df corrected root mean square of the residuals is  0.15 

RMSEA index =  0.183  and the 90 % confidence intervals are  0.151 0.222
BIC =  -63.83 

Measures of factor score adequacy             
                                                 g  F1*  F2*  F3*
Correlation of scores with factors            0.89 0.81 0.74 0.73
Multiple R square of scores with factors      0.79 0.66 0.55 0.54
Minimum correlation of factor score estimates 0.59 0.32 0.09 0.07

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.95 0.90 0.86 0.89
Omega general for total scores and subscales  0.77 0.49 0.65 0.63
Omega group for total scores and subscales    0.13 0.41 0.21 0.27
omega(dfSSTnass)
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
The estimated weights for the factor scores are probably incorrect.  Try a
different factor score estimation method.
Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
ultra-Heywood case was detected.  Examine the results carefully

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.83 
G.6:                   0.88 
Omega Hierarchical:    0.53 
Omega H asymptotic:    0.6 
Omega Total            0.89 

Schmid Leiman Factor loadings greater than  0.2 
           g   F1*   F2*   F3*    h2   h2   u2   p2  com
nass_1  0.63        0.48        0.66 0.66 0.34 0.59 2.10
nass_2  0.72        0.62        0.92 0.92 0.08 0.57 2.00
nass_3  0.29 -0.21  0.40        0.29 0.29 0.71 0.29 2.41
nass_4  0.35  0.56              0.44 0.44 0.56 0.28 1.74
nass_5  0.47  0.61              0.61 0.61 0.39 0.37 1.96
nass_6  0.49  0.67              0.72 0.72 0.28 0.33 1.99
nass_7  0.21              0.98  1.00 1.00 0.00 0.04 1.09
nass_8  0.34  0.38              0.28 0.28 0.72 0.41 2.22
nass_9  0.47  0.64              0.64 0.64 0.36 0.35 1.89
nass_10 0.28        0.31        0.21 0.21 0.79 0.37 2.85
nass_11 0.59  0.51              0.65 0.65 0.35 0.54 2.20
nass_12 0.30        0.22  0.21       0.18 0.82 0.49 2.69

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
2.48 2.02 0.96 1.14 4.43 

general/max  0.56   max/min =   4.63
mean percent general =  0.39    with sd =  0.15 and cv of  0.4 
Explained Common Variance of the general factor =  0.38 

The degrees of freedom are 33  and the fit is  0.6 
The number of observations was  52  with Chi Square =  26.38  with prob <  0.79
The root mean square of the residuals is  0.04 
The df corrected root mean square of the residuals is  0.06
RMSEA index =  0  and the 90 % confidence intervals are  0 0.07
BIC =  -104.01

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 54  and the fit is  2.7 
The number of observations was  52  with Chi Square =  123.03  with prob <  2.6e-07
The root mean square of the residuals is  0.19 
The df corrected root mean square of the residuals is  0.21 

RMSEA index =  0.156  and the 90 % confidence intervals are  0.121 0.195
BIC =  -90.34 

Measures of factor score adequacy             
                                                 g  F1*  F2*  F3*
Correlation of scores with factors            0.79 0.83 0.71 1.00
Multiple R square of scores with factors      0.62 0.68 0.50 1.00
Minimum correlation of factor score estimates 0.24 0.36 0.01 0.99

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.89 0.87 0.75 1.00
Omega general for total scores and subscales  0.53 0.34 0.41 0.04
Omega group for total scores and subscales    0.33 0.53 0.34 0.96
omega(dfSSTnaas)
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
In factor.scores, the correlation matrix is singular, the pseudo inverse is  used
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
The estimated weights for the factor scores are probably incorrect.  Try a
different factor score estimation method.
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
An ultra-Heywood case was detected.  Examine the results carefully
In smc, smcs < 0 were set to .0
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
Warning in cov2cor(t(w) %*% r %*% w): diag(V) had non-positive or NA entries;
the non-finite result may be dubious
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.79 
G.6:                   0.88 
Omega Hierarchical:    0.61 
Omega H asymptotic:    0.71 
Omega Total            0.86 

Schmid Leiman Factor loadings greater than  0.2 
           g   F1* F2*   F3*   h2   h2   u2   p2  com
naas_1  0.33  0.49           0.36 0.36 0.64 0.30 1.77
naas_2  0.52  0.37           0.41 0.41 0.59 0.66 1.80
naas_3                  0.88 0.78 0.78 0.22 0.00 1.01
naas_4                  0.62 0.40 0.40 0.60 0.00 1.02
naas_5-                -0.20      0.06 0.94 0.33 1.81
naas_6  0.39 -0.32           0.25 0.25 0.75 0.62 1.94
naas_7  0.51 -0.29           0.35 0.35 0.65 0.74 1.65
naas_8  0.45            0.26 0.27 0.27 0.73 0.74 1.60
naas_9  0.39                      0.17 0.83 0.87 1.40
naas_10 0.40            0.23 0.22 0.22 0.78 0.71 1.67
naas_11                 0.51 0.27 0.27 0.73 0.03 1.12
naas_12 0.54                 0.34 0.34 0.66 0.87 1.27
naas_13 0.73  0.25           0.60 0.60 0.40 0.89 1.24
naas_14 0.62                 0.40 0.40 0.60 0.97 1.07
naas_15       0.87           0.77 0.77 0.23 0.02 1.05
naas_16 0.29  0.78           0.70 0.70 0.30 0.12 1.29
naas_17       0.87           0.77 0.77 0.23 0.02 1.05
naas_18 0.30            0.42 0.27 0.27 0.73 0.32 2.02
naas_19 0.24            0.75 0.62 0.62 0.38 0.10 1.22
naas_20 0.74                 0.58 0.58 0.42 0.93 1.13

With Sums of squares  of:
  g F1* F2* F3*  h2 
3.4 2.8 0.0 2.4 4.6 

general/max  0.73   max/min =   Inf
mean percent general =  0.46    with sd =  0.37 and cv of  0.8 
Explained Common Variance of the general factor =  0.39 

The degrees of freedom are 133  and the fit is  24.3 
The number of observations was  52  with Chi Square =  1008.36  with prob <  2e-134
The root mean square of the residuals is  0.09 
The df corrected root mean square of the residuals is  0.1
RMSEA index =  0.355  and the 90 % confidence intervals are  0.339 0.38
BIC =  482.84

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 170  and the fit is  28.77 
The number of observations was  52  with Chi Square =  1232.5  with prob <  1.8e-160
The root mean square of the residuals is  0.19 
The df corrected root mean square of the residuals is  0.2 

RMSEA index =  0.346  and the 90 % confidence intervals are  0.332 0.369
BIC =  560.79 

Measures of factor score adequacy             
                                                 g  F1* F2*  F3*
Correlation of scores with factors            0.92 0.95   0 0.94
Multiple R square of scores with factors      0.85 0.91   0 0.89
Minimum correlation of factor score estimates 0.70 0.81  -1 0.79

 Total, General and Subset omega for each subset
                                                 g  F1* F2*  F3*
Omega total for total scores and subscales    0.86 0.83  NA 0.76
Omega general for total scores and subscales  0.61 0.60  NA 0.21
Omega group for total scores and subscales    0.27 0.23  NA 0.55

4.2 Cronbach’s alpha and MacDonald’s omega for MID cultural self-reports

omega(dfMIDaies)

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.87 
G.6:                   0.94 
Omega Hierarchical:    0.53 
Omega H asymptotic:    0.59 
Omega Total            0.91 

Schmid Leiman Factor loadings greater than  0.2 
            g   F1*   F2*   F3*    h2   h2   u2   p2  com
aies_1   0.29        0.36 -0.29  0.30 0.30 0.70 0.29 2.91
aies_2   0.62        0.66        0.83 0.83 0.17 0.47 2.02
aies_3   0.59        0.56        0.66 0.66 0.34 0.52 2.04
aies_4   0.46        0.43  0.30  0.49 0.49 0.51 0.44 2.72
aies_5   0.45  0.49        0.24  0.50 0.50 0.50 0.40 2.46
aies_6   0.29  0.39        0.34  0.36 0.36 0.64 0.24 2.96
aies_7   0.54        0.61        0.67 0.67 0.33 0.43 1.99
aies_8   0.41  0.39        0.28  0.40 0.40 0.60 0.42 2.81
aies_9   0.47  0.55              0.55 0.55 0.45 0.40 2.22
aies_10  0.39  0.54              0.46 0.46 0.54 0.32 1.95
aies_11  0.55  0.47  0.25        0.60 0.60 0.40 0.50 2.51
aies_12  0.39  0.65              0.61 0.61 0.39 0.25 1.78
aies_13  0.31              0.42  0.31 0.31 0.69 0.32 2.22
aies_14  0.55  0.20  0.46        0.57 0.57 0.43 0.54 2.30
aies_15                    0.34       0.19 0.81 0.11 2.36
aies_16  0.46  0.33        0.47  0.55 0.55 0.45 0.38 2.90
aies_17                    0.64  0.43 0.43 0.57 0.03 1.09

With Sums of squares  of:
  g F1* F2* F3*  h2 
3.2 2.0 1.8 1.5 4.6 

general/max  0.7   max/min =   3.18
mean percent general =  0.36    with sd =  0.14 and cv of  0.39 
Explained Common Variance of the general factor =  0.38 

The degrees of freedom are 88  and the fit is  3.76 
The number of observations was  44  with Chi Square =  129.85  with prob <  0.0025
The root mean square of the residuals is  0.08 
The df corrected root mean square of the residuals is  0.1
RMSEA index =  0.101  and the 90 % confidence intervals are  0.064 0.142
BIC =  -203.16

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 119  and the fit is  6.65 
The number of observations was  44  with Chi Square =  238.3  with prob <  5.4e-10
The root mean square of the residuals is  0.19 
The df corrected root mean square of the residuals is  0.2 

RMSEA index =  0.149  and the 90 % confidence intervals are  0.124 0.181
BIC =  -212.01 

Measures of factor score adequacy             
                                                 g  F1*  F2*  F3*
Correlation of scores with factors            0.75 0.81 0.75 0.84
Multiple R square of scores with factors      0.57 0.66 0.57 0.70
Minimum correlation of factor score estimates 0.13 0.32 0.13 0.40

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.91 0.84 0.87 0.58
Omega general for total scores and subscales  0.53 0.35 0.44 0.13
Omega group for total scores and subscales    0.27 0.49 0.44 0.44
omega(dfMIDhls)

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.94 
G.6:                   0.96 
Omega Hierarchical:    0.8 
Omega H asymptotic:    0.83 
Omega Total            0.96 

Schmid Leiman Factor loadings greater than  0.2 
          g   F1*   F2*   F3*   h2   h2   u2   p2  com
hls_1  0.59        0.54       0.65 0.65 0.35 0.54 2.02
hls_2  0.58        0.59       0.69 0.69 0.31 0.49 2.02
hls_3  0.59        0.62       0.75 0.75 0.25 0.47 2.03
hls_4  0.65        0.48       0.66 0.66 0.34 0.64 1.90
hls_5  0.73  0.20        0.22 0.63 0.63 0.37 0.85 1.37
hls_6  0.59  0.31             0.45 0.45 0.55 0.78 1.53
hls_7  0.75  0.52             0.83 0.83 0.17 0.67 1.79
hls_8  0.75  0.38             0.72 0.72 0.28 0.79 1.51
hls_9  0.75              0.46 0.77 0.77 0.23 0.73 1.66
hls_10 0.81              0.55 0.96 0.96 0.04 0.68 1.77
hls_11 0.71              0.30 0.62 0.62 0.38 0.81 1.47
hls_12 0.72  0.36             0.66 0.66 0.34 0.79 1.52

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
5.71 0.70 1.30 0.67 6.02 

general/max  0.95   max/min =   8.98
mean percent general =  0.69    with sd =  0.13 and cv of  0.19 
Explained Common Variance of the general factor =  0.68 

The degrees of freedom are 33  and the fit is  1.67 
The number of observations was  44  with Chi Square =  60.5  with prob <  0.0024
The root mean square of the residuals is  0.05 
The df corrected root mean square of the residuals is  0.07
RMSEA index =  0.136  and the 90 % confidence intervals are  0.082 0.194
BIC =  -64.37

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 54  and the fit is  3.77 
The number of observations was  44  with Chi Square =  141.36  with prob <  9.4e-10
The root mean square of the residuals is  0.13 
The df corrected root mean square of the residuals is  0.15 

RMSEA index =  0.19  and the 90 % confidence intervals are  0.155 0.233
BIC =  -62.98 

Measures of factor score adequacy             
                                                 g  F1*  F2*  F3*
Correlation of scores with factors            0.91 0.71 0.83 0.76
Multiple R square of scores with factors      0.83 0.50 0.69 0.58
Minimum correlation of factor score estimates 0.66 0.00 0.38 0.16

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.96 0.89 0.89 0.91
Omega general for total scores and subscales  0.80 0.68 0.48 0.72
Omega group for total scores and subscales    0.12 0.21 0.41 0.19
omega(dfMIDnass)

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.85 
G.6:                   0.91 
Omega Hierarchical:    0.64 
Omega H asymptotic:    0.71 
Omega Total            0.91 

Schmid Leiman Factor loadings greater than  0.2 
            g   F1*   F2*   F3*    h2   h2   u2   p2  com
nass_1   0.53        0.62        0.69 0.69 0.31 0.40 2.16
nass_2   0.58        0.70        0.85 0.85 0.15 0.40 2.05
nass_3               0.30 -0.23       0.16 0.84 0.00 2.31
nass_4   0.50  0.33              0.37 0.37 0.63 0.67 1.84
nass_5   0.63  0.44              0.59 0.59 0.41 0.67 1.79
nass_6   0.74  0.49              0.81 0.81 0.19 0.68 1.81
nass_7   0.20              0.69  0.52 0.52 0.48 0.08 1.17
nass_8   0.47  0.40              0.40 0.40 0.60 0.55 2.16
nass_9   0.68  0.45              0.69 0.69 0.31 0.68 1.81
nass_10  0.60        0.59        0.73 0.73 0.27 0.49 2.10
nass_11  0.70  0.30  0.33        0.68 0.68 0.32 0.71 1.83
nass_12  0.31        0.29  0.38  0.32 0.32 0.68 0.30 2.86

With Sums of squares  of:
  g F1* F2* F3*  h2 
3.5 1.0 1.5 0.8 4.4 

general/max  0.8   max/min =   5.48
mean percent general =  0.47    with sd =  0.24 and cv of  0.52 
Explained Common Variance of the general factor =  0.51 

The degrees of freedom are 33  and the fit is  1.22 
The number of observations was  44  with Chi Square =  43.96  with prob <  0.096
The root mean square of the residuals is  0.05 
The df corrected root mean square of the residuals is  0.07
RMSEA index =  0.084  and the 90 % confidence intervals are  0 0.151
BIC =  -80.91

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 54  and the fit is  3.17 
The number of observations was  44  with Chi Square =  118.72  with prob <  9.3e-07
The root mean square of the residuals is  0.16 
The df corrected root mean square of the residuals is  0.17 

RMSEA index =  0.163  and the 90 % confidence intervals are  0.126 0.208
BIC =  -85.63 

Measures of factor score adequacy             
                                                 g   F1*  F2*  F3*
Correlation of scores with factors            0.83  0.61 0.83 0.82
Multiple R square of scores with factors      0.69  0.37 0.70 0.66
Minimum correlation of factor score estimates 0.38 -0.26 0.39 0.33

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.91 0.86 0.87 0.53
Omega general for total scores and subscales  0.64 0.58 0.41 0.10
Omega group for total scores and subscales    0.22 0.28 0.46 0.43
omega(dfMIDnaas)
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
In factor.scores, the correlation matrix is singular, the pseudo inverse is  used
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.79 
G.6:                   0.89 
Omega Hierarchical:    0.22 
Omega H asymptotic:    0.25 
Omega Total            0.86 

Schmid Leiman Factor loadings greater than  0.2 
            g   F1*   F2*   F3*    h2   h2   u2   p2  com
naas_1         0.43              0.20 0.20 0.80 0.03 1.13
naas_2         0.93              0.90 0.90 0.10 0.04 1.09
naas_3   0.31        0.84        0.81 0.81 0.19 0.12 1.27
naas_4               0.44        0.21 0.21 0.79 0.10 1.22
naas_5               0.37             0.18 0.82 0.07 1.71
naas_6   0.23              0.63  0.48 0.48 0.52 0.11 1.40
naas_7   0.25              0.64  0.48 0.48 0.52 0.13 1.36
naas_8   0.30        0.32  0.40  0.36 0.36 0.64 0.26 2.82
naas_9                     0.34       0.13 0.87 0.14 1.36
naas_10  0.28        0.26  0.34  0.28 0.28 0.72 0.28 3.24
naas_11              0.58        0.39 0.39 0.61 0.06 1.32
naas_12  0.21              0.37       0.19 0.81 0.23 1.82
naas_13  0.20  0.45        0.26  0.32 0.32 0.68 0.13 2.08
naas_14  0.33              0.62  0.52 0.52 0.48 0.21 1.62
naas_15        0.66              0.51 0.51 0.49 0.05 1.32
naas_16        0.73              0.56 0.56 0.44 0.03 1.12
naas_17        0.93              0.90 0.90 0.10 0.04 1.09
naas_18  0.23        0.44        0.28 0.28 0.72 0.19 1.95
naas_19  0.27        0.78        0.68 0.68 0.32 0.11 1.25
naas_20  0.30  0.41        0.39  0.41 0.41 0.59 0.21 2.91

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
0.98 3.40 2.42 1.99 4.93 

general/max  0.2   max/min =   2.47
mean percent general =  0.13    with sd =  0.08 and cv of  0.62 
Explained Common Variance of the general factor =  0.11 

The degrees of freedom are 133  and the fit is  23.86 
The number of observations was  44  with Chi Square =  799.32  with prob <  1.2e-95
The root mean square of the residuals is  0.09 
The df corrected root mean square of the residuals is  0.11
RMSEA index =  0.337  and the 90 % confidence intervals are  0.319 0.364
BIC =  296.03

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 170  and the fit is  30.47 
The number of observations was  44  with Chi Square =  1061.38  with prob <  9.2e-129
The root mean square of the residuals is  0.23 
The df corrected root mean square of the residuals is  0.25 

RMSEA index =  0.344  and the 90 % confidence intervals are  0.329 0.369
BIC =  418.07 

Measures of factor score adequacy             
                                                  g  F1*  F2*  F3*
Correlation of scores with factors             0.49 0.96 0.91 0.83
Multiple R square of scores with factors       0.24 0.92 0.83 0.69
Minimum correlation of factor score estimates -0.51 0.84 0.66 0.38

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.86 0.86 0.81 0.74
Omega general for total scores and subscales  0.22 0.06 0.09 0.16
Omega group for total scores and subscales    0.54 0.80 0.72 0.58

