Pengenalan Data

Input Data

# impor data
library(rio)
## Warning: package 'rio' was built under R version 4.4.2
data <- import("https://raw.githubusercontent.com/nida-kha44/MPDW/refs/heads/main/Pertemuan%201/btc_historical_price.csv")
head(data)
##         date price
## 1 2011-01-01 0.300
## 2 2011-01-02 0.300
## 3 2011-01-03 0.295
## 4 2011-01-04 0.299
## 5 2011-01-05 0.299
## 6 2011-01-06 0.298
summary(data)
##       date                price        
##  Min.   :2011-01-01   Min.   :    0.3  
##  1st Qu.:2013-10-31   1st Qu.:  198.8  
##  Median :2016-08-30   Median :  712.7  
##  Mean   :2016-08-30   Mean   : 8171.6  
##  3rd Qu.:2019-06-30   3rd Qu.: 8601.2  
##  Max.   :2022-04-30   Max.   :67544.9
# mengambil baris 1655 - 2485 hasil pembagian dengan teman kelompok
btcprice <- data[1655:2485, ]
head(btcprice)
##            date    price
## 1655 2015-07-13 290.8811
## 1656 2015-07-14 286.1856
## 1657 2015-07-15 283.8231
## 1658 2015-07-16 277.8273
## 1659 2015-07-17 278.4883
## 1660 2015-07-18 274.4938

Eksplorasi Data

View(btcprice) # melihat data
str(btcprice)  # mengetahui struktur data
## 'data.frame':    831 obs. of  2 variables:
##  $ date : IDate, format: "2015-07-13" "2015-07-14" ...
##  $ price: num  291 286 284 278 278 ...
dim(btcprice)  # mengetahui dimensi data
## [1] 831   2
summary(btcprice) # menampilkan ringkasan data
##       date                price       
##  Min.   :2015-07-13   Min.   : 209.1  
##  1st Qu.:2016-02-05   1st Qu.: 417.7  
##  Median :2016-08-31   Median : 635.5  
##  Mean   :2016-08-31   Mean   :1144.0  
##  3rd Qu.:2017-03-26   3rd Qu.:1184.8  
##  Max.   :2017-10-20   Max.   :5984.1
# mengubah data agar menjadi data deret waktu
btcprice.ts <- ts(btcprice$price)
summary(btcprice.ts)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   209.1   417.7   635.5  1144.0  1184.8  5984.1
# membuat plot data deret waktu
ts.plot(btcprice.ts, xlab="Time Period ", ylab="price", 
        main = "Time Series Plot")
points(btcprice.ts)

Dari plot di atas, dapat terlihat bahwa data memiliki pola Non-linear upward trend (eksponensial) dengan volatilitas meningkat. Akan dilakukan pemulusan dengan metode Exponential Smoothing.

Exponential Smoothing

Metode Exponential Smoothing adalah metode pemulusan dengan melakukan pembobotan menurun secara eksponensial. Nilai yang lebih baru diberi bobot yang lebih besar dari nilai terdahulu. Terdapat satu atau lebih parameter pemulusan yang ditentukan secara eksplisit, dan hasil pemilihan parameter tersebut akan menentukan bobot yang akan diberikan pada nilai pengamatan. Ada dua macam model, yaitu model tunggal dan ganda.

Pembagian Data

Pembagian data latih dan data uji dilakukan dengan perbandingan 80% data latih dan 20% data uji.

#membagi training dan testing
training <- btcprice[1:664, ]   
testing <- btcprice[665:831, ]   
train.ts <- ts(training$price)
test.ts <- ts(testing$price)

Eksplorasi

Eksplorasi dilakukan dengan membuat plot data deret waktu untuk keseluruhan data, data latih, dan data uji.

#eksplorasi data
plot(btcprice.ts, col="black",main="Plot semua data")
points(btcprice.ts)

plot(train.ts, col="red",main="Plot data latih")
points(train.ts)

plot(test.ts, col="blue",main="Plot data uji")
points(test.ts)

DES

Metode pemulusan Double Exponential Smoothing (DES) digunakan untuk data yang memiliki pola tren. Metode DES adalah metode semacam SES, hanya saja dilakukan dua kali, yaitu pertama untuk tahapan ‘level’ dan kedua untuk tahapan ‘tren’. Pemulusan menggunakan metode ini akan menghasilkan peramalan tidak konstan untuk periode berikutnya.

Pemulusan dengan metode DES kali ini akan menggunakan fungsi HoltWinters() . Jika sebelumnya nilai argumen beta dibuat FALSE , kali ini argumen tersebut akan diinisialisasi bersamaan dengan nilai alpha .

#Lamda=0.2 dan gamma=0.2
des.1<- HoltWinters(train.ts, gamma = FALSE, beta = 0.2, alpha = 0.2)
plot(des.1)

#ramalan
library(forecast)
## Warning: package 'forecast' was built under R version 4.4.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
ramalandes1<- forecast(des.1, h=167)
ramalandes1
##     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 665       1540.995 1495.368 1586.622 1471.214 1610.776
## 666       1567.805 1520.882 1614.728 1496.043 1639.567
## 667       1594.615 1545.984 1643.246 1520.241 1668.990
## 668       1621.425 1570.650 1672.201 1543.771 1699.080
## 669       1648.236 1594.869 1701.602 1566.619 1729.852
## 670       1675.046 1618.645 1731.446 1588.788 1761.303
## 671       1701.856 1641.989 1761.723 1610.297 1793.415
## 672       1728.666 1664.918 1792.414 1631.173 1826.160
## 673       1755.476 1687.456 1823.496 1651.449 1859.503
## 674       1782.286 1709.626 1854.947 1671.162 1893.411
## 675       1809.097 1731.450 1886.743 1690.346 1927.847
## 676       1835.907 1752.951 1918.863 1709.036 1962.777
## 677       1862.717 1774.148 1951.285 1727.263 1998.171
## 678       1889.527 1795.062 1983.992 1745.056 2033.999
## 679       1916.337 1815.709 2016.966 1762.439 2070.235
## 680       1943.147 1836.103 2050.192 1779.438 2106.857
## 681       1969.958 1856.259 2083.656 1796.070 2143.845
## 682       1996.768 1876.188 2117.348 1812.356 2181.179
## 683       2023.578 1895.900 2151.256 1828.311 2218.844
## 684       2050.388 1915.406 2185.371 1843.950 2256.826
## 685       2077.198 1934.713 2219.684 1859.286 2295.111
## 686       2104.008 1953.829 2254.188 1874.329 2333.688
## 687       2130.819 1972.761 2288.876 1889.091 2372.546
## 688       2157.629 1991.516 2323.742 1903.581 2411.677
## 689       2184.439 2010.098 2358.780 1917.807 2451.071
## 690       2211.249 2028.512 2393.986 1931.777 2490.721
## 691       2238.059 2046.764 2429.354 1945.499 2530.620
## 692       2264.870 2064.858 2464.881 1958.978 2570.761
## 693       2291.680 2082.797 2500.563 1972.221 2611.138
## 694       2318.490 2100.585 2536.395 1985.233 2651.747
## 695       2345.300 2118.225 2572.375 1998.019 2692.581
## 696       2372.110 2135.721 2608.500 2010.584 2733.636
## 697       2398.920 2153.075 2644.766 2022.932 2774.909
## 698       2425.731 2170.290 2681.171 2035.068 2816.393
## 699       2452.541 2187.369 2717.713 2046.995 2858.086
## 700       2479.351 2204.313 2754.389 2058.717 2899.985
## 701       2506.161 2221.126 2791.196 2070.237 2942.085
## 702       2532.971 2237.809 2828.134 2081.559 2984.383
## 703       2559.781 2254.364 2865.199 2092.686 3026.877
## 704       2586.592 2270.793 2902.390 2103.620 3069.563
## 705       2613.402 2287.099 2939.705 2114.364 3112.439
## 706       2640.212 2303.282 2977.142 2124.922 3155.502
## 707       2667.022 2319.344 3014.700 2135.295 3198.750
## 708       2693.832 2335.287 3052.377 2145.485 3242.179
## 709       2720.642 2351.113 3090.172 2155.496 3285.789
## 710       2747.453 2366.822 3128.083 2165.329 3329.576
## 711       2774.263 2382.417 3166.109 2174.986 3373.539
## 712       2801.073 2397.898 3204.248 2184.470 3417.676
## 713       2827.883 2413.267 3242.499 2193.782 3461.984
## 714       2854.693 2428.525 3280.862 2202.925 