4.3 Cronbach’s alpha and MacDonald’s omega for CPV cultural self-reports

omega(dfLPPaies)
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
The estimated weights for the factor scores are probably incorrect.  Try a
different factor score estimation method.
Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
ultra-Heywood case was detected.  Examine the results carefully
Warning in cov2cor(t(w) %*% r %*% w): diag(V) had non-positive or NA entries;
the non-finite result may be dubious

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.94 
G.6:                   0.97 
Omega Hierarchical:    0.78 
Omega H asymptotic:    0.82 
Omega Total            0.96 

Schmid Leiman Factor loadings greater than  0.2 
           g   F1*   F2*   F3*   h2   h2   u2   p2  com
aies_1  0.72                   0.53 0.53 0.47 0.98 1.05
aies_2  0.47        0.58 -0.30 0.65 0.65 0.35 0.34 2.49
aies_3  0.62        0.67       0.84 0.84 0.16 0.46 2.04
aies_4  0.41        0.24 -0.24 0.29 0.29 0.71 0.59 2.30
aies_5  0.37              0.67 0.60 0.60 0.40 0.23 1.63
aies_6  0.63        0.20       0.43 0.43 0.57 0.91 1.20
aies_7  0.47        0.77       0.81 0.81 0.19 0.27 1.66
aies_8  0.87                   0.79 0.79 0.21 0.97 1.05
aies_9  0.49        0.57       0.57 0.57 0.43 0.42 2.01
aies_10 0.96                   0.94 0.94 0.06 0.98 1.05
aies_11 0.54        0.64       0.71 0.71 0.29 0.42 1.97
aies_12 0.75                   0.59 0.59 0.41 0.96 1.08
aies_13 0.76                   0.61 0.61 0.39 0.94 1.11
aies_14 0.79        0.27 -0.22 0.74 0.74 0.26 0.83 1.40
aies_15 0.59        0.41  0.31 0.61 0.61 0.39 0.57 2.38
aies_16 0.55        0.28       0.41 0.41 0.59 0.75 1.65
aies_17 0.72                   0.53 0.53 0.47 0.99 1.03

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
7.20 0.00 2.60 0.85 7.12 

general/max  1.01   max/min =   Inf
mean percent general =  0.68    with sd =  0.28 and cv of  0.41 
Explained Common Variance of the general factor =  0.68 

The degrees of freedom are 88  and the fit is  3.46 
The number of observations was  40  with Chi Square =  105.51  with prob <  0.098
The root mean square of the residuals is  0.06 
The df corrected root mean square of the residuals is  0.07
RMSEA index =  0.066  and the 90 % confidence intervals are  0 0.118
BIC =  -219.11

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 119  and the fit is  7.11 
The number of observations was  40  with Chi Square =  226.47  with prob <  1.1e-08
The root mean square of the residuals is  0.16 
The df corrected root mean square of the residuals is  0.17 

RMSEA index =  0.148  and the 90 % confidence intervals are  0.122 0.182
BIC =  -212.51 

Measures of factor score adequacy             
                                                 g F1*  F2*  F3*
Correlation of scores with factors            0.99   0 0.97 0.83
Multiple R square of scores with factors      0.98   0 0.95 0.69
Minimum correlation of factor score estimates 0.96  -1 0.89 0.38

 Total, General and Subset omega for each subset
                                                 g F1*  F2*  F3*
Omega total for total scores and subscales    0.96  NA 0.95 0.82
Omega general for total scores and subscales  0.78  NA 0.71 0.77
Omega group for total scores and subscales    0.16  NA 0.24 0.05
omega(dfLPPhls)
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
The estimated weights for the factor scores are probably incorrect.  Try a
different factor score estimation method.
Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
ultra-Heywood case was detected.  Examine the results carefully
Warning in cov2cor(t(w) %*% r %*% w): diag(V) had non-positive or NA entries;
the non-finite result may be dubious

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.96 
G.6:                   0.98 
Omega Hierarchical:    0.86 
Omega H asymptotic:    0.88 
Omega Total            0.97 

Schmid Leiman Factor loadings greater than  0.2 
          g   F1* F2*   F3*   h2   h2   u2   p2  com
hls_1  0.89  0.23           0.86 0.86 0.14 0.91 1.21
hls_2  0.83  0.24     -0.37 0.88 0.88 0.12 0.78 1.57
hls_3  0.86                 0.76 0.76 0.24 0.98 1.04
hls_4  0.87                 0.76 0.76 0.24 0.99 1.03
hls_5  0.71                 0.54 0.54 0.46 0.93 1.15
hls_6  0.88                 0.78 0.78 0.22 0.99 1.02
hls_7  0.59  0.24      0.65 0.82 0.82 0.18 0.42 2.25
hls_8  0.86  0.32      0.26 0.91 0.91 0.09 0.81 1.46
hls_9  0.67  0.56           0.77 0.77 0.23 0.58 1.96
hls_10 0.72  0.58           0.85 0.85 0.15 0.60 1.92
hls_11 0.59  0.74           0.89 0.89 0.11 0.39 1.92
hls_12 0.70  0.45           0.69 0.69 0.31 0.71 1.72

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
7.12 1.68 0.00 0.72 7.66 

general/max  0.93   max/min =   Inf
mean percent general =  0.76    with sd =  0.22 and cv of  0.29 
Explained Common Variance of the general factor =  0.75 

The degrees of freedom are 33  and the fit is  1.76 
The number of observations was  40  with Chi Square =  56.7  with prob <  0.0063
The root mean square of the residuals is  0.03 
The df corrected root mean square of the residuals is  0.05
RMSEA index =  0.132  and the 90 % confidence intervals are  0.072 0.194
BIC =  -65.03

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 54  and the fit is  4.92 
The number of observations was  40  with Chi Square =  164.71  with prob <  4e-13
The root mean square of the residuals is  0.14 
The df corrected root mean square of the residuals is  0.16 

RMSEA index =  0.225  and the 90 % confidence intervals are  0.19 0.27
BIC =  -34.49 

Measures of factor score adequacy             
                                                 g  F1* F2*  F3*
Correlation of scores with factors            0.98 0.94   0 0.92
Multiple R square of scores with factors      0.96 0.89   0 0.85
Minimum correlation of factor score estimates 0.91 0.78  -1 0.69

 Total, General and Subset omega for each subset
                                                 g  F1* F2*  F3*
Omega total for total scores and subscales    0.97 0.96  NA 0.92
Omega general for total scores and subscales  0.86 0.73  NA 0.89
Omega group for total scores and subscales    0.09 0.23  NA 0.03
omega(dfLPPnaas)

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.9 
G.6:                   0.96 
Omega Hierarchical:    0.63 
Omega H asymptotic:    0.68 
Omega Total            0.93 

Schmid Leiman Factor loadings greater than  0.2 
            g   F1*   F2*   F3*   h2   h2   u2   p2  com
naas_1   0.45        0.33       0.34 0.34 0.66 0.59 2.21
naas_2   0.43        0.59 -0.20 0.58 0.58 0.42 0.32 2.16
naas_3   0.75              0.25 0.67 0.67 0.33 0.85 1.35
naas_4   0.47             -0.30 0.37 0.37 0.63 0.60 2.30
naas_5   0.24              0.67 0.51 0.51 0.49 0.12 1.29
naas_6   0.64              0.52 0.70 0.70 0.30 0.59 2.00
naas_7   0.58              0.23 0.41 0.41 0.59 0.82 1.45
naas_8   0.38        0.43       0.35 0.35 0.65 0.41 2.18
naas_9   0.25        0.24  0.38 0.27 0.27 0.73 0.24 2.52
naas_10  0.55                   0.32 0.32 0.68 0.93 1.16
naas_11  0.64              0.31 0.53 0.53 0.47 0.76 1.62
naas_12  0.30              0.59 0.44 0.44 0.56 0.21 1.50
naas_13  0.20        0.35  0.49 0.40 0.40 0.60 0.10 2.20
naas_14  0.60        0.31       0.48 0.48 0.52 0.74 1.68
naas_15  0.33        0.63       0.54 0.54 0.46 0.20 1.68
naas_16              0.75       0.58 0.58 0.42 0.04 1.09
naas_17  0.21        0.88       0.83 0.83 0.17 0.06 1.12
naas_18  0.71  0.22             0.58 0.58 0.42 0.88 1.29
naas_19  0.79  0.21             0.68 0.68 0.32 0.93 1.16
naas_20  0.61        0.39  0.26 0.60 0.60 0.40 0.62 2.18

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
5.08 0.27 2.87 1.96 5.59 

general/max  0.91   max/min =   21.01
mean percent general =  0.5    with sd =  0.32 and cv of  0.63 
Explained Common Variance of the general factor =  0.5 

The degrees of freedom are 133  and the fit is  6.39 
The number of observations was  40  with Chi Square =  188.38  with prob <  0.0011
The root mean square of the residuals is  0.08 
The df corrected root mean square of the residuals is  0.1
RMSEA index =  0.099  and the 90 % confidence intervals are  0.067 0.136
BIC =  -302.24

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 170  and the fit is  10.03 
The number of observations was  40  with Chi Square =  309.13  with prob <  3.7e-10
The root mean square of the residuals is  0.18 
The df corrected root mean square of the residuals is  0.2 

RMSEA index =  0.141  and the 90 % confidence intervals are  0.119 0.17
BIC =  -317.98 

Measures of factor score adequacy             
                                                 g   F1*  F2*  F3*
Correlation of scores with factors            0.92  0.27 0.95 0.88
Multiple R square of scores with factors      0.85  0.07 0.90 0.78
Minimum correlation of factor score estimates 0.70 -0.85 0.80 0.55

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.93 0.78 0.88 0.82
Omega general for total scores and subscales  0.63 0.72 0.31 0.52
Omega group for total scores and subscales    0.21 0.06 0.57 0.30
omega(dfLPPnass)

Omega 
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
    digits = digits, title = title, sl = sl, labels = labels, 
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
    covar = covar)
Alpha:                 0.8 
G.6:                   0.89 
Omega Hierarchical:    0.25 
Omega H asymptotic:    0.28 
Omega Total            0.89 

Schmid Leiman Factor loadings greater than  0.2 
            g   F1*   F2*   F3*   h2   h2   u2   p2  com
nass_1   0.40  0.44  0.32       0.46 0.46 0.54 0.34 2.82
nass_2   0.59        0.71       0.86 0.86 0.14 0.40 2.02
nass_3        -0.21        0.54 0.38 0.38 0.62 0.08 1.59
nass_4         0.66 -0.22       0.49 0.49 0.51 0.01 1.24
nass_5   0.29  0.57             0.43 0.43 0.57 0.20 1.63
nass_6   0.34  0.88             0.89 0.89 0.11 0.13 1.31
nass_7-  0.28        0.47 -0.26 0.37 0.37 0.63 0.21 2.26
nass_8         0.66 -0.20       0.48 0.48 0.52 0.01 1.21
nass_9   0.29  0.82             0.79 0.79 0.21 0.11 1.32
nass_10  0.20              0.69 0.52 0.52 0.48 0.08 1.22
nass_11  0.35  0.80             0.77 0.77 0.23 0.16 1.41
nass_12  0.29              0.67 0.54 0.54 0.46 0.16 1.41

With Sums of squares  of:
   g  F1*  F2*  F3*   h2 
1.16 3.53 0.95 1.34 4.46 

general/max  0.26   max/min =   4.67
mean percent general =  0.16    with sd =  0.12 and cv of  0.75 
Explained Common Variance of the general factor =  0.17 

The degrees of freedom are 33  and the fit is  1.04 
The number of observations was  40  with Chi Square =  33.61  with prob <  0.44
The root mean square of the residuals is  0.05 
The df corrected root mean square of the residuals is  0.07
RMSEA index =  0  and the 90 % confidence intervals are  0 0.12
BIC =  -88.12

Compare this with the adequacy of just a general factor and no group factors
The degrees of freedom for just the general factor are 54  and the fit is  5.49 
The number of observations was  40  with Chi Square =  183.8  with prob <  4.7e-16
The root mean square of the residuals is  0.31 
The df corrected root mean square of the residuals is  0.34 

RMSEA index =  0.244  and the 90 % confidence intervals are  0.209 0.288
BIC =  -15.4 

Measures of factor score adequacy             
                                                  g  F1*  F2*  F3*
Correlation of scores with factors             0.64 0.94 0.77 0.83
Multiple R square of scores with factors       0.41 0.88 0.59 0.69
Minimum correlation of factor score estimates -0.18 0.75 0.18 0.39

 Total, General and Subset omega for each subset
                                                 g  F1*  F2*  F3*
Omega total for total scores and subscales    0.89 0.91 0.73 0.72
Omega general for total scores and subscales  0.25 0.11 0.25 0.08
Omega group for total scores and subscales    0.63 0.79 0.47 0.64

5 Bivariate correlations

5.1 Creating matrix for SST participants

tibble4SST<-tibble(
  #Subject=dfSST$Subject,
  #sex=dfSST$Gender,
  #age=dfSST$Age,
  goIncorrERN_FCz=dfSST$ERNFCz_GoIncorr, # We have 52 ERN and Pe entries
  goCorrERN_FCz=dfSST$ERNFCz_GoCorr,
  allIncorrN2_FCz=dfSST$N2FCz_AllIncorrn59,
  allCorrN2_FCz=dfSST$N2FCz_AllCorrn59,
  allIncorrP3_Pz=dfSST$P3Pz_AllIncorrn59,
  allCorrP3_Pz=dfSST$P3Pz_AllCorrn59,
  goIncorrPe_Pz=dfSST$PePz_GoIncorr,
  goCorrPe_Pz=dfSST$PePz_GoCorr,
  #CDDRposRein=dfSST$CDDR_PosReinforcement,
  #CDDRnegRein=dfSST$CDDR_NegReinforcement,
  PROMISanx=dfSST$PROMIS_AnxietyTscore,
  PROMISalcUse=dfSST$PROMIS_AlcoUseTscore,
  PROMISdepress=dfSST$PROMIS_DepressTscore,
  #PROMISappealUse30=dfSST$PROMIS_AppealSubUse30DaysTscore,
  #PROMISappealUse3=dfSST$PROMIS_AppealSubUse3MonthTscore,
  #phqSuicide=dfSST$PHQ9_Suicide,
  #Age=dfSST$Age,
  #Sex=dfSST$Gender,
  #Income=dfSST$Income,
  #Education=dfSST$Education_4levelCategory,
  #MRT=dfSST$ss_mrt_calibration,
  #goErrorEasyRT=dfSST$ss_meanrt_erroreasy,
  #goErrorHardRT=dfSST$ss_meanrt_errorhard,
  AIES=dfSST$AIES_scale,
  NAAS=dfSST$NAAS_scale,
  NASS=dfSST$NASS_scale,
  HLS=dfSST$HLS_scale
)
cleanedTibble4SST<-na.omit(tibble4SST) # retains 52 participants
# residualized ERN
residual_incorrectFCzERN<-lm(goIncorrERN_FCz~goCorrERN_FCz,data=cleanedTibble4SST)
cleanedTibble4SST$ERNresid<-resid(residual_incorrectFCzERN)
# residualized correct N2
residual_correctFCzN2<-lm(allCorrN2_FCz~allIncorrN2_FCz,data=cleanedTibble4SST)
cleanedTibble4SST$N2corrResid<-resid(residual_correctFCzN2)
# residualized incorrect N2
residual_incorrectFCzN2<-lm(allIncorrN2_FCz~allCorrN2_FCz,data=cleanedTibble4SST)
cleanedTibble4SST$N2resid<-resid(residual_incorrectFCzN2)
# residualized correct P3
residual_correctPzP3<-lm(allCorrP3_Pz~allIncorrP3_Pz,data=cleanedTibble4SST)
cleanedTibble4SST$P3corrResid<-resid(residual_correctPzP3)
# residualized incorrect P3
residual_incorrectPzP3<-lm(allIncorrP3_Pz~allCorrP3_Pz,data=cleanedTibble4SST)
cleanedTibble4SST$P3resid<-resid(residual_incorrectPzP3)
# residualized Pe
residual_incorrectPzPe<-lm(goIncorrPe_Pz~goCorrPe_Pz,data=cleanedTibble4SST)
cleanedTibble4SST$PeResid<-resid(residual_incorrectPzPe)

updatedTibbleSST<-tibble(
  "Resid. ERN"=cleanedTibble4SST$ERNresid,
  "Resid Incorr P3"=cleanedTibble4SST$P3resid,
  "Resid. Pe"=cleanedTibble4SST$PeResid,
  #CDDRposRein=cleanedTibble4SST$CDDR_PosReinforcement,
  #CDDRnegRein=cleanedTibble4SST$CDDR_NegReinforcement,
  "PROMIS Anxiety"=cleanedTibble4SST$PROMISanx,
  "PROMIS Alcohol Use"=cleanedTibble4SST$PROMISalcUse,
  "PROMIS Depression"=cleanedTibble4SST$PROMISdepress,
  #PROMISappealUse30=dfSST$PROMIS_AppealSubUse30DaysTscore,
  #PROMISappealUse3=dfSST$PROMIS_AppealSubUse3MonthTscore,
  #phqSuicide=dfSST$PHQ9_Suicide,
  #Age=dfSST$Age,
  #Sex=dfSST$Gender,
  #Income=dfSST$Income,
  #Education=dfSST$Education_4levelCategory,
  #MRT=dfSST$ss_mrt_calibration,
  #goErrorEasyRT=dfSST$ss_meanrt_erroreasy,
  #goErrorHardRT=dfSST$ss_meanrt_errorhard,
  "AIES"=cleanedTibble4SST$AIES,
  "NAAS"=cleanedTibble4SST$NAAS,
  "NASS"=cleanedTibble4SST$NASS,
  "HLS"=cleanedTibble4SST$HLS
)

5.2 Correlation matrix for SST ERPs, cultural self-reports, and clinical self-reports

p1<-corr.test(updatedTibbleSST,method='spearman',adjust='none')$p
MH1<-cor(updatedTibbleSST)
# create correlation matrix for all variables including cultural variables
corrplot(MH1,p.mat=p1,method='color',diag=FALSE,type='lower',
         sig.level=c(.001,.01,.05),pch.cex = 0.75,insig='label_sig',
         pch.col = 'black')