3506.462
## 715       2881.504 2443.673 3319.334 2211.899 3551.108
## 716       2908.314 2458.712 3357.915 2220.707 3595.920
## 717       2935.124 2473.644 3396.604 2229.351 3640.897
## 718       2961.934 2488.469 3435.399 2237.832 3686.036
## 719       2988.744 2503.189 3474.300 2246.151 3731.337
## 720       3015.554 2517.804 3513.305 2254.311 3776.798
## 721       3042.365 2532.315 3552.414 2262.312 3822.417
## 722       3069.175 2546.725 3591.625 2270.156 3868.193
## 723       3095.985 2561.032 3630.938 2277.845 3914.125
## 724       3122.795 2575.238 3670.352 2285.379 3960.211
## 725       3149.605 2589.345 3709.865 2292.761 4006.449
## 726       3176.415 2603.352 3749.478 2299.991 4052.840
## 727       3203.226 2617.262 3789.190 2307.071 4099.380
## 728       3230.036 2631.073 3828.998 2314.002 4146.070
## 729       3256.846 2644.788 3868.904 2320.784 4192.907
## 730       3283.656 2658.407 3908.905 2327.420 4239.892
## 731       3310.466 2671.931 3949.002 2333.911 4287.022
## 732       3337.276 2685.360 3989.193 2340.256 4334.297
## 733       3364.087 2698.695 4029.478 2346.458 4381.715
## 734       3390.897 2711.937 4069.856 2352.518 4429.276
## 735       3417.707 2725.087 4110.327 2358.436 4476.978
## 736       3444.517 2738.145 4150.890 2364.214 4524.821
## 737       3471.327 2751.111 4191.543 2369.852 4572.803
## 738       3498.137 2763.987 4232.288 2375.351 4620.924
## 739       3524.948 2776.773 4273.122 2380.713 4669.182
## 740       3551.758 2789.470 4314.046 2385.939 4717.577
## 741       3578.568 2802.077 4355.059 2391.028 4766.108
## 742       3605.378 2814.597 4396.159 2395.983 4814.774
## 743       3632.188 2827.029 4437.348 2400.803 4863.573
## 744       3658.999 2839.374 4478.623 2405.491 4912.507
## 745       3685.809 2851.632 4519.985 2410.045 4961.572
## 746       3712.619 2863.804 4561.434 2414.469 5010.769
## 747       3739.429 2875.891 4602.967 2418.761 5060.097
## 748       3766.239 2887.892 4644.586 2422.924 5109.555
## 749       3793.049 2899.809 4686.289 2426.957 5159.142
## 750       3819.860 2911.642 4728.077 2430.861 5208.858
## 751       3846.670 2923.392 4769.948 2434.638 5258.701
## 752       3873.480 2935.058 4811.901 2438.288 5308.672
## 753       3900.290 2946.642 4853.938 2441.811 5358.769
## 754       3927.100 2958.144 4896.057 2445.209 5408.991
## 755       3953.910 2969.564 4938.257 2448.482 5459.339
## 756       3980.721 2980.902 4980.539 2451.631 5509.811
## 757       4007.531 2992.160 5022.901 2454.656 5560.406
## 758       4034.341 3003.338 5065.344 2457.558 5611.124
## 759       4061.151 3014.435 5107.867 2460.337 5661.965
## 760       4087.961 3025.453 5150.469 2462.995 5712.927
## 761       4114.771 3036.392 5193.151 2465.532 5764.011
## 762       4141.582 3047.252 5235.911 2467.949 5815.215
## 763       4168.392 3058.033 5278.750 2470.245 5866.538
## 764       4195.202 3068.737 5321.667 2472.423 5917.981
## 765       4222.012 3079.363 5364.661 2474.481 5969.543
## 766       4248.822 3089.912 5407.733 2476.422 6021.223
## 767       4275.633 3100.384 5450.881 2478.245 6073.020
## 768       4302.443 3110.779 5494.106 2479.951 6124.934
## 769       4329.253 3121.099 5537.407 2481.541 6176.965
## 770       4356.063 3131.342 5580.784 2483.014 6229.112
## 771       4382.873 3141.511 5624.236 2484.373 6281.374
## 772       4409.683 3151.604 5667.763 2485.616 6333.750
## 773       4436.494 3161.622 5711.365 2486.746 6386.241
## 774       4463.304 