5.3 Creating matrix for MID participants

tibble4MID<-tibble(
  #Subject=dfMID$Subject,
  Age=dfMID$Age,
  #Sex=dfMID$Gender,
  "P300 Pz Loss"=dfMID$P3pzMIDcueLoss,
  #cueNogainPzP3=dfMID$P3pzMIDcueNogain,
  "P300 Pz Gain"=dfMID$P3pzMIDcueGain,
  "SPN Fz Success"=dfMID$SPNfzMIDfeedbackSuccess,
  #failFzSPN=dfMID$SPNfzMIDfeedbackFail,
  'RewP FCz Gain'=dfMID$RewPfczMIDfeedbackGain,
  #CDDRposRein=dfMID$CDDR_PosReinforcement,
  #CDDRnegRein=dfMID$CDDR_NegReinforcement,
  "PROMIS Anxiety"=dfMID$PROMIS_AnxietyTscore,
  "PROMIS Alcohol Use"=dfMID$PROMIS_AlcoUseTscore,
  "PROMIS Depression"=dfMID$PROMIS_DepressTscore,
  #PROMISappealUse30=dfMID$PROMIS_AppealSubUse30DaysTscore,
  #PROMISappealUse3=dfMID$PROMIS_AppealSubUse3MonthTscore,
  #phqSuicide=dfMID$PHQ9_Suicide,
  #Age=dfMID$Age,
  #Sex=dfMID$Gender,
  #Income=dfMID$Income,
  #Education=dfMID$Education_4levelCategory,
  #MRT=dfMID$ss_mrt_calibration,
  #goErrorEasyRT=dfMID$ss_meanrt_erroreasy,
  #goErrorHardRT=dfMID$ss_meanrt_errorhard,
  "AIES"=dfMID$AIES_scale,
  "NAAS"=dfMID$NAAS_scale,
  "NASS"=dfMID$NASS_scale,
  "HLS"=dfMID$HLS_scale
)
cleanedData4Hyp1b<-na.omit(tibble4MID) # retains 44participants

tibble4MIDcalc<-tibble(
  Age=dfMID$Age,
  #Sex=dfMID$Gender,
  P3PzLoss=tibble4MID$`P300 Pz Loss`,
  P3PzGain=tibble4MID$`P300 Pz Gain`,
  RewPFCzGain=tibble4MID$`RewP FCz Gain`,
  successSPN=tibble4MID$`SPN Fz Success`,
  promisDep=tibble4MID$`PROMIS Depression`,
  promisAnx=tibble4MID$`PROMIS Anxiety`,
  promisAlcUse=tibble4MID$`PROMIS Alcohol Use`,
  AIES=tibble4MID$AIES,
  NAAS=tibble4MID$NAAS,
  NASS=tibble4MID$NASS,
  HLS=tibble4MID$HLS
)
cleanedTibble4MIDcalc<-na.omit(tibble4MIDcalc)

5.4 Correlation matrix for MID ERPs, cultural self-reports, and clinical self-reports

# assign the p-values and matrix to objects in R
p1<-corr.test(cleanedData4Hyp1b,method='spearman',adjust='none')$p
MH1<-cor(cleanedData4Hyp1b)
# create correlation matrix for all variables including cultural variables
corrplot(MH1,p.mat=p1,method='color',diag=FALSE,type='lower',
         sig.level=c(.001,.01,.05),pch.cex = 0.75,insig='label_sig',
         pch.col = 'black')

5.5 Reverse scoring the HLS for CPV

5.6 Creating matrix for CPV participants

data4matrixH2<-tibble(
  #Age=dfLPP$Age,
  #Sex=dfLPP$Sex,
  #CDDRposRein=dfLPP$CDDR_PosReinforcement,
  #CDDRnegRein=dfLPP$CDDR_NegReinforcement,
  promisDep=dfLPP$PROMIS_DepressTscore,
  promisAnx=dfLPP$PROMIS_AnxietyTscore,
  promisAlcUse=dfLPP$PROMIS_AlcoUseTscore,
  #promisAppeal30=dfLPP$PROMIS_AppealSubUse30DaysTscore,
  #promisAppeal3=dfLPP$PROMIS_AppealSubUse3MonthTscore,
  eCulturalLPP=dfLPP$Early_LPPPz.Average_MastRef_Cultural,
  eNeutralLPP=dfLPP$Early_LPPPz.Average_MastRef_Neutral,
  CulturalLPP=dfLPP$LPP_Pz_Cultural,
  NeutralLPP=dfLPP$LPP_Pz_Neutral,
  mCulturalLPP=dfLPP$Mid_LPP_Pz.Average_MastRef_Cultural,
  mNeutralLPP=dfLPP$Mid_LPP_Pz.Average_MastRef_Neutral,
  HLS=dfLPP$hlsTot,
  AIES=dfLPP$AIES_scale,
  NAAS=dfLPP$NAAS_scale,
  NASS=dfLPP$NASS_scale
)
cleanedData4matrixH2<-na.omit(data4matrixH2) # retains 40 participants (did not drop any of them)
# create residualized (to culture) LPP, early LPP, and mid LPP amplitudes according to method proposed by Meyer et al., 2017
residualCulturalPzEarlyLPP<-lm(eCulturalLPP~eNeutralLPP,data=cleanedData4matrixH2)
cleanedData4matrixH2$residEarlyLPP<-resid(residualCulturalPzEarlyLPP)

residualCulturalPzLPP<-lm(CulturalLPP~NeutralLPP,data=cleanedData4matrixH2)
cleanedData4matrixH2$residLPP<-resid(residualCulturalPzLPP)

residualCulturalPzMidLPP<-lm(mCulturalLPP~mNeutralLPP,data=cleanedData4matrixH2)
cleanedData4matrixH2$residMidLPP<-resid(residualCulturalPzMidLPP)

updatedTibble<-tibble(
  #CDDRposRein=cleanedData4matrixH2$CDDR_PosReinforcement,
  #CDDRnegRein=cleanedData4matrixH2$CDDR_NegReinforcement,
  "PROMIS Anxiety"=cleanedData4matrixH2$promisAnx,
  "PROMIS Alcohol Use"=cleanedData4matrixH2$promisAlcUse,
  "PROMIS Depression"=cleanedData4matrixH2$promisDep,
  #promisAppeal30=cleanedData4matrixH2$PROMIS_AppealSubUse30DaysTscore,
  #promisAppeal3=cleanedData4matrixH2$PROMIS_AppealSubUse3MonthTscore,
  #eCulturalLPP=cleanedData4matrixH2$Early_LPPPz.Average_MastRef_Cultural,
  #eNeutralLPP=cleanedData4matrixH2$Early_LPPPz.Average_MastRef_Neutral,
  #CulturalLPP=cleanedData4matrixH2$LPP_Pz_Cultural,
  #NeutralLPP=cleanedData4matrixH2$LPP_Pz_Neutral,
  #mCulturalLPP=cleanedData4matrixH2$Mid_LPP_Pz.Average_MastRef_Cultural,
  #mNeutralLPP=cleanedData4matrixH2$Mid_LPP_Pz.Average_MastRef_Neutral,
  "Resid. Early LPP Pz"=cleanedData4matrixH2$residEarlyLPP,
  "Resid. Mid LPP Pz"=cleanedData4matrixH2$residMidLPP,
  "Resid. LPP Pz"=cleanedData4matrixH2$residLPP,
  "HLS"=cleanedData4matrixH2$HLS,
  "AIES"=cleanedData4matrixH2$AIES,
  "NAAS"=cleanedData4matrixH2$NAAS,
  "NASS"=cleanedData4matrixH2$NASS,
)

5.7 Correlation matrix for CPV participants

# assign the p-values and matrix to objects in R
pLPP<-corr.test(updatedTibble,method='spearman',adjust='none')$p
mLPP<-cor(updatedTibble)
# create correlation matrix for all variables including cultural variables
corrplot(mLPP,p.mat=pLPP,method='color',diag=FALSE,type='lower',
         sig.level=c(.001,.01,.05),pch.cex = 0.75,insig='label_sig',
         pch.col = 'black')

6 Linear regressions of significant correlations in SST

6.1 QQ plots for ERN amplitudes

ERNresidQQ<-ggplot2::ggplot(data = cleanedTibble4SST, mapping = aes(sample = ERNresid)) + 
  stat_qq_band(alpha = 0.5, conf = 0.95, bandType = "pointwise", fill = "green") + 
  stat_qq_line(identity = TRUE) + 
  stat_qq_point(col = "black") + 
  labs(x = "Theoretical Quantiles", y = "Sample Quantiles") + theme_bw()
ERNresidQQ

6.2 Residualized ERN amplitudes predicting PROMIS Depression scores

ggplot(cleanedTibble4SST, aes(x = ERNresid, y = PROMISdepress)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "blue") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  # <--- tell it which stats to show
    eq.with.lhs = "promisDep~~`=`~~",
    eq.x.rhs    = "ERNresid",
    parse = TRUE,
    label.x.npc = "left",
    label.y.npc = "top"
  ) +
  labs(x = "Residualized ERN Amplitudes", y = "PROMIS Depression Score") +
  theme_classic(base_size = 15)
Warning in stat_poly_eq(formula = y ~ x, mapping = use_label("eq", "adj.R2", :
Ignoring unknown parameters: `label.x.npc` and `label.y.npc`
`geom_smooth()` using formula = 'y ~ x'

6.3 Spirituality predicting PROMIS Depression scores

ggplot(cleanedTibble4SST, aes(x = NASS, y = PROMISdepress)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "red") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  # <--- tell it which stats to show
    eq.with.lhs = "promisDep~~`=`~~",
    eq.x.rhs    = "NASS",
    parse = TRUE,
    label.x.npc = "left",
    label.y.npc = "top"
  ) +
  labs(x = "NASS", y = "PROMIS Depression Score") +
  theme_classic(base_size = 15)
Warning in stat_poly_eq(formula = y ~ x, mapping = use_label("eq", "adj.R2", :
Ignoring unknown parameters: `label.x.npc` and `label.y.npc`
`geom_smooth()` using formula = 'y ~ x'

7 Linear regressions of significant correlations in MID

7.1 QQ plots for Cue Loss P300 amplitudes

cueLossP3qq<-ggplot2::ggplot(data = tibble4MIDcalc, mapping = aes(sample = P3PzLoss)) + 
  stat_qq_band(alpha = 0.5, conf = 0.95, bandType = "pointwise", fill = "green") + 
  stat_qq_line(identity = TRUE) + 
  stat_qq_point(col = "black") + 
  labs(x = "Theoretical Quantiles", y = "Sample Quantiles") + theme_bw()
cueLossP3qq

7.2 Cue loss P300 amplitudes predicting PROMIS Alcohol Use Scores

ggplot(cleanedData4Hyp1b, aes(x = `P300 Pz Loss`, y = `PROMIS Alcohol Use`)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "blue") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  # <--- tell it which stats to show
    eq.with.lhs = "promisAlcUse~~`=`~~",
    eq.x.rhs    = "cueLossP3",
    parse = TRUE,
    label.x.npc = "left",
    label.y.npc = "top"
  ) +
  labs(x = "P300 Amplitudes @ Pz to Loss Cues", y = "PROMIS Alcohol Use Score") +
  theme_classic(base_size = 15)
Warning in stat_poly_eq(formula = y ~ x, mapping = use_label("eq", "adj.R2", :
Ignoring unknown parameters: `label.x.npc` and `label.y.npc`
`geom_smooth()` using formula = 'y ~ x'

7.3 Spirituality predicitng PROMIS Depression scores

ggplot(cleanedData4Hyp1b, aes(x = NASS, y = `PROMIS Depression`)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "red") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  # <--- tell it which stats to show
    eq.with.lhs = "promisDep~~`=`~~",
    eq.x.rhs    = "NASS",
    parse = TRUE,
    label.x.npc = "left",
    label.y.npc = "top"
  ) +
  labs(x = "NASS", y = "PROMIS Depression Score") +
  theme_classic(base_size = 15)
Warning in stat_poly_eq(formula = y ~ x, mapping = use_label("eq", "adj.R2", :
Ignoring unknown parameters: `label.x.npc` and `label.y.npc`
`geom_smooth()` using formula = 'y ~ x'

8 Linear regressions of significant correlations in CPV

8.1 QQ plots for Residualized Mid-LPP amplitudes

residMidLPPqq<-ggplot2::ggplot(data = cleanedData4matrixH2, mapping = aes(sample = residMidLPP)) + 
  stat_qq_band(alpha = 0.5, conf = 0.95, bandType = "pointwise", fill = "green") + 
  stat_qq_line(identity = TRUE) + 
  stat_qq_point(col = "black") + 
  labs(x = "Theoretical Quantiles", y = "Sample Quantiles") + theme_bw()
residMidLPPqq

8.2 Residualized Mid-LPP amplitudes predicting PROMIS Depression scores

ggplot(updatedTibble, aes(x = `Resid. Mid LPP Pz`, y = `PROMIS Depression`)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "red") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  # <--- tell it which stats to show
    eq.with.lhs = "promisDep~~`=`~~",
    eq.x.rhs    = "residMidLPP",
    parse = TRUE,
    label.x.npc = "left",
    label.y.npc = "top"
  ) +
  labs(x = "Residualized Mid-LPP amplitudes @ Pz to Cultural Cues", y = "PROMIS Depression Score") +
  theme_classic(base_size = 15)
Warning in stat_poly_eq(formula = y ~ x, mapping = use_label("eq", "adj.R2", :
Ignoring unknown parameters: `label.x.npc` and `label.y.npc`
`geom_smooth()` using formula = 'y ~ x'

8.3 Residualized Mid-LPP amplitudes predicting PROMIS Anxiety Scores

ggplot(updatedTibble, aes(x = `Resid. Mid LPP Pz`, y = `PROMIS Anxiety`)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = TRUE, level=0.95, color = "red") +
  stat_poly_eq(
    formula = y ~ x,
    mapping = use_label("eq", "adj.R2", "p"),  # <--- tell it which stats to show
    eq.with.lhs = "promisAnx~~`=`~~",
    eq.x.rhs    = "residMidLPP",
    parse = TRUE,
    label.x.npc = "left",
    label.y.npc = "top"
  ) +
  labs(x = "Residualized Mid-LPP amplitudes @ Pz to Cultural Cues", y = "PROMIS Anxiety Score") +
  theme_classic(base_size = 15)
Warning in stat_poly_eq(formula = y ~ x, mapping = use_label("eq", "adj.R2", :
Ignoring unknown parameters: `label.x.npc` and `label.y.npc`
`geom_smooth()` using formula = 'y ~ x'

9 Multiple linear regression and moderation analyses in SST

tibble4SST<-tibble(
  #Subject=dfSST$Subject,
  sex=dfSST$Gender,
  age=dfSST$Age,
  goIncorrERN_FCz=dfSST$ERNFCz_GoIncorr, # We have 52 ERN and Pe entries
  goCorrERN_FCz=dfSST$ERNFCz_GoCorr,
  allIncorrN2_FCz=dfSST$N2FCz_AllIncorrn59,
  allCorrN2_FCz=dfSST$N2FCz_AllCorrn59,
  allIncorrP3_Pz=dfSST$P3Pz_AllIncorrn59,
  allCorrP3_Pz=dfSST$P3Pz_AllCorrn59,
  goIncorrPe_Pz=dfSST$PePz_GoIncorr,
  goCorrPe_Pz=dfSST$PePz_GoCorr,
  #CDDRposRein=dfSST$CDDR_PosReinforcement,
  #CDDRnegRein=dfSST$CDDR_NegReinforcement,
  PROMISanx=dfSST$PROMIS_AnxietyTscore,
  PROMISalcUse=dfSST$PROMIS_AlcoUseTscore,
  PROMISdepress=dfSST$PROMIS_DepressTscore,
  #PROMISappealUse30=dfSST$PROMIS_AppealSubUse30DaysTscore,
  #PROMISappealUse3=dfSST$PROMIS_AppealSubUse3MonthTscore,
  #phqSuicide=dfSST$PHQ9_Suicide,
  #Age=dfSST$Age,
  #Sex=dfSST$Gender,
  #Income=dfSST$Income,
  #Education=dfSST$Education_4levelCategory,
  #MRT=dfSST$ss_mrt_calibration,
  #goErrorEasyRT=dfSST$ss_meanrt_erroreasy,
  #goErrorHardRT=dfSST$ss_meanrt_errorhard,
  AIES=dfSST$AIES_scale,
  NAAS=dfSST$NAAS_scale,
  NASS=dfSST$NASS_scale,
  HLS=dfSST$HLS_scale
)
cleanedTibble4SST<-na.omit(tibble4SST)
# residualized ERN
residual_incorrectFCzERN<-lm(goIncorrERN_FCz~goCorrERN_FCz,data=cleanedTibble4SST)
cleanedTibble4SST$ERNresid<-resid(residual_incorrectFCzERN)
# residualized correct N2
residual_correctFCzN2<-lm(allCorrN2_FCz~allIncorrN2_FCz,data=cleanedTibble4SST)
cleanedTibble4SST$N2corrResid<-resid(residual_correctFCzN2)
# residualized incorrect N2
residual_incorrectFCzN2<-lm(allIncorrN2_FCz~allCorrN2_FCz,data=cleanedTibble4SST)
cleanedTibble4SST$N2resid<-resid(residual_incorrectFCzN2)
# residualized correct P3
residual_correctPzP3<-lm(allCorrP3_Pz~allIncorrP3_Pz,data=cleanedTibble4SST)
cleanedTibble4SST$P3corrResid<-resid(residual_correctPzP3)
# residualized incorrect P3
residual_incorrectPzP3<-lm(allIncorrP3_Pz~allCorrP3_Pz,data=cleanedTibble4SST)
cleanedTibble4SST$P3resid<-resid(residual_incorrectPzP3)
# residualized Pe
residual_incorrectPzPe<-lm(goIncorrPe_Pz~goCorrPe_Pz,data=cleanedTibble4SST)
cleanedTibble4SST$PeResid<-resid(residual_incorrectPzPe)

9.1 Residualized ERN amplitudes and acculturation predict PROMIS Depression

model1<-lm(PROMISdepress~ERNresid+NAAS+age+sex, data=cleanedTibble4SST)
summary(model1)

Call:
lm(formula = PROMISdepress ~ ERNresid + NAAS + age + sex, data = cleanedTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.7256  -4.4523  -0.6464   5.0780  14.8117 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 41.92412   12.49389   3.356   0.0016 **
ERNresid     0.48054    0.18933   2.538   0.0146 * 
NAAS         3.07120    2.97380   1.033   0.3071   
age          0.07219    0.09964   0.724   0.4724   
sexMale     -5.15865    2.56259  -2.013   0.0500 * 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.163 on 46 degrees of freedom
Multiple R-squared:  0.1856,    Adjusted R-squared:  0.1148 
F-statistic: 2.622 on 4 and 46 DF,  p-value: 0.04683
boot_model1<-boot_summary(model1, type='perc', method='residual',R = 10000)
Loading required namespace: boot
boot_model1
               Estimate Lower.bound Upper.bound p.value
(Intercept) 41.92411792  18.0247792  66.5009669   8e-04
ERNresid     0.48054142   0.1101003   0.8460146  0.0099
NAAS         3.07120002  -2.7601030   8.8221921  0.3113
age          0.07218854  -0.1235351   0.2648916  0.4773
sexMale     -5.15864774 -10.3413053  -0.1846511  0.0425
vif(model1)
ERNresid     NAAS      age      sex 
1.023638 1.023091 1.051987 1.028995 

9.2 Residualized ERN amplitudes and enculturation predict PROMIS Depression

model2<-lm(PROMISdepress~ERNresid+AIES+age+sex, data=cleanedTibble4SST)
summary(model2)

Call:
lm(formula = PROMISdepress ~ ERNresid + AIES + age + sex, data = cleanedTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-20.5536  -4.4204  -0.3033   5.3396  15.4321 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 54.68501    4.30569  12.701   <2e-16 ***
ERNresid     0.48371    0.19148   2.526   0.0150 *  
AIES        -0.01299    0.07380  -0.176   0.8611    
age          0.05997    0.10068   0.596   0.5544    
sexMale     -5.03850    2.59090  -1.945   0.0579 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.243 on 46 degrees of freedom
Multiple R-squared:  0.1673,    Adjusted R-squared:  0.09492 
F-statistic: 2.311 on 4 and 46 DF,  p-value: 0.07187
boot_model2<-boot_summary(model2, type='perc', method='residual',R = 10000)
boot_model2
               Estimate Lower.bound Upper.bound p.value
(Intercept) 54.68501410  46.3611022 62.86617104  <1e-04
ERNresid     0.48371453   0.1093464  0.86141907  0.0096
AIES        -0.01298551  -0.1543702  0.13019240   0.874
age          0.05996759  -0.1354888  0.25282254  0.5309
sexMale     -5.03850339 -10.2419730 -0.06829282  0.0481
vif(model2)
ERNresid     AIES      age      sex 
1.023972 1.020297 1.050407 1.028716 

9.3 Residualized ERN amplitudes and historical loss predict PROMIS Depression

model3<-lm(PROMISdepress~ERNresid+HLS+age+sex, data=cleanedTibble4SST)
summary(model3)

Call:
lm(formula = PROMISdepress ~ ERNresid + HLS + age + sex, data = cleanedTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-18.5278  -4.7389  -0.2029   4.3611  15.7359 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 39.04479   10.11151   3.861 0.000351 ***
ERNresid     0.47938    0.18634   2.573 0.013386 *  
HLS          0.34578    0.21494   1.609 0.114525    
age          0.07536    0.09770   0.771 0.444468    
sexMale     -4.76666    2.52315  -1.889 0.065182 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.05 on 46 degrees of freedom
Multiple R-squared:  0.2111,    Adjusted R-squared:  0.1425 
F-statistic: 3.078 on 4 and 46 DF,  p-value: 0.02504
boot_model3<-boot_summary(model3, type='perc', method='residual',R = 10000)
boot_model3
               Estimate Lower.bound Upper.bound p.value
(Intercept) 39.04478928 19.17562541  58.8991644   5e-04
ERNresid     0.47938082  0.11607487   0.8498836  0.0108
HLS          0.34578005 -0.07714463   0.7743315  0.1063
age          0.07535835 -0.11773773   0.2678234  0.4489
sexMale     -4.76665974 -9.85753589   0.1802791  0.0608
vif(model3)
ERNresid      HLS      age      sex 
1.023627 1.019346 1.044088 1.029812 

9.4 Residualized ERN amplitudes and spirituality predict PROMIS Depression

model4<-lm(PROMISdepress~ERNresid+NASS+age+sex, data=cleanedTibble4SST)
summary(model4)

Call:
lm(formula = PROMISdepress ~ ERNresid + NASS + age + sex, data = cleanedTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-18.9380  -3.7116   0.1487   3.7880  13.2539 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  61.2615     4.4674  13.713   <2e-16 ***
ERNresid      0.4088     0.1828   2.237   0.0302 *  
NASS         -0.3287     0.1350  -2.436   0.0188 *  
age           0.1857     0.1076   1.725   0.0912 .  
sexMale      -5.1106     2.4363  -2.098   0.0415 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.819 on 46 degrees of freedom
Multiple R-squared:  0.2619,    Adjusted R-squared:  0.1978 
F-statistic: 4.081 on 4 and 46 DF,  p-value: 0.006497
boot_model4<-boot_summary(model4, type='perc', method='residual',R = 10000)
boot_model4
              Estimate Lower.bound Upper.bound p.value
(Intercept) 61.2614900 52.46328286 69.83579412  <1e-04
ERNresid     0.4088358  0.04593785  0.76126548   0.024
NASS        -0.3287419 -0.59541459 -0.06426708  0.0122
age          0.1856702 -0.02209107  0.39105009  0.0805
sexMale     -5.1105505 -9.91610226 -0.33430094  0.0362
vif(model4)
ERNresid     NASS      age      sex 
1.052677 1.372881 1.354225 1.026226 

9.5 Residualized ERN amplitudes predict PROMIS Depression moderated by acculturation

model5<-lm(PROMISdepress~ERNresid*NAAS+age+sex,data= cleanedTibble4SST)
summary(model5)

Call:
lm(formula = PROMISdepress ~ ERNresid * NAAS + age + sex, data = cleanedTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.7962  -4.9408  -0.4977   4.9607  14.5935 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)   
(Intercept)   41.97946   12.60314   3.331  0.00174 **
ERNresid      -0.46408    2.06989  -0.224  0.82361   
NAAS           3.13349    3.00274   1.044  0.30227   
age            0.06194    0.10297   0.602  0.55046   
sexMale       -4.89843    2.64650  -1.851  0.07075 . 
ERNresid:NAAS  0.24980    0.54504   0.458  0.64893   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.225 on 45 degrees of freedom
Multiple R-squared:  0.1894,    Adjusted R-squared:  0.09937 
F-statistic: 2.103 on 5 and 45 DF,  p-value: 0.08244
boot_model5<-boot_summary(model5, type='perc', method='residual',R = 10000)
boot_model5
                 Estimate Lower.bound Upper.bound p.value
(Intercept)   41.97945624  17.5736052  66.9429301  0.0012
ERNresid      -0.46407960  -4.5239344   3.7494396  0.8203
NAAS           3.13348935  -2.7114063   8.9000131  0.2942
age            0.06194338  -0.1407346   0.2617626  0.5361
sexMale       -4.89843472 -10.1889733   0.2197940  0.0583
ERNresid:NAAS  0.24980059  -0.8682516   1.3118030  0.6533
johnson_neyman(
  model5, 
  pred=ERNresid,
  modx=NAAS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of resid. ERN amplitudes x PROMIS Depression",
  y.label="Slope of Residualized ERN amplitudes",
  modx.label = "Acculturation"
)
JOHNSON-NEYMAN INTERVAL

When NAAS is INSIDE the interval [3.60, 4.18], the slope of ERNresid is p <
.05.

Note: The range of observed values of NAAS is [3.05, 4.45]

vif(model5)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     ERNresid          NAAS           age           sex ERNresid:NAAS 
   120.251097      1.025191      1.104022      1.078638    119.304341 

9.6 Residualized ERN amplitudes predict PROMIS Depression moderated by enculturation

model6<-lm(PROMISdepress~ERNresid*AIES+age+sex, data=cleanedTibble4SST)
summary(model6)

Call:
lm(formula = PROMISdepress ~ ERNresid * AIES + age + sex, data = cleanedTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-20.2550  -4.7074  -0.1787   5.1604  14.8290 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   54.90917    4.36389  12.583 2.44e-16 ***
ERNresid       0.78671    0.63250   1.244   0.2200    
AIES          -0.02037    0.07584  -0.269   0.7895    
age            0.05926    0.10152   0.584   0.5623    
sexMale       -4.64000    2.72967  -1.700   0.0961 .  
ERNresid:AIES -0.00725    0.01441  -0.503   0.6174    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.302 on 45 degrees of freedom
Multiple R-squared:  0.172, Adjusted R-squared:  0.07998 
F-statistic: 1.869 on 5 and 45 DF,  p-value: 0.1187
boot_model6<-boot_summary(model6, type = 'perc',method = 'residual',R = 10000)
boot_model6
                  Estimate Lower.bound Upper.bound p.value
(Intercept)   54.909168154 46.34796781 63.62641277  <1e-04
ERNresid       0.786706408 -0.44276856  2.01612704  0.2104
AIES          -0.020368350 -0.17000892  0.12478752  0.7832
age            0.059262826 -0.13982387  0.25872594  0.5603
sexMale       -4.639999186 -9.98789234  0.59007859  0.0836
ERNresid:AIES -0.007249777 -0.03589079  0.02060679  0.6181
johnson_neyman(
  model6, 
  pred=ERNresid,
  modx=AIES,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of resid. ERN amplitudes x PROMIS Depression",
  y.label="Slope of Residualized ERN amplitudes",
  modx.label = "Enculturation"
)
JOHNSON-NEYMAN INTERVAL

When AIES is INSIDE the interval [26.20, 48.51], the slope of ERNresid is p
< .05.

Note: The range of observed values of AIES is [18.00, 75.00]

vif(model6)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     ERNresid          AIES           age           sex ERNresid:AIES 
    10.991573      1.059997      1.050607      1.123325     11.285358 

9.7 Residualized ERN amplitudes predict PROMIS Depression moderated by historical loss

model7<-lm(PROMISdepress~ERNresid*HLS+age+sex,data=cleanedTibble4SST)
summary(model7)

Call:
lm(formula = PROMISdepress ~ ERNresid * HLS + age + sex, data = cleanedTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.0571  -4.5595   0.1548   4.4206  15.4637 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept)  34.41370   10.47627   3.285  0.00198 **
ERNresid     -2.68377    2.16716  -1.238  0.22200   
HLS           0.41868    0.21807   1.920  0.06122 . 
age           0.11589    0.10040   1.154  0.25446   
sexMale      -4.28827    2.51360  -1.706  0.09490 . 
ERNresid:HLS  0.07344    0.05013   1.465  0.14991   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.964 on 45 degrees of freedom
Multiple R-squared:  0.2471,    Adjusted R-squared:  0.1634 
F-statistic: 2.953 on 5 and 45 DF,  p-value: 0.02176
boot_model7<-boot_summary(model7, type='perc', method='residual',R = 10000)
boot_model7
               Estimate Lower.bound Upper.bound p.value
(Intercept)  34.4137005 13.37190722  54.8179223   0.001
ERNresid     -2.6837739 -6.90518073   1.5568738  0.2182
HLS           0.4186787  0.00736690   0.8569256  0.0461
age           0.1158890 -0.08070560   0.3132751  0.2498
sexMale      -4.2882683 -9.38451653   0.6069322   0.091
ERNresid:HLS  0.0734372 -0.02483867   0.1709820  0.1392
johnson_neyman(
  model7, 
  pred=ERNresid,
  modx=HLS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of resid. ERN amplitudes x PROMIS Depression",
  y.label="Slope of Residualized ERN amplitudes",
  modx.label = "Historical Loss Thinking"
)
JOHNSON-NEYMAN INTERVAL

When HLS is INSIDE the interval [41.86, 58.95], the slope of ERNresid is p
< .05.

Note: The range of observed values of HLS is [30.00, 50.00]

vif(model7)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
    ERNresid          HLS          age          sex ERNresid:HLS 
  141.906411     1.075347     1.129906     1.047493   142.415303 

9.8 Residualized ERN amplitudes predict PROMIS Depression moderated by spirituality

model8<-lm(PROMISdepress~ERNresid*NASS+age+sex,data= cleanedTibble4SST)
summary(model8)

Call:
lm(formula = PROMISdepress ~ ERNresid * NASS + age + sex, data = cleanedTibble4SST)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.0103  -3.8103   0.1009   4.0828  13.1655 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   60.49521    4.87882  12.400 4.09e-16 ***
ERNresid       0.78761    0.94012   0.838   0.4066    
NASS          -0.30186    0.15110  -1.998   0.0518 .  
age            0.17864    0.10996   1.625   0.1112    
sexMale       -5.19141    2.46649  -2.105   0.0409 *  
ERNresid:NASS -0.01021    0.02486  -0.411   0.6831    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.881 on 45 degrees of freedom
Multiple R-squared:  0.2647,    Adjusted R-squared:  0.183 
F-statistic:  3.24 on 5 and 45 DF,  p-value: 0.01392
boot_model8<-boot_summary(model8, type='perc', method='residual',R = 10000)
boot_model8
                 Estimate  Lower.bound  Upper.bound p.value
(Intercept)   60.49520567  51.07553469 69.739032889  <1e-04
ERNresid       0.78761069  -1.05787290  2.609886195  0.3825
NASS          -0.30186492  -0.59154722 -0.009333231   0.042
age            0.17863547  -0.03622401  0.393432306  0.1011
sexMale       -5.19140961 -10.02705147 -0.390891496  0.0342
ERNresid:NASS -0.01021405  -0.05830201  0.038306876  0.6582
johnson_neyman(
  model8, 
  pred=ERNresid,
  modx=NASS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of resid. ERN amplitudes x PROMIS Depression",
  y.label="Slope of Residualized ERN amplitudes",
  modx.label = "Spirituality"
)
JOHNSON-NEYMAN INTERVAL

When NASS is INSIDE the interval [31.45, 39.24], the slope of ERNresid is p
< .05.

Note: The range of observed values of NASS is [11.00, 50.00]

vif(model8)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     ERNresid          NASS           age           sex ERNresid:NASS 
    27.345413      1.689483      1.387874      1.032801     26.522430 

10 Multiple linear regression and moderation analyses in MID

tibble4MID<-tibble(
  #Subject=dfMID$Subject,
  Age=dfMID$Age,
  Sex=dfMID$Gender,
  "P300 Pz Loss"=dfMID$P3pzMIDcueLoss,
  #cueNogainPzP3=dfMID$P3pzMIDcueNogain,
  "P300 Pz Gain"=dfMID$P3pzMIDcueGain,
  "SPN Fz Success"=dfMID$SPNfzMIDfeedbackSuccess,
  #failFzSPN=dfMID$SPNfzMIDfeedbackFail,
  'RewP FCz Gain'=dfMID$RewPfczMIDfeedbackGain,
  #CDDRposRein=dfMID$CDDR_PosReinforcement,
  #CDDRnegRein=dfMID$CDDR_NegReinforcement,
  "PROMIS Anxiety"=dfMID$PROMIS_AnxietyTscore,
  "PROMIS Alcohol Use"=dfMID$PROMIS_AlcoUseTscore,
  "PROMIS Depression"=dfMID$PROMIS_DepressTscore,
  #PROMISappealUse30=dfMID$PROMIS_AppealSubUse30DaysTscore,
  #PROMISappealUse3=dfMID$PROMIS_AppealSubUse3MonthTscore,
  #phqSuicide=dfMID$PHQ9_Suicide,
  #Age=dfMID$Age,
  #Sex=dfMID$Gender,
  #Income=dfMID$Income,
  #Education=dfMID$Education_4levelCategory,
  #MRT=dfMID$ss_mrt_calibration,
  #goErrorEasyRT=dfMID$ss_meanrt_erroreasy,
  #goErrorHardRT=dfMID$ss_meanrt_errorhard,
  "AIES"=dfMID$AIES_scale,
  "NAAS"=dfMID$NAAS_scale,
  "NASS"=dfMID$NASS_scale,
  "HLS"=dfMID$HLS_scale
)
cleanedData4Hyp1b<-na.omit(tibble4MID) # retains 44participants
tibble4MIDcalc<-tibble(
  Age=tibble4MID$Age,
  Sex=tibble4MID$Sex,
  P3PzLoss=tibble4MID$`P300 Pz Loss`,
  P3PzGain=tibble4MID$`P300 Pz Gain`,
  RewPFCzGain=tibble4MID$`RewP FCz Gain`,
  successSPN=tibble4MID$`SPN Fz Success`,
  promisDep=tibble4MID$`PROMIS Depression`,
  promisAnx=tibble4MID$`PROMIS Anxiety`,
  promisAlcUse=tibble4MID$`PROMIS Alcohol Use`,
  AIES=tibble4MID$AIES,
  NAAS=tibble4MID$NAAS,
  NASS=tibble4MID$NASS,
  HLS=tibble4MID$HLS
)
cleanedTibble4MIDcalc<-na.omit(tibble4MIDcalc)

10.1 Cue Loss P3 amplitudes and acculturation predict PROMIS Alcohol Use

model9<-lm(`PROMIS Alcohol Use`~`P300 Pz Loss`+NAAS+Age+Sex, data=cleanedData4Hyp1b)
summary(model9)

Call:
lm(formula = `PROMIS Alcohol Use` ~ `P300 Pz Loss` + NAAS + Age + 
    Sex, data = cleanedData4Hyp1b)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.4883 -1.2260 -0.2065  1.5432 12.0419 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    37.05858    9.15087   4.050 0.000236 ***
`P300 Pz Loss` -0.50979    0.27607  -1.847 0.072408 .  
NAAS            3.67439    2.09913   1.750 0.087908 .  
Age            -0.02814    0.07403  -0.380 0.705881    
SexMale         0.43327    1.66143   0.261 0.795634    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.503 on 39 degrees of freedom
Multiple R-squared:  0.1638,    Adjusted R-squared:  0.07799 
F-statistic: 1.909 on 4 and 39 DF,  p-value: 0.1282
boot_model9<-boot_summary(model9, type='perc', method='residual',R = 10000)
boot_model9
                  Estimate Lower.bound Upper.bound p.value
(Intercept)    37.05858093  19.1864552 54.93630683  <1e-04
`P300 Pz Loss` -0.50978669  -1.0660389  0.05594956  0.0731
NAAS            3.67438933  -0.4437887  7.81144566   0.076
Age            -0.02814448  -0.1747962  0.11816925  0.6938
SexMale         0.43326914  -2.8729624  3.82950373  0.7909
vif(model9)
`P300 Pz Loss`           NAAS            Age            Sex 
      1.242421       1.024610       1.206926       1.051933 

10.2 Cue Loss P3 amplitudes and enculturation predit PROMIS Alcohol Use

model10<-lm(`PROMIS Alcohol Use`~`P300 Pz Loss`+AIES+Age+Sex, data=cleanedData4Hyp1b)
summary(model10)

Call:
lm(formula = `PROMIS Alcohol Use` ~ `P300 Pz Loss` + AIES + Age + 
    Sex, data = cleanedData4Hyp1b)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.4164  -0.9719   0.0337   1.2461  11.0693 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    53.38500    3.58158  14.905   <2e-16 ***
`P300 Pz Loss` -0.55437    0.28511  -1.944   0.0591 .  
AIES           -0.03910    0.06146  -0.636   0.5283    
Age            -0.03993    0.07632  -0.523   0.6038    
SexMale         0.60339    1.71322   0.352   0.7266    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.652 on 39 degrees of freedom
Multiple R-squared:  0.1073,    Adjusted R-squared:  0.01577 
F-statistic: 1.172 on 4 and 39 DF,  p-value: 0.338
boot_model10<-boot_summary(model10, type='perc', method='residual',R = 10000)
boot_model10
                  Estimate Lower.bound Upper.bound p.value
(Intercept)    53.38499775  46.2241688 60.52097952  <1e-04
`P300 Pz Loss` -0.55436999  -1.1446219  0.02330244   0.061
AIES           -0.03910370  -0.1614053  0.08276589  0.5271
Age            -0.03992563  -0.1971436  0.11138381  0.6178
SexMale         0.60339428  -2.9667186  4.02662306  0.7325
vif(model10)
`P300 Pz Loss`           AIES            Age            Sex 
      1.241356       1.028327       1.201669       1.047821 