3171.566 5755.042 2487.761 6438.846
## 775       4490.114 3181.436 5798.792 2488.664 6491.564
## 776       4516.924 3191.232 5842.616 2489.453 6544.395
## 777       4543.734 3200.955 5886.514 2490.130 6597.338
## 778       4570.544 3210.604 5930.484 2490.696 6650.393
## 779       4597.355 3220.181 5974.528 2491.150 6703.559
## 780       4624.165 3229.686 6018.644 2491.493 6756.837
## 781       4650.975 3239.118 6062.832 2491.726 6810.224
## 782       4677.785 3248.478 6107.092 2491.849 6863.721
## 783       4704.595 3257.767 6151.424 2491.863 6917.328
## 784       4731.405 3266.985 6195.826 2491.767 6971.044
## 785       4758.216 3276.131 6240.300 2491.563 7024.868
## 786       4785.026 3285.207 6284.845 2491.251 7078.801
## 787       4811.836 3294.212 6329.460 2490.831 7132.841
## 788       4838.646 3303.148 6374.145 2490.304 7186.988
## 789       4865.456 3312.013 6418.900 2489.670 7241.243
## 790       4892.267 3320.809 6463.724 2488.930 7295.603
## 791       4919.077 3329.536 6508.618 2488.083 7350.070
## 792       4945.887 3338.193 6553.581 2487.131 7404.642
## 793       4972.697 3346.782 6598.612 2486.074 7459.320
## 794       4999.507 3355.302 6643.712 2484.912 7514.102
## 795       5026.317 3363.754 6688.881 2483.646 7568.989
## 796       5053.128 3372.138 6734.117 2482.276 7623.980
## 797       5079.938 3380.454 6779.422 2480.802 7679.074
## 798       5106.748 3388.703 6824.793 2479.224 7734.271
## 799       5133.558 3396.884 6870.232 2477.544 7789.572
## 800       5160.368 3404.998 6915.738 2475.762 7844.975
## 801       5187.178 3413.046 6961.311 2473.877 7900.480
## 802       5213.989 3421.027 7006.950 2471.891 7956.087
## 803       5240.799 3428.942 7052.656 2469.803 8011.795
## 804       5267.609 3436.791 7098.427 2467.614 8067.604
## 805       5294.419 3444.574 7144.265 2465.324 8123.514
## 806       5321.229 3452.291 7190.168 2462.934 8179.524
## 807       5348.039 3459.943 7236.136 2460.445 8235.634
## 808       5374.850 3467.529 7282.170 2457.855 8291.844
## 809       5401.660 3475.051 7328.269 2455.166 8348.154
## 810       5428.470 3482.508 7374.432 2452.378 8404.562
## 811       5455.280 3489.901 7420.660 2449.492 8461.069
## 812       5482.090 3497.229 7466.952 2446.507 8517.674
## 813       5508.901 3504.493 7513.308 2443.424 8574.377
## 814       5535.711 3511.694 7559.728 2440.244 8631.178
## 815       5562.521 3518.830 7606.211 2436.966 8688.076
## 816       5589.331 3525.904 7652.758 2433.591 8745.071
## 817       5616.141 3532.914 7699.369 2430.120 8802.163
## 818       5642.951 3539.861 7746.042 2426.552 8859.351
## 819       5669.762 3546.745 7792.778 2422.888 8916.636
## 820       5696.572 3553.566 7839.577 2419.128 8974.016
## 821       5723.382 3560.325 7886.439 2415.272 9031.492
## 822       5750.192 3567.022 7933.362 2411.322 9089.063
## 823       5777.002 3573.657 7980.348 2407.276 9146.728
## 824       5803.812 3580.230 8027.395 2403.136 9204.489
## 825       5830.623 3586.741 8074.504 2398.902 9262.344
## 826       5857.433 3593.191 8121.675 2394.573 9320.292
## 827       5884.243 3599.579 8168.907 2390.151 9378.335
## 828       5911.053 3605.906 8216.200 2385.635 9436.471
## 829       5937.863 3612.173 8263.554 2381.026 9494.700
## 830       5964.673 3618.378 8310.969 2376.325 9553.022
## 831       5991.484 3624.523 8358.444 2371.530 9611.437
#Lamda=0.6 dan gamma=0.3
des.2<- HoltWinters(train.ts, gamma = FALSE, beta = 0.3, alpha = 0.6)
plot(des.2)

#ramalan
ramalandes2<- forecast(des.2, h=167)
ramalandes2
##     Point Forecast      Lo 80     Hi 80        Lo 95     Hi 95
## 665       1578.010 1547.40963  1608.611  1531.210699  1624.810
## 666       1604.990 1566.18148  1643.798  1545.637564  1664.342
## 667       1631.970 1583.29653  1680.643  1557.530560  1706.409
## 668       1658.949 1599.06612  1718.833  1567.365845  1750.533
## 669       1685.929 1613.69635  1758.162  1575.458644  1796.400
## 670       1712.909 1627.32584  1798.492  1582.020943  1843.797
## 671       1739.889 1640.05212  1839.725  1587.201893  1892.575
## 672       1766.868 1651.94723  1881.789  1591.111687  1942.625
## 673       1793.848 1663.06679  1924.629  1593.835374  1993.861
## 674       1820.828 1673.45532  1968.200  1595.441044  2046.215
## 675       1847.808 1683.14954  2012.466  1595.984855  2099.630
## 676       1874.787 1692.18046  2057.394  1595.514255  2154.060
## 677       1901.767 1700.57483  2102.959  1594.070111  2209.464
## 678       1928.747 1708.35600  2149.138  1591.688183  2265.805
## 679       1955.727 1715.54472  2195.908  1588.400165  2323.053
## 680       1982.706 1722.15954  2243.253  1584.234449  2381.178
## 681       2009.686 1728.21725  2291.155  1579.216698  2440.155
## 682       2036.666 1733.73312  2339.598  1573.370279  2499.961
## 683       2063.645 1738.72115  2388.570  1566.716611  2560.574
## 684       2090.625 1743.19427  2438.056  1559.275436  2621.975
## 685       2117.605 1747.16441  2488.045  1551.065036  2684.145
## 686       2144.585 1750.64271  2538.527  1542.102417  2747.067
## 687       2171.564 1753.63953  2589.489  1532.403454  2810.725
## 688       2198.544 1756.16461  2640.924  1521.983021  2875.105
## 689       2225.524 1758.22709  2692.821  1510.855091  2940.193
## 690       2252.504 1759.83556  2745.172  1499.032831  3005.974
## 691       2279.483 1760.99818  2797.969  1486.528680  3072.438
## 692       2306.463 1761.72262  2851.204  1473.354411  3139.572
## 693       2333.443 1762.01620  2904.870  1459.521193  3207.365
## 694       2360.423 1761.88586  2958.959  1445.039645  3275.806
## 695       2387.402 1761.33821  3013.467  1429.919875  3344.885
## 696       2414.382 1760.37956  3068.385  1414.171527  3414.593
## 697       2441.362 1759.01592  3123.708  1397.803810  3484.920
## 698       2468.342 1757.25306  3179.430  1380.825535  3555.858
## 699       2495.321 1755.09650  3235.546  1363.245143  3627.398
## 700       2522.301 1752.55152  3292.051  1345.070728  3699.531
## 701       2549.281 1749.62322  3348.938  1326.310063  3772.252
## 702       2576.261 1746.31647  3406.205  1306.970620  3845.550
## 703       2603.240 1742.63599  3463.845  1287.059588  3919.421
## 704       2630.220 1738.58629  3521.854  1266.583894  3993.856
## 705       2657.200 1734.17174  3580.228  1245.550216  4068.849
## 706       2684.180 1729.39656  3638.962  1223.964997  4144.394
## 707       2711.159 1724.26482  3698.054  1201.834463  4220.484
## 708       2738.139 1718.78045  3757.498  1179.164630  4297.113
## 709       2765.119 1712.94726  3817.290  1155.961318  4374.276
## 710       2792.098 1706.76892  3877.428  1132.230162  4451.967
## 711       2819.078 1700.24902  3937.907  1107.976620  4530.180
## 712       2846.058 1693.39101  3998.725  1083.205985  4608.910
## 713       2873.038 1686.19825  4059.877  1057.923389  4688.152
## 714       2900.017 1678.67399  4121.361  