10.3 Cue Loss P3 amplitudes and historical loss predict PROMIS Alcohol Use

model11<-lm(`PROMIS Alcohol Use`~`P300 Pz Loss`+HLS+Sex+Age, data=cleanedData4Hyp1b)
summary(model11)

Call:
lm(formula = `PROMIS Alcohol Use` ~ `P300 Pz Loss` + HLS + Sex + 
    Age, data = cleanedData4Hyp1b)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.8522  -1.1971   0.1136   1.2974   9.8846 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    52.323750   7.930435   6.598 7.68e-08 ***
`P300 Pz Loss` -0.542295   0.290182  -1.869   0.0692 .  
HLS            -0.002512   0.160725  -0.016   0.9876    
SexMale         0.618344   1.730905   0.357   0.7228    
Age            -0.045954   0.078289  -0.587   0.5606    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.677 on 39 degrees of freedom
Multiple R-squared:  0.09806,   Adjusted R-squared:  0.005558 
F-statistic:  1.06 on 4 and 39 DF,  p-value: 0.3892
boot_model11<-boot_summary(model11, type='perc', method='residual',R = 10000)
boot_model11
                   Estimate Lower.bound Upper.bound p.value
(Intercept)    52.323749634  36.9904574 67.68246703  <1e-04
`P300 Pz Loss` -0.542294871  -1.1151274  0.03395812  0.0646
HLS            -0.002512433  -0.3050851  0.31700840  0.9771
SexMale         0.618344363  -2.8499949  3.98301793  0.7112
Age            -0.045953717  -0.1980508  0.10523374  0.5578
vif(model11)
`P300 Pz Loss`            HLS            Sex            Age 
      1.272684       1.163234       1.058589       1.251430 

10.4 Cue Loss P3 amplitudes and spirituality predict Alcohol Use

model12<-lm(`PROMIS Alcohol Use`~`P300 Pz Loss`+NASS+Age+Sex, data=cleanedData4Hyp1b)
summary(model12)

Call:
lm(formula = `PROMIS Alcohol Use` ~ `P300 Pz Loss` + NASS + Age + 
    Sex, data = cleanedData4Hyp1b)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.8061  -1.2507   0.1061   1.2581   9.9403 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    52.319012   3.572685  14.644   <2e-16 ***
`P300 Pz Loss` -0.543003   0.286020  -1.898   0.0651 .  
NASS           -0.005353   0.088189  -0.061   0.9519    
Age            -0.043477   0.084317  -0.516   0.6090    
SexMale         0.593373   1.781367   0.333   0.7408    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.676 on 39 degrees of freedom
Multiple R-squared:  0.09814,   Adjusted R-squared:  0.005646 
F-statistic: 1.061 on 4 and 39 DF,  p-value: 0.3887
boot_model12<-boot_summary(model12, type='perc', method='residual',R = 10000)
boot_model12
                   Estimate Lower.bound Upper.bound p.value
(Intercept)    52.319012215  45.2731810 59.21095869  <1e-04
`P300 Pz Loss` -0.543002560  -1.0910482  0.01716475  0.0592
NASS           -0.005353336  -0.1791385  0.16920206  0.9561
Age            -0.043476966  -0.2111959  0.12317847  0.6056
SexMale         0.593373250  -2.9890737  4.03524547  0.7299
vif(model12)
`P300 Pz Loss`           NASS            Age            Sex 
      1.236544       1.326642       1.451710       1.121310 

10.5 Cue Loss P3 amplitudes predict PROMIS Alcohol Use moderated by acculturation

model13<-lm(promisAlcUse~P3PzLoss*NAAS+Age+Sex, data=cleanedTibble4MIDcalc)
summary(model13)

Call:
lm(formula = promisAlcUse ~ P3PzLoss * NAAS + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.7526 -1.5083 -0.1721  1.6587 11.1550 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   43.37916   11.67775   3.715 0.000652 ***
P3PzLoss      -2.98274    2.83835  -1.051 0.299955    
NAAS           2.18570    2.70641   0.808 0.424347    
Age           -0.03979    0.07544  -0.527 0.600913    
SexMale        0.32167    1.67130   0.192 0.848403    
P3PzLoss:NAAS  0.62636    0.71547   0.875 0.386835    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.517 on 38 degrees of freedom
Multiple R-squared:  0.1803,    Adjusted R-squared:  0.07243 
F-statistic: 1.672 on 5 and 38 DF,  p-value: 0.1651
boot_model13<-boot_summary(model13, type='perc', method='residual',R = 10000)
boot_model13
                Estimate Lower.bound Upper.bound p.value
(Intercept)   43.3791645  20.0545160  66.8771364  <1e-04
P3PzLoss      -2.9827417  -8.7331490   2.8079237  0.2791
NAAS           2.1856968  -3.2846136   7.6066815  0.4355
Age           -0.0397927  -0.1908026   0.1116093  0.6094
SexMale        0.3216651  -2.9552625   3.6941857  0.8302
P3PzLoss:NAAS  0.6263555  -0.8092312   2.0960219  0.3675
johnson_neyman(
  model13, 
  pred=P3PzLoss,
  modx=NAAS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of P300 Amplitudes to Loss x PROMIS Alcohol Use",
  y.label="Slope of P300 Amplitudes to Loss",
  modx.label = "Acculturation"
)
JOHNSON-NEYMAN INTERVAL

When NAAS is INSIDE the interval [3.70, 3.82], the slope of P3PzLoss is p <
.05.

Note: The range of observed values of NAAS is [3.30, 4.50]

vif(model13)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     P3PzLoss          NAAS           Age           Sex P3PzLoss:NAAS 
   130.540613      1.692996      1.245679      1.058089    128.260553 

10.6 Cue Loss P3 amplitudes predict PROMIS Alcohol Use moderated by enculturation

model14<-lm(promisAlcUse~P3PzLoss*AIES+Age+Sex, data=cleanedTibble4MIDcalc)
summary(model14)

Call:
lm(formula = promisAlcUse ~ P3PzLoss * AIES + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.8943  -0.9810   0.1594   1.4629   8.2664 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   49.87844    3.83525  13.005 1.44e-15 ***
P3PzLoss       0.89188    0.75109   1.187   0.2424    
AIES           0.06222    0.07671   0.811   0.4224    
Age           -0.03846    0.07331  -0.525   0.6029    
SexMale        0.51000    1.64612   0.310   0.7584    
P3PzLoss:AIES -0.04414    0.02134  -2.068   0.0455 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.469 on 38 degrees of freedom
Multiple R-squared:  0.1976,    Adjusted R-squared:  0.09204 
F-statistic: 1.872 on 5 and 38 DF,  p-value: 0.1223
boot_model14<-boot_summary(model14, type='perc', method='residual',R = 10000)
boot_model14
                 Estimate Lower.bound  Upper.bound p.value
(Intercept)   49.87844434 42.00767298 5.761399e+01  <1e-04
P3PzLoss       0.89188046 -0.67683162 2.428748e+00  0.2514
AIES           0.06221504 -0.09794887 2.196063e-01  0.4165
Age           -0.03845545 -0.18359562 1.096207e-01  0.6118
SexMale        0.51000412 -2.92289768 3.614940e+00  0.7583
P3PzLoss:AIES -0.04413779 -0.08808263 1.525169e-04  0.0511
johnson_neyman(
  model14, 
  pred=P3PzLoss,
  modx=AIES,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of P300 Amplitudes to Loss x PROMIS Alcohol Use",
  y.label="Slope of P300 Amplitudes to Loss",
  modx.label = "Enculturation"
)
JOHNSON-NEYMAN INTERVAL

When AIES is OUTSIDE the interval [-570.93, 32.77], the slope of P3PzLoss
is p < .05.

Note: The range of observed values of AIES is [19.00, 66.00]

vif(model14)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     P3PzLoss          AIES           Age           Sex P3PzLoss:AIES 
     9.338481      1.736885      1.201782      1.048610      9.266174 

10.7 Cue Loss P3 amplitudes predict PROMIS Alcohol Use moderated by spirituality

model15<-lm(promisAlcUse~P3PzLoss*NASS+Age+Sex, data=cleanedTibble4MIDcalc)
summary(model15)

Call:
lm(formula = promisAlcUse ~ P3PzLoss * NASS + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.8965  -1.0556   0.1937   1.3716   9.2809 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   50.07048    4.01710  12.464 5.36e-15 ***
P3PzLoss       0.39325    0.83084   0.473    0.639    
NASS           0.06502    0.10552   0.616    0.541    
Age           -0.04579    0.08387  -0.546    0.588    
SexMale        0.46297    1.77477   0.261    0.796    
P3PzLoss:NASS -0.02910    0.02426  -1.199    0.238    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.65 on 38 degrees of freedom
Multiple R-squared:  0.131, Adjusted R-squared:  0.0167 
F-statistic: 1.146 on 5 and 38 DF,  p-value: 0.3533
boot_model15<-boot_summary(model15, type='perc', method='residual',R = 10000)
boot_model15
                 Estimate Lower.bound Upper.bound p.value
(Intercept)   50.07047649 42.01540752 57.66735521  <1e-04
P3PzLoss       0.39324927 -1.24591796  2.11959352  0.6005
NASS           0.06502059 -0.13838138  0.27578873  0.5151
Age           -0.04578676 -0.21201498  0.11746648  0.5621
SexMale        0.46297404 -3.05532617  3.85509368  0.7835
P3PzLoss:NASS -0.02909850 -0.07811971  0.01805369  0.2122
johnson_neyman(
  model15, 
  pred=P3PzLoss,
  modx=NASS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of P300 Amplitudes to Loss x PROMIS Alcohol Use",
  y.label="Slope of P300 Amplitudes to Loss",
  modx.label = "Spirituality"
)
JOHNSON-NEYMAN INTERVAL

When NASS is INSIDE the interval [33.41, 51.12], the slope of P3PzLoss is p
< .05.

Note: The range of observed values of NASS is [9.00, 49.00]

vif(model15)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     P3PzLoss          NASS           Age           Sex P3PzLoss:NASS 
    10.551230      1.920540      1.452476      1.125534     10.483681 

10.8 Cue Loss P3 amplitudes predict PROMIS Alcohol Use mdoerated by historical loss

model16<-lm(promisAlcUse~P3PzLoss*HLS+Age+Sex, data=cleanedTibble4MIDcalc)
summary(model16)

Call:
lm(formula = promisAlcUse ~ P3PzLoss * HLS + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.6846  -1.3158   0.1452   1.2265  10.2018 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  48.04552    9.77385   4.916 1.73e-05 ***
P3PzLoss      1.61185    2.86056   0.563    0.576    
HLS           0.10551    0.21560   0.489    0.627    
Age          -0.05418    0.07947  -0.682    0.499    
SexMale       0.83434    1.76369   0.473    0.639    
P3PzLoss:HLS -0.04965    0.06559  -0.757    0.454    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.702 on 38 degrees of freedom
Multiple R-squared:  0.1115,    Adjusted R-squared:  -0.005449 
F-statistic: 0.9534 on 5 and 38 DF,  p-value: 0.4583
boot_model16<-boot_summary(model16, type='perc', method='residual',R = 10000)
boot_model16
                Estimate Lower.bound Upper.bound p.value
(Intercept)  48.04552417  29.3135303 66.84973018  <1e-04
P3PzLoss      1.61184984  -3.8776741  7.18062914  0.5573
HLS           0.10551041  -0.3036491  0.52012389  0.6225
Age          -0.05418127  -0.2076216  0.09750254  0.4655
SexMale       0.83433985  -2.6815151  4.18503269  0.6203
P3PzLoss:HLS -0.04964810  -0.1775188  0.07570930  0.4375
johnson_neyman(
  model16, 
  pred=P3PzLoss,
  modx=HLS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of P300 Amplitudes to Loss x PROMIS Alcohol Use",
  y.label="Slope of P300 Amplitudes to Loss",
  modx.label = "Historical Loss Thinking"
)
JOHNSON-NEYMAN INTERVAL

The Johnson-Neyman interval could not be found. Is the p value for your
interaction term below the specified alpha?

vif(model16)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
    P3PzLoss          HLS          Age          Sex P3PzLoss:HLS 
  122.320697     2.070136     1.275285     1.087040   129.702832 

10.9 QQ plots for SPN amplitudes

successSPNqq<-ggplot2::ggplot(data = tibble4MIDcalc, mapping = aes(sample = successSPN)) + 
  stat_qq_band(alpha = 0.5, conf = 0.95, bandType = "pointwise", fill = "green") + 
  stat_qq_line(identity = TRUE) + 
  stat_qq_point(col = "black") + 
  labs(x = "Theoretical Quantiles", y = "Sample Quantiles") + theme_bw()
successSPNqq

10.10 Success SPN amplitudes and acculturation predict PROMIS Depression

model17<-lm(promisDep~successSPN+NAAS+Age+Sex, data=cleanedTibble4MIDcalc)
summary(model17)

Call:
lm(formula = promisDep ~ successSPN + NAAS + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
    Min      1Q  Median      3Q     Max 
-18.562  -4.175  -0.125   4.896  17.491 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 57.78286   15.41746   3.748 0.000577 ***
successSPN   0.00477    0.40707   0.012 0.990710    
NAAS         0.01637    3.64479   0.004 0.996439    
Age         -0.01016    0.11817  -0.086 0.931934    
SexMale     -5.30539    2.83097  -1.874 0.068429 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.833 on 39 degrees of freedom
Multiple R-squared:  0.08376,   Adjusted R-squared:  -0.01021 
F-statistic: 0.8913 on 4 and 39 DF,  p-value: 0.4783
boot_model17<-boot_summary(model17, type='perc',method='residual',R = 10000)
boot_model17
                Estimate Lower.bound Upper.bound p.value
(Intercept) 57.782863598  26.8299336  88.3256239   6e-04
successSPN   0.004770211  -0.8086792   0.8113201  0.9765
NAAS         0.016370409  -7.2462976   7.2195097  0.9903
Age         -0.010158064  -0.2393146   0.2194329  0.9202
SexMale     -5.305391460 -10.8061559   0.2312428  0.0621
vif(model17)
successSPN       NAAS        Age        Sex 
  1.002073   1.020930   1.016245   1.009402 

10.11 Success SPN amplitudes and enculturation predict PROMIS Depression

model18<-lm(promisDep~successSPN+AIES+Age+Sex, data=cleanedTibble4MIDcalc)
summary(model18)

Call:
lm(formula = promisDep ~ successSPN + AIES + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
    Min      1Q  Median      3Q     Max 
-18.378  -4.777  -0.189   5.488  17.951 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 55.972582   5.230103  10.702 3.62e-13 ***
successSPN   0.004629   0.404672   0.011   0.9909    
AIES         0.066432   0.102714   0.647   0.5216    
Age         -0.021992   0.118129  -0.186   0.8533    
SexMale     -5.298331   2.807030  -1.888   0.0665 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.791 on 39 degrees of freedom
Multiple R-squared:  0.09348,   Adjusted R-squared:  0.0005078 
F-statistic: 1.005 on 4 and 39 DF,  p-value: 0.4164
boot_model18<-boot_summary(model18, type='perc',method='residual',R=10000)
boot_model18
                Estimate Lower.bound Upper.bound p.value
(Intercept) 55.972581991  45.5650469  66.1376420  <1e-04
successSPN   0.004628775  -0.7919063   0.7906365  0.9942
AIES         0.066432309  -0.1344970   0.2712292  0.5082
Age         -0.021991900  -0.2527028   0.2161183    0.85
SexMale     -5.298330655 -10.7611238   0.3342002  0.0632
vif(model18)
successSPN       AIES        Age        Sex 
  1.000918   1.024330   1.026521   1.003047 

10.12 Success SPN amplitudes and historical loss predict PROMIS Depression

model19<-lm(promisDep~successSPN+HLS+Age+Sex, data=cleanedTibble4MIDcalc)
summary(model19)

Call:
lm(formula = promisDep ~ successSPN + HLS + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.4058  -4.2492  -0.1113   4.9590  16.9418 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 44.22890   13.06156   3.386  0.00163 **
successSPN  -0.01756    0.40113  -0.044  0.96530   
HLS          0.28899    0.26163   1.105  0.27611   
Age          0.03141    0.12154   0.258  0.79741   
SexMale     -4.87159    2.80638  -1.736  0.09048 . 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.713 on 39 degrees of freedom
Multiple R-squared:  0.1116,    Adjusted R-squared:  0.02043 
F-statistic: 1.224 on 4 and 39 DF,  p-value: 0.3163
boot_model19<-boot_summary(model19, type='perc',method='residual',R=10000)
boot_model19
               Estimate Lower.bound Upper.bound p.value
(Intercept) 44.22890333  17.6929460  70.4527090   4e-04
successSPN  -0.01756433  -0.7934015   0.7627172  0.9644
HLS          0.28899091  -0.2286709   0.8148420  0.2803
Age          0.03141452  -0.2106780   0.2723925   0.795
SexMale     -4.87159233 -10.4293214   0.6240753  0.0858
vif(model19)
successSPN        HLS        Age        Sex 
  1.003482   1.133085   1.108794   1.022976 

10.13 Success SPN amplitudes and spirituality predict PROMIS Depression

model20<-lm(promisDep~successSPN+NASS+Age+Sex,data=cleanedTibble4MIDcalc)
summary(model20)

Call:
lm(formula = promisDep ~ successSPN + NASS + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
     Min       1Q   Median       3Q      Max 
-18.0766  -3.6994  -0.2879   4.2371  14.3074 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  65.6091     5.2588  12.476 3.43e-15 ***
successSPN   -0.2696     0.3982  -0.677   0.5024    
NASS         -0.3400     0.1446  -2.351   0.0239 *  
Age           0.1284     0.1246   1.030   0.3094    
SexMale      -7.0129     2.7392  -2.560   0.0144 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.331 on 39 degrees of freedom
Multiple R-squared:  0.1975,    Adjusted R-squared:  0.1152 
F-statistic:   2.4 on 4 and 39 DF,  p-value: 0.06645
boot_model20<-boot_summary(model20, type='perc',method='residual',R = 10000)
boot_model20
              Estimate Lower.bound Upper.bound p.value
(Intercept) 65.6090567  55.0203404  75.9352579  <1e-04
successSPN  -0.2696248  -1.0700563   0.5278483  0.4935
NASS        -0.3399550  -0.6307701  -0.0581637  0.0189
Age          0.1283694  -0.1191762   0.3748331  0.3089
SexMale     -7.0129049 -12.5056591  -1.5727316  0.0093
vif(model20)
successSPN       NASS        Age        Sex 
  1.095006   1.451333   1.290897   1.078975 

10.14 Success SPN amplitudes predict PROMIS Depression moderated by acculturation

model21<-lm(promisDep~successSPN*NAAS+Age+Sex, data=cleanedTibble4MIDcalc)
summary(model21)

Call:
lm(formula = promisDep ~ successSPN * NAAS + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
     Min       1Q   Median       3Q      Max 
-18.7178  -4.2465   0.0595   4.8030  17.4905 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)   
(Intercept)     60.43306   20.83489   2.901  0.00616 **
successSPN      -1.00122    5.25366  -0.191  0.84987   
NAAS            -0.65350    5.07778  -0.129  0.89828   
Age             -0.01091    0.11971  -0.091  0.92789   
SexMale         -5.36472    2.88318  -1.861  0.07054 . 
successSPN:NAAS  0.25699    1.33795   0.192  0.84871   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.931 on 38 degrees of freedom
Multiple R-squared:  0.08465,   Adjusted R-squared:  -0.03579 
F-statistic: 0.7028 on 5 and 38 DF,  p-value: 0.6248
boot_model21<-boot_summary(model21, type='perc',method='residual',R=10000)
boot_model21
                   Estimate Lower.bound Upper.bound p.value
(Intercept)     60.43306313  18.3034407 101.7178474  0.0037
successSPN      -1.00122069 -11.4918139   9.6817575  0.8426
NAAS            -0.65350259 -10.5856219   9.4215485  0.9055
Age             -0.01090659  -0.2513004   0.2339537  0.9487
SexMale         -5.36471889 -10.9617549   0.4683073  0.0702
successSPN:NAAS  0.25698835  -2.4626774   2.9189628  0.8405
johnson_neyman(
  model21, 
  pred=successSPN,
  modx=NAAS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of SPN amplitudes to Success x PROMIS Depression",
  y.label="Slope of SPN amplitudes to Success",
  modx.label = "Acculturation"
)
JOHNSON-NEYMAN INTERVAL

The Johnson-Neyman interval could not be found. Is the p value for your
interaction term below the specified alpha?

vif(model21)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     successSPN            NAAS             Age             Sex successSPN:NAAS 
     162.788582        1.932583        1.017323        1.021121      164.683434 

10.15 Success SPN amplitudes predict PROMIS Depression moderated by enculturation

model22<-lm(promisDep~successSPN*AIES+Age+Sex, data=cleanedTibble4MIDcalc)
summary(model22)

Call:
lm(formula = promisDep ~ successSPN * AIES + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
     Min       1Q   Median       3Q      Max 
-18.2903  -4.5943  -0.2469   5.4401  17.7687 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     56.77015    6.01619   9.436 1.67e-11 ***
successSPN      -0.38873    1.46867  -0.265   0.7927    
AIES             0.03344    0.15748   0.212   0.8330    
Age             -0.01457    0.12247  -0.119   0.9059    
SexMale         -5.20643    2.85987  -1.821   0.0766 .  
successSPN:AIES  0.01206    0.04326   0.279   0.7818    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.885 on 38 degrees of freedom
Multiple R-squared:  0.09534,   Adjusted R-squared:  -0.0237 
F-statistic: 0.8009 on 5 and 38 DF,  p-value: 0.556
boot_model22<-boot_summary(model22, type='perc',method='residual',R=10000)
johnson_neyman(
  model22, 
  pred=successSPN,
  modx=AIES,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of SPN amplitudes to Success x PROMIS Depression",
  y.label="Slope of SPN amplitudes to Success",
  modx.label = "Enculturation"
)
JOHNSON-NEYMAN INTERVAL

The Johnson-Neyman interval could not be found. Is the p value for your
interaction term below the specified alpha?

boot_model22
                   Estimate  Lower.bound Upper.bound p.value
(Intercept)     56.77014820  45.05119746 68.64481971  <1e-04
successSPN      -0.38872771  -3.22962646  2.42991838  0.7738
AIES             0.03343999  -0.27795672  0.33760905  0.8478
Age             -0.01457382  -0.25661809  0.22632210  0.9164
SexMale         -5.20642616 -10.82664391  0.47911259  0.0714
successSPN:AIES  0.01206470  -0.07114781  0.09718801  0.7822
vif(model22)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     successSPN            AIES             Age             Sex successSPN:AIES 
      12.872040        2.350901        1.077333        1.016544       14.165941 

10.16 Success SPN amplitudes predict PROMIS Depression moderated by historical loss

model23<-lm(promisDep~successSPN*HLS+Age+Sex, data=cleanedTibble4MIDcalc)
summary(model23)

Call:
lm(formula = promisDep ~ successSPN * HLS + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.5914  -3.8796  -0.2954   4.8182  17.5846 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)  
(Intercept)    51.96448   19.75483   2.630   0.0122 *
successSPN     -1.98929    3.77158  -0.527   0.6010  
HLS             0.11948    0.41674   0.287   0.7759  
Age             0.01726    0.12560   0.137   0.8914  
SexMale        -5.08088    2.86061  -1.776   0.0837 .
successSPN:HLS  0.04604    0.08756   0.526   0.6021  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.786 on 38 degrees of freedom
Multiple R-squared:  0.118, Adjusted R-squared:  0.001917 
F-statistic: 1.017 on 5 and 38 DF,  p-value: 0.4215
boot_model23<-boot_summary(model23, type='perc',method='residual',R=10000)
boot_model23
                  Estimate Lower.bound Upper.bound p.value
(Intercept)    51.96448215  13.2208954  91.5779392  0.0089
successSPN     -1.98928614  -9.4681510   5.6825392  0.5856
HLS             0.11947662  -0.7112846   0.9392881  0.7983
Age             0.01726263  -0.2350217   0.2663162  0.8864
SexMale        -5.08088404 -10.7517142   0.4794239  0.0688
successSPN:HLS  0.04604312  -0.1294742   0.2200223  0.5905
johnson_neyman(
  model23, 
  pred=successSPN,
  modx=HLS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of SPN amplitudes to Success x PROMIS Depression",
  y.label="Slope of SPN amplitudes to Success",
  modx.label = "Historical Loss Thinking"
)
JOHNSON-NEYMAN INTERVAL

The Johnson-Neyman interval could not be found. Is the p value for your
interaction term below the specified alpha?

vif(model23)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
    successSPN            HLS            Age            Sex successSPN:HLS 
     87.066436       2.821552       1.162154       1.043172      89.727405 

10.17 Success SPN amplitudes predict PROMIS Depression moderated by spirituality

model24<-lm(promisDep~successSPN*NASS+Age+Sex, data=cleanedTibble4MIDcalc)
summary(model24)

Call:
lm(formula = promisDep ~ successSPN * NASS + Age + Sex, data = cleanedTibble4MIDcalc)

Residuals:
     Min       1Q   Median       3Q      Max 
-16.9474  -3.9560   0.5244   3.5296  13.2158 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     48.95456    7.07702   6.917 3.18e-08 ***
successSPN       4.53880    1.55951   2.910  0.00601 ** 
NASS             0.06268    0.18200   0.344  0.73246    
Age              0.19437    0.11422   1.702  0.09697 .  
SexMale         -7.17869    2.46867  -2.908  0.00605 ** 
successSPN:NASS -0.14434    0.04556  -3.168  0.00302 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.605 on 38 degrees of freedom
Multiple R-squared:  0.3652,    Adjusted R-squared:  0.2817 
F-statistic: 4.372 on 5 and 38 DF,  p-value: 0.003056
boot_model24<-boot_summary(model24, type='perc',method='residual',R=10000)
boot_model24
                   Estimate  Lower.bound Upper.bound p.value
(Intercept)     48.95455598  35.08549122 62.74279924  <1e-04
successSPN       4.53879903   1.49000652  7.57662924  0.0048
NASS             0.06267679  -0.29154197  0.41292081  0.7438
Age              0.19437411  -0.02950125  0.41480830  0.0903
SexMale         -7.17868852 -11.98658786 -2.39185896   0.002
successSPN:NASS -0.14434358  -0.23367438 -0.05417985  0.0021
johnson_neyman(
  model24, 
  pred=successSPN,
  modx=NASS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of SPN amplitudes to Success x PROMIS Depression",
  y.label="Slope of SPN amplitudes to Success",
  modx.label = "Spirituality"
)
JOHNSON-NEYMAN INTERVAL

When NASS is OUTSIDE the interval [23.31, 37.00], the slope of successSPN
is p < .05.

Note: The range of observed values of NASS is [9.00, 49.00]

vif(model24)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     successSPN            NASS             Age             Sex successSPN:NASS 
      20.683471        2.832194        1.335320        1.079460       19.492861 

11 Multiple linear regression and moderation analyses in CPV

data4matrixH2<-tibble(
  Age=dfLPP$Age,
  Sex=dfLPP$Sex,
  #CDDRposRein=dfLPP$CDDR_PosReinforcement,
  #CDDRnegRein=dfLPP$CDDR_NegReinforcement,
  promisDep=dfLPP$PROMIS_DepressTscore,
  promisAnx=dfLPP$PROMIS_AnxietyTscore,
  promisAlcUse=dfLPP$PROMIS_AlcoUseTscore,
  #promisAppeal30=dfLPP$PROMIS_AppealSubUse30DaysTscore,
  #promisAppeal3=dfLPP$PROMIS_AppealSubUse3MonthTscore,
  eCulturalLPP=dfLPP$Early_LPPPz.Average_MastRef_Cultural,
  eNeutralLPP=dfLPP$Early_LPPPz.Average_MastRef_Neutral,
  CulturalLPP=dfLPP$LPP_Pz_Cultural,
  NeutralLPP=dfLPP$LPP_Pz_Neutral,
  mCulturalLPP=dfLPP$Mid_LPP_Pz.Average_MastRef_Cultural,
  mNeutralLPP=dfLPP$Mid_LPP_Pz.Average_MastRef_Neutral,
  HLS=dfLPP$hlsTot,
  AIES=dfLPP$AIES_scale,
  NAAS=dfLPP$NAAS_scale,
  NASS=dfLPP$NASS_scale
)
cleanedData4matrixH2<-na.omit(data4matrixH2) # retains 40 participants (did not drop any of them)
# create residualized (to culture) LPP, early LPP, and mid LPP amplitudes according to method proposed by Meyer et al., 2017
residualCulturalPzEarlyLPP<-lm(eCulturalLPP~eNeutralLPP,data=cleanedData4matrixH2)
cleanedData4matrixH2$residEarlyLPP<-resid(residualCulturalPzEarlyLPP)

residualCulturalPzLPP<-lm(CulturalLPP~NeutralLPP,data=cleanedData4matrixH2)
cleanedData4matrixH2$residLPP<-resid(residualCulturalPzLPP)

residualCulturalPzMidLPP<-lm(mCulturalLPP~mNeutralLPP,data=cleanedData4matrixH2)
cleanedData4matrixH2$residMidLPP<-resid(residualCulturalPzMidLPP)

11.1 Residualized Mid-LPP and enculturation predict PROMIS Depression

model25<-lm(promisDep~residMidLPP+AIES+Age+Sex, data=cleanedData4matrixH2)
summary(model25)

Call:
lm(formula = promisDep ~ residMidLPP + AIES + Age + Sex, data = cleanedData4matrixH2)

Residuals:
    Min      1Q  Median      3Q     Max 
-14.237  -5.633  -1.497   5.837  22.353 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 46.40653    8.02122   5.785 1.48e-06 ***
residMidLPP  2.71848    0.91712   2.964  0.00543 ** 
AIES         0.08913    0.07110   1.254  0.21831    
Age         -0.03040    0.14023  -0.217  0.82962    
Sex          2.19102    3.44802   0.635  0.52927    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.628 on 35 degrees of freedom
Multiple R-squared:  0.2319,    Adjusted R-squared:  0.1441 
F-statistic: 2.641 on 4 and 35 DF,  p-value: 0.05
boot_model25<-boot_summary(model25, type='perc',method='residual',R=10000)
boot_model25
               Estimate Lower.bound Upper.bound p.value
(Intercept) 46.40653489  30.1016739  62.8830141  <1e-04
residMidLPP  2.71847701   0.9234620   4.6209178  0.0026
AIES         0.08913160  -0.0483153   0.2391236  0.2137
Age         -0.03040393  -0.3165184   0.2498817   0.829
Sex          2.19101749  -4.6639245   9.3759590  0.5554
vif(model25)
residMidLPP        AIES         Age         Sex 
   1.002998    1.072813    1.054592    1.022219 

11.2 Residualized Mid-LPP and acculturation predict PROMIS Depression

model26<-lm(promisDep~residMidLPP+NAAS+Age+Sex, data=cleanedData4matrixH2)
summary(model26)

Call:
lm(formula = promisDep ~ residMidLPP + NAAS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.321  -5.643  -1.637   4.187  21.230 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 46.76988   12.84524   3.641  0.00087 ***
residMidLPP  2.68482    0.93409   2.874  0.00684 ** 
NAAS         1.54023    3.11316   0.495  0.62387    
Age         -0.07386    0.13931  -0.530  0.59932    
Sex          1.28636    3.53420   0.364  0.71807    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.788 on 35 degrees of freedom
Multiple R-squared:  0.203, Adjusted R-squared:  0.1119 
F-statistic: 2.228 on 4 and 35 DF,  p-value: 0.08591
boot_model26<-boot_summary(model26, type='perc',method='residual',R=10000)
boot_model26
               Estimate Lower.bound Upper.bound p.value
(Intercept) 46.76988025  21.7682409   72.571535  <1e-04
residMidLPP  2.68481572   0.8280632    4.516280  0.0043
NAAS         1.54023025  -4.6553197    7.557135  0.6101
Age         -0.07386367  -0.3528512    0.203196  0.5994
Sex          1.28635868  -5.3606843    8.665983  0.7261
vif(model26)
residMidLPP        NAAS         Age         Sex 
   1.002717    1.034570    1.003007    1.035003 

11.3 Residualized Mid-LPP and spirituality predict PROMIS Depression

model27<-lm(promisDep~residMidLPP+NASS+Age+Sex, data=cleanedData4matrixH2)
summary(model27)

Call:
lm(formula = promisDep ~ residMidLPP + NASS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
    Min      1Q  Median      3Q     Max 
-13.642  -5.940  -1.161   4.561  20.427 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  55.7906     7.5618   7.378 1.25e-08 ***
residMidLPP   2.6938     0.9247   2.913  0.00619 ** 
NASS         -0.1313     0.1341  -0.979  0.33416    
Age          -0.0332     0.1429  -0.232  0.81755    
Sex           1.1396     3.4753   0.328  0.74494    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.701 on 35 degrees of freedom
Multiple R-squared:  0.2188,    Adjusted R-squared:  0.1295 
F-statistic: 2.451 on 4 and 35 DF,  p-value: 0.06416
boot_model27<-boot_summary(model27, type='perc',method='residual',R=10000)
boot_model27
               Estimate Lower.bound Upper.bound p.value
(Intercept) 55.79063197  40.8822058  70.9039207  <1e-04
residMidLPP  2.69384361   0.8764395   4.5528256  0.0046
NASS        -0.13130954  -0.3942072   0.1364749  0.3218
Age         -0.03320403  -0.3110901   0.2552429  0.8031
Sex          1.13956152  -5.3969575   8.4848973    0.76
vif(model27)
residMidLPP        NASS         Age         Sex 
   1.002473    1.095221    1.075917    1.021053 

11.4 Residualized Mid-LPP and historical loss predict PROMIS Depression

model28<-lm(promisDep~residMidLPP+HLS+Age+Sex, data=cleanedData4matrixH2)
summary(model28)

Call:
lm(formula = promisDep ~ residMidLPP + HLS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.231  -5.941  -1.519   4.305  21.145 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 51.12704    7.56621   6.757 7.88e-08 ***
residMidLPP  2.69174    0.93600   2.876  0.00682 ** 
HLS          0.03234    0.10648   0.304  0.76315    
Age         -0.06832    0.13958  -0.490  0.62754    
Sex          1.17430    3.75129   0.313  0.75611    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.807 on 35 degrees of freedom
Multiple R-squared:  0.1995,    Adjusted R-squared:  0.108 
F-statistic: 2.181 on 4 and 35 DF,  p-value: 0.09145
boot_model28<-boot_summary(model28, type='perc',method='residual',R=10000)
boot_model28
               Estimate Lower.bound Upper.bound p.value
(Intercept) 51.12704417  36.0473657  66.4825388  <1e-04
residMidLPP  2.69173616   0.8152190   4.5954159  0.0045
HLS          0.03233764  -0.1882496   0.2421706  0.7556
Age         -0.06832390  -0.3484189   0.2116720  0.6229
Sex          1.17430086  -6.1768084   8.8191735  0.7632
vif(model28)
residMidLPP         HLS         Age         Sex 
   1.002470    1.160990    1.002458    1.161014 

11.5 Residualized Mid-LPP predicts PROMIS Depression moderated by enculturation

model29<-lm(promisDep~residMidLPP*AIES+Age+Sex, data=cleanedData4matrixH2)
summary(model29)

Call:
lm(formula = promisDep ~ residMidLPP * AIES + Age + Sex, data = cleanedData4matrixH2)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.328  -5.241  -1.670   5.403  22.094 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)      47.46973    8.13744   5.833 1.42e-06 ***
residMidLPP       0.45108    2.73629   0.165    0.870    
AIES              0.08675    0.07138   1.215    0.233    
Age              -0.06003    0.14466  -0.415    0.681    
Sex               2.28933    3.46100   0.661    0.513    
residMidLPP:AIES  0.06223    0.07073   0.880    0.385    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.656 on 34 degrees of freedom
Multiple R-squared:  0.249, Adjusted R-squared:  0.1385 
F-statistic: 2.254 on 5 and 34 DF,  p-value: 0.07117
boot_model29<-boot_summary(model29, type='perc',method='residual',R=10000)
boot_model29
                    Estimate Lower.bound Upper.bound p.value
(Intercept)      47.46973315 30.87048340  63.8711233  <1e-04
residMidLPP       0.45107644 -4.86306251   6.0092023   0.868
AIES              0.08675490 -0.05136370   0.2356704  0.2277
Age              -0.06002721 -0.34541339   0.2353341  0.6899
Sex               2.28933055 -4.20621843   9.5023317  0.5286
residMidLPP:AIES  0.06223198 -0.08218566   0.2034996  0.3927
johnson_neyman(
  model29, 
  pred=residMidLPP,
  modx=AIES,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of Mid-LPP Amplitudes x PROMIS Depression",
  y.label="Slope of Residual Mid-LPP Amplitudes to Cultural Cues",
  modx.label = "Enculturation"
)
JOHNSON-NEYMAN INTERVAL

When AIES is INSIDE the interval [28.25, 64.77], the slope of residMidLPP
is p < .05.