1032.133815  4767.901
## 715       2926.997 1670.82140  4183.173  1005.842101  4848.152
## 716       2953.977 1662.64355  4245.310   979.052952  4928.901
## 717       2980.957 1654.14343  4307.770   951.770938  5010.142
## 718       3007.936 1645.32396  4370.549   924.000507  5091.872
## 719       3034.916 1636.18796  4433.644   895.745989  5174.086
## 720       3061.896 1626.73819  4497.054   867.011598  5256.780
## 721       3088.876 1616.97733  4560.774   837.801443  5339.950
## 722       3115.855 1606.90801  4624.803   808.119525  5423.591
## 723       3142.835 1596.53277  4689.137   777.969749  5507.700
## 724       3169.815 1585.85410  4753.776   747.355920  5592.274
## 725       3196.795 1574.87443  4818.715   716.281756  5677.307
## 726       3223.774 1563.59614  4883.953   684.750884  5762.798
## 727       3250.754 1552.02153  4949.487   652.766847  5848.741
## 728       3277.734 1540.15289  5015.315   620.333107  5935.135
## 729       3304.714 1527.99241  5081.435   587.453046  6021.974
## 730       3331.693 1515.54226  5147.844   554.129973  6109.257
## 731       3358.673 1502.80455  5214.542   520.367124  6196.979
## 732       3385.653 1489.78137  5281.524   486.167662  6285.138
## 733       3412.633 1476.47472  5348.790   451.534687  6373.730
## 734       3439.612 1462.88659  5416.338   416.471229  6462.753
## 735       3466.592 1449.01893  5484.165   380.980261  6552.204
## 736       3493.572 1434.87364  5552.270   345.064689  6642.079
## 737       3520.551 1420.45257  5620.650   308.727365  6732.376
## 738       3547.531 1405.75757  5689.305   271.971081  6823.091
## 739       3574.511 1390.79041  5758.232   234.798577  6914.223
## 740       3601.491 1375.55286  5827.429   197.212539  7005.769
## 741       3628.470 1360.04663  5896.894   159.215600  7097.725
## 742       3655.450 1344.27342  5966.627   120.810344  7190.090
## 743       3682.430 1328.23489  6036.625    81.999308  7282.861
## 744       3709.410 1311.93265  6106.887    42.784981  7376.034
## 745       3736.389 1295.36832  6177.411     3.169808  7469.609
## 746       3763.369 1278.54346  6248.195   -36.843812  7563.582
## 747       3790.349 1261.45961  6319.238   -77.253521  7657.951
## 748       3817.329 1244.11828  6390.539  -118.057003  7752.714
## 749       3844.308 1226.52097  6462.096  -159.251982  7847.869
## 750       3871.288 1208.66913  6533.907  -200.836221  7943.412
## 751       3898.268 1190.56421  6605.972  -242.807522  8039.343
## 752       3925.248 1172.20761  6678.288  -285.163722  8135.659
## 753       3952.227 1153.60074  6750.854  -327.902696  8232.357
## 754       3979.207 1134.74495  6823.669  -371.022352  8329.437
## 755       4006.187 1115.64159  6896.732  -414.520633  8426.894
## 756       4033.167 1096.29198  6970.041  -458.395514  8524.729
## 757       4060.146 1076.69743  7043.595  -502.645004  8622.938
## 758       4087.126 1056.85922  7117.393  -547.267141  8721.519
## 759       4114.106 1036.77861  7191.433  -592.259996  8820.472
## 760       4141.086 1016.45684  7265.714  -637.621667  8919.793
## 761       4168.065  995.89515  7340.235  -683.350284  9019.481
## 762       4195.045  975.09472  7414.995  -729.444002  9119.534
## 763       4222.025  954.05675  7489.993  -775.901006  9219.951
## 764       4249.004  932.78242  7565.227  -822.719506  9320.728
## 765       4275.984  911.27287  7640.696  -869.897741  9421.866
## 