Note: The range of observed values of AIES is [20.00, 108.00]

vif(model29)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     residMidLPP             AIES              Age              Sex 
        8.870702         1.074352         1.114985         1.023286 
residMidLPP:AIES 
        8.934265 

11.6 Residualized Mid-LPP predicts PROMIS Depression moderated by acculturation

model30<-lm(promisDep~residMidLPP*NAAS+Age+Sex, data=cleanedData4matrixH2)
summary(model30)

Call:
lm(formula = promisDep ~ residMidLPP * NAAS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
    Min      1Q  Median      3Q     Max 
-14.681  -5.470  -1.467   4.189  20.944 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)      47.41028   13.03959   3.636 0.000907 ***
residMidLPP      -1.90345    8.87616  -0.214 0.831481    
NAAS              1.26461    3.19049   0.396 0.694311    
Age              -0.05094    0.14753  -0.345 0.731987    
Sex               0.95206    3.62906   0.262 0.794640    
residMidLPP:NAAS  1.15165    2.21528   0.520 0.606524    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.881 on 34 degrees of freedom
Multiple R-squared:  0.2093,    Adjusted R-squared:  0.09296 
F-statistic: 1.799 on 5 and 34 DF,  p-value: 0.1394
boot_model30<-boot_summary(model30, type='perc',method='residual',R=10000)
boot_model30
                    Estimate Lower.bound Upper.bound p.value
(Intercept)      47.41027739  22.3362943  73.9689752   6e-04
residMidLPP      -1.90344888 -19.2507262  15.8245539  0.8351
NAAS              1.26460693  -5.3739676   7.4347993  0.6786
Age              -0.05094371  -0.3415113   0.2430178  0.7407
Sex               0.95205731  -6.0486834   8.3751765   0.818
residMidLPP:NAAS  1.15165110  -3.2851993   5.5310844  0.6167
johnson_neyman(
  model30, 
  pred=residMidLPP,
  modx=NAAS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of Mid-LPP Amplitudes x PROMIS Depression",
  y.label="Slope of Residual Mid-LPP Amplitudes to Cultural Cues",
  modx.label = "Acculturation"
)
JOHNSON-NEYMAN INTERVAL

When NAAS is INSIDE the interval [3.69, 4.61], the slope of residMidLPP is
p < .05.

Note: The range of observed values of NAAS is [2.40, 4.50]

vif(model30)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     residMidLPP             NAAS              Age              Sex 
       88.654305         1.063950         1.101367         1.068554 
residMidLPP:NAAS 
       88.665328 

11.7 Residualized Mid-LPP predicts PROMIS Depression moderated by spirituality

model31<-lm(promisDep~residMidLPP*NASS+Age+Sex, data=cleanedData4matrixH2)
summary(model31)

Call:
lm(formula = promisDep ~ residMidLPP * NASS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
    Min      1Q  Median      3Q     Max 
-13.892  -5.831  -1.180   4.428  20.538 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)      55.66375    7.67589   7.252 2.15e-08 ***
residMidLPP       1.96523    2.71913   0.723    0.475    
NASS             -0.12776    0.13645  -0.936    0.356    
Age              -0.04125    0.14748  -0.280    0.781    
Sex               1.38293    3.62352   0.382    0.705    
residMidLPP:NASS  0.02397    0.08398   0.285    0.777    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.817 on 34 degrees of freedom
Multiple R-squared:  0.2207,    Adjusted R-squared:  0.1061 
F-statistic: 1.925 on 5 and 34 DF,  p-value: 0.1158
boot_model31<-boot_summary(model31, type='perc',method='residual',R=10000)
boot_model31
                    Estimate Lower.bound Upper.bound p.value
(Intercept)      55.66374674  40.2520245  70.6274586  <1e-04
residMidLPP       1.96522561  -3.3942423   7.6074496  0.4913
NASS             -0.12776249  -0.3960965   0.1505926   0.372
Age              -0.04124870  -0.3339270   0.2615704  0.7824
Sex               1.38293145  -5.5832550   9.0408729  0.7244
residMidLPP:NASS  0.02397283  -0.1482469   0.1886008  0.7736
johnson_neyman(
  model31, 
  pred=residMidLPP,
  modx=NASS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of Mid-LPP Amplitudes x PROMIS Depression",
  y.label="Slope of Residual Mid-LPP Amplitudes to Cultural Cues",
  modx.label = "Spirituality"
)
JOHNSON-NEYMAN INTERVAL

When NASS is INSIDE the interval [21.15, 44.16], the slope of residMidLPP
is p < .05.

Note: The range of observed values of NASS is [14.00, 54.00]

vif(model31)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     residMidLPP             NASS              Age              Sex 
        8.441581         1.104381         1.116698         1.080896 
residMidLPP:NASS 
        8.597148 

11.8 Residualized Mid-LPP predicts PROMIS Depression moderated by historical loss

model32<-lm(promisDep~residMidLPP*HLS+Age+Sex, data=cleanedData4matrixH2)
summary(model32)

Call:
lm(formula = promisDep ~ residMidLPP * HLS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.681  -5.734  -1.365   4.099  21.136 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     51.31516    7.69425   6.669 1.18e-07 ***
residMidLPP      3.68466    3.53785   1.041    0.305    
HLS              0.03447    0.10814   0.319    0.752    
Age             -0.07730    0.14475  -0.534    0.597    
Sex              1.19486    3.80198   0.314    0.755    
residMidLPP:HLS -0.02098    0.07202  -0.291    0.773    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.925 on 34 degrees of freedom
Multiple R-squared:  0.2015,    Adjusted R-squared:  0.08407 
F-statistic: 1.716 on 5 and 34 DF,  p-value: 0.1576
boot_model32<-boot_summary(model32, type='perc',method='residual',R=10000)
boot_model32
                   Estimate Lower.bound Upper.bound p.value
(Intercept)     51.31516203  35.6580496  67.1313974  <1e-04
residMidLPP      3.68466038  -3.7306753  10.3596048  0.3041
HLS              0.03446590  -0.1959752   0.2450764   0.759
Age             -0.07729905  -0.3743266   0.2152668  0.6111
Sex              1.19486292  -6.2231333   9.0575040  0.7675
residMidLPP:HLS -0.02098009  -0.1572402   0.1295173  0.7626
johnson_neyman(
  model32, 
  pred=residMidLPP,
  modx=HLS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of Mid-LPP Amplitudes x PROMIS Depression",
  y.label="Slope of Residual Mid-LPP Amplitudes to Cultural Cues",
  modx.label = "Historical Loss Thinking"
)
JOHNSON-NEYMAN INTERVAL

When HLS is INSIDE the interval [31.39, 57.88], the slope of residMidLPP is
p < .05.

Note: The range of observed values of HLS is [13.00, 68.00]

vif(model32)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
    residMidLPP             HLS             Age             Sex residMidLPP:HLS 
      13.947209        1.166312        1.050021        1.161414       13.982784 

11.9 Residualized Mid-LPP predicts PROMIS Depression moderated by enculturation and historical loss

model33<-lm(promisDep~residMidLPP*HLS*AIES+Age+Sex, data=cleanedData4matrixH2)
summary(model33)

Call:
lm(formula = promisDep ~ residMidLPP * HLS * AIES + Age + Sex, 
    data = cleanedData4matrixH2)

Residuals:
    Min      1Q  Median      3Q     Max 
-11.069  -6.123  -1.530   5.717  21.024 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)   
(Intercept)           45.050058  13.638684   3.303  0.00248 **
residMidLPP          -26.687566  15.954520  -1.673  0.10478   
HLS                   -0.053279   0.256195  -0.208  0.83666   
AIES                   0.103380   0.204141   0.506  0.61627   
Age                    0.063816   0.157090   0.406  0.68745   
Sex                    0.986992   3.731707   0.264  0.79321   
residMidLPP:HLS        0.579549   0.316150   1.833  0.07672 . 
residMidLPP:AIES       0.644440   0.323760   1.990  0.05572 . 
HLS:AIES               0.001165   0.004724   0.247  0.80687   
residMidLPP:HLS:AIES  -0.013130   0.006757  -1.943  0.06144 . 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.625 on 30 degrees of freedom
Multiple R-squared:  0.3419,    Adjusted R-squared:  0.1445 
F-statistic: 1.732 on 9 and 30 DF,  p-value: 0.125
boot_model33<-boot_summary(model33, type='perc',method='residual',R=10000)
boot_model33
                          Estimate   Lower.bound  Upper.bound p.value
(Intercept)           45.050057822  16.884709239 7.189807e+01  0.0026
residMidLPP          -26.687566451 -58.488324200 5.815209e+00  0.1055
HLS                   -0.053279003  -0.554682339 4.811467e-01  0.8228
AIES                   0.103379511  -0.271973772 5.513693e-01  0.6626
Age                    0.063816331  -0.252847897 3.811787e-01   0.686
Sex                    0.986992047  -6.392795271 8.756160e+00  0.8047
residMidLPP:HLS        0.579548555  -0.076836023 1.213648e+00   0.079
residMidLPP:AIES       0.644440256  -0.026012385 1.291856e+00  0.0586
HLS:AIES               0.001165143  -0.008713429 1.024923e-02  0.7776
residMidLPP:HLS:AIES  -0.013129825  -0.026448949 9.044147e-04  0.0641
vif(model33)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
         residMidLPP                  HLS                 AIES 
          303.683855             7.008091             8.847353 
                 Age                  Sex      residMidLPP:HLS 
            1.323962             1.197921           288.507959 
    residMidLPP:AIES             HLS:AIES residMidLPP:HLS:AIES 
          188.512969             9.233125           169.203610 

11.10 Residualized Mid-LPP predicts PROMIS Depression moderated by spirituality and historical loss

model34<-lm(promisDep~residMidLPP*HLS*NASS+Age+Sex, data=cleanedData4matrixH2)
summary(model34)

Call:
lm(formula = promisDep ~ residMidLPP * HLS * NASS + Age + Sex, 
    data = cleanedData4matrixH2)

Residuals:
     Min       1Q   Median       3Q      Max 
-13.4847  -5.0240  -0.6538   4.8517  19.7259 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)  
(Intercept)           4.264e+01  2.267e+01   1.881   0.0698 .
residMidLPP          -1.108e+01  1.381e+01  -0.802   0.4288  
HLS                   2.832e-01  4.619e-01   0.613   0.5444  
NASS                  2.800e-01  5.579e-01   0.502   0.6195  
Age                   7.402e-04  1.589e-01   0.005   0.9963  
Sex                   3.744e-01  4.119e+00   0.091   0.9282  
residMidLPP:HLS       2.736e-01  2.771e-01   0.987   0.3315  
residMidLPP:NASS      4.016e-01  3.189e-01   1.259   0.2176  
HLS:NASS             -9.062e-03  1.175e-02  -0.771   0.4465  
residMidLPP:HLS:NASS -8.099e-03  6.668e-03  -1.215   0.2340  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.955 on 30 degrees of freedom
Multiple R-squared:  0.2907,    Adjusted R-squared:  0.07791 
F-statistic: 1.366 on 9 and 30 DF,  p-value: 0.2468
boot_model34<-boot_summary(model34, type='perc',method='residual',R=10000)
boot_model34
                          Estimate  Lower.bound  Upper.bound p.value
(Intercept)           42.636737084  -1.03418450 87.298075260  0.0544
residMidLPP          -11.077089084 -38.49850491 15.265757405  0.4211
HLS                    0.283157467  -0.61422608  1.174751082  0.5343
NASS                   0.279979827  -0.81362048  1.369250505  0.6043
Age                    0.000740153  -0.30293592  0.311515294  0.9992
Sex                    0.374382652  -7.48953334  8.585558117  0.9364
residMidLPP:HLS        0.273554367  -0.25732760  0.829077154  0.3205
residMidLPP:NASS       0.401625163  -0.22410741  1.026978322  0.2073
HLS:NASS              -0.009061664  -0.03206689  0.013741621  0.4386
residMidLPP:HLS:NASS  -0.008098765  -0.02113574  0.005009047  0.2263
vif(model34)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
         residMidLPP                  HLS                 NASS 
           211.11513             21.13192             17.90118 
                 Age                  Sex      residMidLPP:HLS 
             1.25728              1.35410            205.67374 
    residMidLPP:NASS             HLS:NASS residMidLPP:HLS:NASS 
           120.17522             26.29927            114.41911 

11.11 Residualized Mid-LPP predicts PROMIS Depression moderated by acculturation and historical loss

model35<-lm(promisDep~residMidLPP*HLS*NAAS+Age+Sex, data=cleanedData4matrixH2)
summary(model35)

Call:
lm(formula = promisDep ~ residMidLPP * HLS * NAAS + Age + Sex, 
    data = cleanedData4matrixH2)

Residuals:
     Min       1Q   Median       3Q      Max 
-14.1398  -5.7443  -0.6476   4.0531  19.3593 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)  
(Intercept)           64.648568  33.326289   1.940   0.0618 .
residMidLPP           79.485184  50.107447   1.586   0.1232  
HLS                   -0.278032   0.725381  -0.383   0.7042  
NAAS                  -3.073737   8.887161  -0.346   0.7319  
Age                    0.006648   0.155515   0.043   0.9662  
Sex                    0.022506   4.046308   0.006   0.9956  
residMidLPP:HLS       -1.665867   0.981074  -1.698   0.0999 .
residMidLPP:NAAS     -19.790182  13.240106  -1.495   0.1454  
HLS:NAAS               0.065808   0.191589   0.343   0.7336  
residMidLPP:HLS:NAAS   0.424312   0.256076   1.657   0.1079  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.974 on 30 degrees of freedom
Multiple R-squared:  0.2877,    Adjusted R-squared:  0.07398 
F-statistic: 1.346 on 9 and 30 DF,  p-value: 0.2558
boot_model35<-boot_summary(model35, type='perc',method='residual',R=10000)
boot_model35
                          Estimate  Lower.bound Upper.bound p.value
(Intercept)           64.648568115   2.68113870 133.2875892   0.037
residMidLPP           79.485184106 -18.63490864 176.1165566  0.1132
HLS                   -0.278032199  -1.74346180   1.0849387  0.7258
NAAS                  -3.073737500 -21.63806770  13.3451131  0.7688
Age                    0.006648346  -0.29008673   0.3069925  0.9827
Sex                    0.022505767  -7.81364916   8.0217120  0.9983
residMidLPP:HLS       -1.665867323  -3.55458452   0.2476027  0.0876
residMidLPP:NAAS     -19.790181889 -45.35708563   6.3629822  0.1348
HLS:NAAS               0.065808075  -0.29560735   0.4518689  0.7588
residMidLPP:HLS:NAAS   0.424311853  -0.08008402   0.9173062  0.0944
vif(model35)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
         residMidLPP                  HLS                 NAAS 
         2767.316948            51.903069             8.086057 
                 Age                  Sex      residMidLPP:HLS 
            1.198742             1.301161          2566.702533 
    residMidLPP:NAAS             HLS:NAAS residMidLPP:HLS:NAAS 
         3102.318113            74.250655          2915.385817 

11.12 Residualized Mid-LPP and enculturation predict PROMIS Anxiety

model36<-lm(promisAnx~residMidLPP+AIES+Age+Sex, data=cleanedData4matrixH2)
summary(model36)

Call:
lm(formula = promisAnx ~ residMidLPP + AIES + Age + Sex, data = cleanedData4matrixH2)

Residuals:
     Min       1Q   Median       3Q      Max 
-13.4852  -5.6776   0.1472   5.6243  10.6887 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 62.43145    6.67991   9.346 4.82e-11 ***
residMidLPP  2.31677    0.76376   3.033  0.00454 ** 
AIES         0.09791    0.05921   1.653  0.10719    
Age         -0.21988    0.11678  -1.883  0.06806 .  
Sex         -4.08776    2.87144  -1.424  0.16342    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.185 on 35 degrees of freedom
Multiple R-squared:  0.3664,    Adjusted R-squared:  0.294 
F-statistic: 5.061 on 4 and 35 DF,  p-value: 0.002519
boot_model36<-boot_summary(model36, type='perc',method='residual',R=10000)
boot_model36
               Estimate Lower.bound  Upper.bound p.value
(Intercept) 62.43144726 49.42943045 75.623067061  <1e-04
residMidLPP  2.31677246  0.79103863  3.804537466  0.0021
AIES         0.09790552 -0.01845937  0.211982894  0.1044
Age         -0.21987943 -0.44883148  0.007331221  0.0569
Sex         -4.08776112 -9.67956610  1.550394980  0.1561
vif(model36)
residMidLPP        AIES         Age         Sex 
   1.002998    1.072813    1.054592    1.022219 

11.13 Residualized Mid-LPP and acculturation predict PROMIS Anxiety

model37<-lm(promisAnx~residMidLPP+NAAS+Age+Sex, data=cleanedData4matrixH2)
summary(model37)

Call:
lm(formula = promisAnx ~ residMidLPP + NAAS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
    Min      1Q  Median      3Q     Max 
-12.699  -5.093  -0.119   5.832  12.322 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  71.0966    10.8943   6.526 1.58e-07 ***
residMidLPP   2.2909     0.7922   2.892  0.00655 ** 
NAAS         -0.6535     2.6403  -0.248  0.80597    
Age          -0.2622     0.1182  -2.219  0.03307 *  
Sex          -4.6116     2.9974  -1.539  0.13291    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.454 on 35 degrees of freedom
Multiple R-squared:  0.3181,    Adjusted R-squared:  0.2402 
F-statistic: 4.083 on 4 and 35 DF,  p-value: 0.008072
boot_model37<-boot_summary(model37, type='perc',method='residual',R=10000)
boot_model37
              Estimate Lower.bound Upper.bound p.value
(Intercept) 71.0966050  49.6850211 92.00455186  <1e-04
residMidLPP  2.2908562   0.7278601  3.85903745  0.0033
NAAS        -0.6534929  -5.7043719  4.48675844  0.8008
Age         -0.2621719  -0.4895157 -0.03407162  0.0253
Sex         -4.6116430 -10.4887092  1.18811194  0.1267
vif(model37)
residMidLPP        NAAS         Age         Sex 
   1.002717    1.034570    1.003007    1.035003 

11.14 Residualized Mid-LPP and spirituality predict PROMIS Anxiety

model38<-lm(promisAnx~residMidLPP+NASS+Age+Sex, data=cleanedData4matrixH2)
summary(model38)

Call:
lm(formula = promisAnx ~ residMidLPP + NASS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.2870  -5.6392  -0.2723   6.0783  11.8760 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  66.0215     6.4113  10.298 3.91e-12 ***
residMidLPP   2.2864     0.7840   2.916  0.00614 ** 
NASS          0.1013     0.1137   0.891  0.37889    
Age          -0.2923     0.1211  -2.413  0.02117 *  
Sex          -4.3912     2.9465  -1.490  0.14510    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.377 on 35 degrees of freedom
Multiple R-squared:  0.3321,    Adjusted R-squared:  0.2558 
F-statistic: 4.351 on 4 and 35 DF,  p-value: 0.005829
boot_model38<-boot_summary(model38, type='perc',method='residual',R=10000)
boot_model38
              Estimate Lower.bound Upper.bound p.value
(Intercept) 66.0215206  53.6983263 78.76909841  <1e-04
residMidLPP  2.2864127   0.7324329  3.84744461  0.0034
NASS         0.1013212  -0.1235872  0.32721576  0.3821
Age         -0.2923036  -0.5339884 -0.05511209  0.0139
Sex         -4.3912013 -10.1985148  1.39583671  0.1415
vif(model38)
residMidLPP        NASS         Age         Sex 
   1.002473    1.095221    1.075917    1.021053 

11.15 Residualized Mid-LPP and historical loss predict PROMIS Anxiety

model39<-lm(promisAnx~residMidLPP+HLS+Age+Sex, data=cleanedData4matrixH2)
summary(model39)

Call:
lm(formula = promisAnx ~ residMidLPP + HLS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
     Min       1Q   Median       3Q      Max 
-12.2141  -5.3333  -0.2899   5.4601  12.7290 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 67.00090    6.37573  10.509 2.28e-12 ***
residMidLPP  2.28720    0.78873   2.900  0.00641 ** 
HLS          0.05411    0.08972   0.603  0.55037    
Age         -0.26040    0.11762  -2.214  0.03344 *  
Sex         -5.44630    3.16106  -1.723  0.09373 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.422 on 35 degrees of freedom
Multiple R-squared:  0.324, Adjusted R-squared:  0.2467 
F-statistic: 4.193 on 4 and 35 DF,  p-value: 0.007054
boot_model39<-boot_summary(model39, type='perc',method='residual',R=10000)
boot_model39
               Estimate Lower.bound Upper.bound p.value
(Intercept) 67.00089767  54.5043287 79.46502799  <1e-04
residMidLPP  2.28720275   0.7316661  3.84697787  0.0032
HLS          0.05410697  -0.1211656  0.23094084  0.5471
Age         -0.26040353  -0.4876347 -0.03370913  0.0243
Sex         -5.44630353 -11.5862691  0.86349353  0.0925
vif(model39)
residMidLPP         HLS         Age         Sex 
   1.002470    1.160990    1.002458    1.161014 

11.16 Residualized Mid-LPP predicts PROMIS Anxiety moderated by enculturation

model40<-lm(promisAnx~residMidLPP*AIES+Age+Sex, data=cleanedData4matrixH2)
summary(model40)

Call:
lm(formula = promisAnx ~ residMidLPP * AIES + Age + Sex, data = cleanedData4matrixH2)

Residuals:
     Min       1Q   Median       3Q      Max 
-12.2244  -5.5032   0.9837   5.1249  10.4555 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)      63.75580    6.68055   9.543 3.81e-11 ***
residMidLPP      -0.50757    2.24639  -0.226   0.8226    
AIES              0.09495    0.05860   1.620   0.1145    
Age              -0.25678    0.11876  -2.162   0.0377 *  
Sex              -3.96530    2.84136  -1.396   0.1719    
residMidLPP:AIES  0.07752    0.05807   1.335   0.1907    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.106 on 34 degrees of freedom
Multiple R-squared:  0.398, Adjusted R-squared:  0.3095 
F-statistic: 4.496 on 5 and 34 DF,  p-value: 0.002982
boot_model40<-boot_summary(model40, type='perc',method='residual',R=10000)
boot_model40
                    Estimate Lower.bound Upper.bound p.value
(Intercept)      63.75579829 50.60006677 76.64443604  <1e-04
residMidLPP      -0.50756842 -5.18002647  3.98657522  0.8166
AIES              0.09494503 -0.02065803  0.21011343  0.1077
Age              -0.25677907 -0.48935927 -0.02412983   0.031
Sex              -3.96529947 -9.62685433  1.58443650  0.1739
residMidLPP:AIES  0.07751799 -0.03854705  0.19481589  0.1891
johnson_neyman(
  model40, 
  pred=residMidLPP,
  modx=AIES,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of Mid-LPP Amplitudes x PROMIS Anxiety",
  y.label="Slope of Residual Mid-LPP Amplitudes to Cultural Cues",
  modx.label = "Enculturation"
)
JOHNSON-NEYMAN INTERVAL

When AIES is INSIDE the interval [29.20, 89.04], the slope of residMidLPP
is p < .05.

Note: The range of observed values of AIES is [20.00, 108.00]

vif(model40)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     residMidLPP             AIES              Age              Sex 
        8.870702         1.074352         1.114985         1.023286 
residMidLPP:AIES 
        8.934265 

11.17 Residualized Mid-LPP predicts PROMIS Anxiety moderated by acculturation

model41<-lm(promisAnx~residMidLPP*NAAS+Age+Sex, data=cleanedData4matrixH2)
summary(model41)

Call:
lm(formula = promisAnx ~ residMidLPP * NAAS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
    Min      1Q  Median      3Q     Max 
-12.385  -6.178   0.295   5.478  12.164 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)       70.2708    11.0014   6.387 2.72e-07 ***
residMidLPP        8.2074     7.4887   1.096   0.2808    
NAAS              -0.2981     2.6918  -0.111   0.9125    
Age               -0.2917     0.1245  -2.344   0.0251 *  
Sex               -4.1806     3.0618  -1.365   0.1811    
residMidLPP:NAAS  -1.4850     1.8690  -0.795   0.4324    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.493 on 34 degrees of freedom
Multiple R-squared:  0.3306,    Adjusted R-squared:  0.2321 
F-statistic: 3.358 on 5 and 34 DF,  p-value: 0.01429
boot_model41<-boot_summary(model41, type='perc',method='residual',R=10000)
boot_model41
                   Estimate Lower.bound Upper.bound p.value
(Intercept)      70.2708208  49.0280995 92.14419986  <1e-04
residMidLPP       8.2073668  -6.2827901 22.79137086  0.2899
NAAS             -0.2980800  -5.6321112  4.97777620  0.9003
Age              -0.2917269  -0.5404699 -0.04319264  0.0216
Sex              -4.1805655 -10.1622269  1.69017376  0.1782
residMidLPP:NAAS -1.4850399  -5.0886054  2.12591926  0.4467
johnson_neyman(
  model41, 
  pred=residMidLPP,
  modx=NAAS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of Mid-LPP Amplitudes x PROMIS Anxiety",
  y.label="Slope of Residual Mid-LPP Amplitudes to Cultural Cues",
  modx.label = "Acculturation"
)
JOHNSON-NEYMAN INTERVAL

When NAAS is INSIDE the interval [3.16, 4.25], the slope of residMidLPP is
p < .05.

Note: The range of observed values of NAAS is [2.40, 4.50]

vif(model41)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     residMidLPP             NAAS              Age              Sex 
       88.654305         1.063950         1.101367         1.068554 
residMidLPP:NAAS 
       88.665328 

11.18 Residualized Mid-LPP predicts PROMIS Anxiety moderated by spirituality

model42<-lm(promisAnx~residMidLPP*NASS+Age+Sex, data=cleanedData4matrixH2)
summary(model42)

Call:
lm(formula = promisAnx ~ residMidLPP * NASS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
     Min       1Q   Median       3Q      Max 
-12.4260  -4.9463  -0.5343   6.0627  11.7348 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)      65.66525    6.42985  10.213 6.79e-12 ***
residMidLPP       0.24060    2.27773   0.106   0.9165    
NASS              0.11128    0.11430   0.974   0.3371    
Age              -0.31489    0.12354  -2.549   0.0155 *  
Sex              -3.70787    3.03531  -1.222   0.2303    
residMidLPP:NASS  0.06731    0.07035   0.957   0.3454    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.386 on 34 degrees of freedom
Multiple R-squared:  0.3496,    Adjusted R-squared:  0.254 
F-statistic: 3.655 on 5 and 34 DF,  p-value: 0.009391
boot_model42<-boot_summary(model42, type='perc',method='residual',R=10000)
boot_model42
                    Estimate Lower.bound Upper.bound p.value
(Intercept)      65.66525290 52.86073576 78.20766117  <1e-04
residMidLPP       0.24060279 -4.33905011  4.70865884  0.9415
NASS              0.11128059 -0.11467334  0.33927485  0.3298
Age              -0.31489139 -0.55859906 -0.07006242  0.0097
Sex              -3.70786849 -9.64306387  2.26278060  0.2322
residMidLPP:NASS  0.06731078 -0.07049974  0.20761114  0.3505
johnson_neyman(
  model42, 
  pred=residMidLPP,
  modx=NASS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of Mid-LPP Amplitudes x PROMIS Anxiety",
  y.label="Slope of Residual Mid-LPP Amplitudes to Cultural Cues",
  modx.label = "Spirituality"
)
JOHNSON-NEYMAN INTERVAL

When NASS is INSIDE the interval [23.87, 56.26], the slope of residMidLPP
is p < .05.

Note: The range of observed values of NASS is [14.00, 54.00]

vif(model42)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
     residMidLPP             NASS              Age              Sex 
        8.441581         1.104381         1.116698         1.080896 
residMidLPP:NASS 
        8.597148 

11.19 Residualized Mid-LPP predicts PROMIS Anxiety moderated by historical loss

model43<-lm(promisAnx~residMidLPP*HLS+Age+Sex, data=cleanedData4matrixH2)
summary(model43)

Call:
lm(formula = promisAnx ~ residMidLPP * HLS + Age + Sex, data = cleanedData4matrixH2)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.6257  -5.2679   0.1647   5.9699  12.6188 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     67.30435    6.46203  10.415 4.07e-12 ***
residMidLPP      3.88887    2.97127   1.309   0.1994    
HLS              0.05754    0.09082   0.634   0.5306    
Age             -0.27488    0.12157  -2.261   0.0303 *  
Sex             -5.41314    3.19309  -1.695   0.0992 .  
residMidLPP:HLS -0.03384    0.06048  -0.560   0.5795    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.496 on 34 degrees of freedom
Multiple R-squared:  0.3301,    Adjusted R-squared:  0.2316 
F-statistic: 3.351 on 5 and 34 DF,  p-value: 0.01442
boot_model43<-boot_summary(model43, type='perc',method='residual',R=10000)
boot_model43
                   Estimate Lower.bound Upper.bound p.value
(Intercept)     67.30434658  54.5881249 79.83974588  <1e-04
residMidLPP      3.88886765  -1.7629749  9.55429016   0.199
HLS              0.05754002  -0.1187820  0.23350265  0.5319
Age             -0.27488114  -0.5124144 -0.04033692  0.0216
Sex             -5.41313531 -11.6141965  0.86037420  0.0962
residMidLPP:HLS -0.03384254  -0.1497799  0.08228499  0.5858
johnson_neyman(
  model43, 
  pred=residMidLPP,
  modx=HLS,
  alpha=0.05, 
  plot=TRUE,
  title="Johnson-Neyman plot of Mid-LPP Amplitudes x PROMIS Anxiety",
  y.label="Slope of Residual Mid-LPP Amplitudes to Cultural Cues",
  modx.label = "Historical Loss Thinking"
)
JOHNSON-NEYMAN INTERVAL

When HLS is INSIDE the interval [27.03, 56.54], the slope of residMidLPP is
p < .05.

Note: The range of observed values of HLS is [13.00, 68.00]

vif(model43)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
    residMidLPP             HLS             Age             Sex residMidLPP:HLS 
      13.947209        1.166312        1.050021        1.161414       13.982784 

11.20 Residualized Mid-LPP predicts PROMIS Anxiety moderated by enculturation and historical loss

model44<-lm(promisAnx~residMidLPP*HLS*AIES+Age+Sex, data=cleanedData4matrixH2)
summary(model44)

Call:
lm(formula = promisAnx ~ residMidLPP * HLS * AIES + Age + Sex, 
    data = cleanedData4matrixH2)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.3954  -4.6978  -0.1356   4.5531  10.8805 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)          58.8522409 11.6060594   5.071 1.91e-05 ***
residMidLPP          -8.5849787 13.5767581  -0.632    0.532    
HLS                   0.0544633  0.2180129   0.250    0.804    
AIES                  0.1197099  0.1737173   0.689    0.496    
Age                  -0.1943291  0.1336780  -1.454    0.156    
Sex                  -5.3153069  3.1755565  -1.674    0.105    
residMidLPP:HLS       0.1920480  0.2690328   0.714    0.481    
residMidLPP:AIES      0.2690118  0.2755090   0.976    0.337    
HLS:AIES              0.0005532  0.0040201   0.138    0.891    
residMidLPP:HLS:AIES -0.0048763  0.0057501  -0.848    0.403    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.34 on 30 degrees of freedom
Multiple R-squared:  0.4332,    Adjusted R-squared:  0.2632 
F-statistic: 2.548 on 9 and 30 DF,  p-value: 0.02629
boot_model44<-boot_summary(model44, type='perc',method='residual',R=10000)
boot_model44
                          Estimate   Lower.bound  Upper.bound p.value
(Intercept)          58.8522409180  34.501220559 82.926260433  <1e-04
residMidLPP          -8.5849786611 -36.683581033 19.963316161  0.5543
HLS                   0.0544632515  -0.402713390  0.509863374  0.8083
AIES                  0.1197098950  -0.238901481  0.472965305  0.5392
Age                  -0.1943290933  -0.467747566  0.087155416  0.1739
Sex                  -5.3153069041 -12.105951164  1.438917745  0.1241
residMidLPP:HLS       0.1920479715  -0.369516797  0.750951035  0.4968
residMidLPP:AIES      0.2690118491  -0.308775662  0.841378073  0.3563
HLS:AIES              0.0005531891  -0.007762533  0.008902042  0.9312
residMidLPP:HLS:AIES -0.0048762755  -0.016934820  0.007190083  0.4207
vif(model44)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
         residMidLPP                  HLS                 AIES 
          303.683855             7.008091             8.847353 
                 Age                  Sex      residMidLPP:HLS 
            1.323962             1.197921           288.507959 
    residMidLPP:AIES             HLS:AIES residMidLPP:HLS:AIES 
          188.512969             9.233125           169.203610 

11.21 Residualized Mid-LPP predicts PROMIS Anxiety moderated by spirituality and historical loss

model45<-lm(promisAnx~residMidLPP*HLS*NASS+Age+Sex, data=cleanedData4matrixH2)
summary(model45)

Call:
lm(formula = promisAnx ~ residMidLPP * HLS * NASS + Age + Sex, 
    data = cleanedData4matrixH2)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.8401  -4.9224   0.0652   4.9278  11.5232 

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)   
(Intercept)          23.993517  18.032921   1.331  0.19337   
residMidLPP          12.862992  10.984270   1.171  0.25080   
HLS                   0.907152   0.367348   2.469  0.01944 * 
NASS                  1.166636   0.443754   2.629  0.01337 * 
Age                  -0.360840   0.126405  -2.855  0.00774 **
Sex                  -4.253063   3.276102  -1.298  0.20411   
residMidLPP:HLS      -0.245226   0.220415  -1.113  0.27473   
residMidLPP:NASS     -0.098004   0.253642  -0.386  0.70194   
HLS:NASS             -0.022220   0.009344  -2.378  0.02397 * 
residMidLPP:HLS:NASS  0.003184   0.005304   0.600  0.55277   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.122 on 30 degrees of freedom
Multiple R-squared:  0.4664,    Adjusted R-squared:  0.3063 
F-statistic: 2.913 on 9 and 30 DF,  p-value: 0.01327
boot_model45<-boot_summary(model45, type='perc',method='residual',R=10000)
boot_model45
                         Estimate   Lower.bound  Upper.bound p.value
(Intercept)          23.993516687 -11.973900817 59.390650952  0.1942
residMidLPP          12.862992431  -9.068095085 34.666385480  0.2461
HLS                   0.907151569   0.181894466  1.640717993  0.0125
NASS                  1.166635508   0.311781526  2.053523780  0.0069
Age                  -0.360840324  -0.612351688 -0.111856439  0.0049
Sex                  -4.253062929 -10.752646557  2.134147683  0.1898
residMidLPP:HLS      -0.245226203  -0.681415896  0.199697897  0.2713
residMidLPP:NASS     -0.098003512  -0.598472887  0.406756438  0.6914
HLS:NASS             -0.022219915  -0.040657972 -0.003810854  0.0166
residMidLPP:HLS:NASS  0.003184131  -0.007390416  0.013689820  0.5418
vif(model45)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
         residMidLPP                  HLS                 NASS 
           211.11513             21.13192             17.90118 
                 Age                  Sex      residMidLPP:HLS 
             1.25728              1.35410            205.67374 
    residMidLPP:NASS             HLS:NASS residMidLPP:HLS:NASS 
           120.17522             26.29927            114.41911 

11.22 Residualized Mid-LPP predicts PROMIS Anxiety moderated by acculturation and historical loss

model46<-lm(promisAnx~residMidLPP*HLS*NAAS+Age+Sex, data=cleanedData4matrixH2)
summary(model46)

Call:
lm(formula = promisAnx ~ residMidLPP * HLS * NAAS + Age + Sex, 
    data = cleanedData4matrixH2)

Residuals:
     Min       1Q   Median       3Q      Max 
-12.5622  -5.7972   0.4721   5.6481  11.9055 

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)   
(Intercept)           79.99283   28.60623   2.796  0.00893 **
residMidLPP           61.42393   43.01065   1.428  0.16359   
HLS                   -0.10427    0.62264  -0.167  0.86813   
NAAS                  -3.00815    7.62846  -0.394  0.69613   
Age                   -0.24813    0.13349  -1.859  0.07290 . 
Sex                   -5.12407    3.47322  -1.475  0.15055   
residMidLPP:HLS       -1.11020    0.84212  -1.318  0.19737   
residMidLPP:NAAS     -15.13926   11.36489  -1.332  0.19286   
HLS:NAAS               0.03008    0.16445   0.183  0.85612   
residMidLPP:HLS:NAAS   0.28180    0.21981   1.282  0.20965   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.703 on 30 degrees of freedom
Multiple R-squared:  0.3758,    Adjusted R-squared:  0.1885 
F-statistic: 2.007 on 9 and 30 DF,  p-value: 0.07391
boot_model46<-boot_summary(model46, type='perc',method='residual',R=10000)
boot_model46
                         Estimate Lower.bound  Upper.bound p.value
(Intercept)           79.99283052  24.8160998 1.302521e+02   0.001
residMidLPP           61.42393010 -23.1817706 1.456651e+02   0.151
HLS                   -0.10427116  -1.2645890 1.109199e+00  0.8648
NAAS                  -3.00814758 -16.6786470 1.190656e+01  0.7169
Age                   -0.24812539  -0.5146762 9.898977e-03  0.0604
Sex                   -5.12406833 -12.0546566 1.720713e+00  0.1392
residMidLPP:HLS       -1.11019598  -2.7540855 5.372264e-01  0.1934
residMidLPP:NAAS     -15.13926068 -37.3995681 7.222409e+00   0.184
HLS:NAAS               0.03007568  -0.2943133 3.363590e-01  0.8632
residMidLPP:HLS:NAAS   0.28180429  -0.1455141 7.135203e-01  0.2049
vif(model46)
there are higher-order terms (interactions) in this model
consider setting type = 'predictor'; see ?vif
         residMidLPP                  HLS                 NAAS 
         2767.316948            51.903069             8.086057 
                 Age                  Sex      residMidLPP:HLS 
            1.198742             1.301161          2566.702533 
    residMidLPP:NAAS             HLS:NAAS residMidLPP:HLS:NAAS 
         3102.318113            74.250655          2915.385817