766       4302.964  889.52923  7716.399  -917.433972  9523.362
## 767       4329.944  867.55264  7792.335  -965.326487  9625.214
## 768       4356.923  845.34418  7868.503 -1013.573599  9727.421
## 769       4383.903  822.90496  7944.901 -1062.173643  9829.980
## 770       4410.883  800.23604  8021.530 -1111.124977  9932.891
## 771       4437.863  777.33848  8098.387 -1160.425985 10036.151
## 772       4464.842  754.21332  8175.472 -1210.075069 10139.760
## 773       4491.822  730.86160  8252.783 -1260.070655 10243.715
## 774       4518.802  707.28433  8330.319 -1310.411191 10348.015
## 775       4545.782  683.48251  8408.081 -1361.095142 10452.658
## 776       4572.761  659.45714  8486.066 -1412.120998 10557.644
## 777       4599.741  635.20918  8564.273 -1463.487265 10662.970
## 778       4626.721  610.73960  8642.702 -1515.192471 10768.634
## 779       4653.701  586.04935  8721.352 -1567.235161 10874.636
## 780       4680.680  561.13937  8800.221 -1619.613900 10980.975
## 781       4707.660  536.01058  8879.310 -1672.327271 11087.647
## 782       4734.640  510.66391  8958.616 -1725.373873 11194.654
## 783       4761.620  485.10025  9038.139 -1778.752325 11301.991
## 784       4788.599  459.32051  9117.878 -1832.461261 11409.660
## 785       4815.579  433.32555  9197.833 -1886.499334 11517.657
## 786       4842.559  407.11625  9278.001 -1940.865211 11625.983
## 787       4869.539  380.69347  9358.384 -1995.557576 11734.635
## 788       4896.518  354.05806  9438.979 -2050.575129 11843.612
## 789       4923.498  327.21086  9519.785 -2105.916585 11952.913
## 790       4950.478  300.15271  9600.803 -2161.580674 12062.536
## 791       4977.458  272.88442  9682.031 -2217.566142 12172.481
## 792       5004.437  245.40679  9763.468 -2273.871748 12282.746
## 793       5031.417  217.72065  9845.113 -2330.496266 12393.330
## 794       5058.397  189.82677  9926.967 -2387.438484 12504.232
## 795       5085.376  161.72594 10009.027 -2444.697204 12615.450
## 796       5112.356  133.41894 10091.293 -2502.271240 12726.984
## 797       5139.336  104.90653 10173.765 -2560.159422 12838.831
## 798       5166.316   76.18947 10256.442 -2618.360589 12950.992
## 799       5193.295   47.26851 10339.322 -2676.873597 13063.464
## 800       5220.275   18.14438 10422.406 -2735.697311 13176.248
## 801       5247.255  -11.18217 10505.692 -2794.830611 13289.340
## 802       5274.235  -40.71042 10589.180 -2854.272387 13402.742
## 803       5301.214  -70.43965 10672.868 -2914.021542 13516.450
## 804       5328.194 -100.36916 10756.757 -2974.076990 13630.465
## 805       5355.174 -130.49825 10840.846 -3034.437657 13744.785
## 806       5382.154 -160.82621 10925.133 -3095.102480 13859.410
## 807       5409.133 -191.35235 11009.619 -3156.070407 13974.337
## 808       5436.113 -222.07601 11094.302 -3217.340397 14089.567
## 809       5463.093 -252.99650 11179.182 -3278.911418 14205.097
## 810       5490.073 -284.11316 11264.258 -3340.782452 14320.928
## 811       5517.052 -315.42532 11349.530 -3402.952488 14437.057
## 812       5544.032 -346.93234 11434.996 -3465.420527 14553.485
## 813       5571.012 -378.63357 11520.657 -3528.185579 14670.209
## 814       5597.992 -410.52836 11606.511 -3591.246664 14787.230
## 815       5624.971 -442.61608 11692.559 -3654.602813 14904.545
## 816       5651.951 -474.89611 11778.798 -3718.253063 15022.155
## 817       5678.931 -507.36781 11865.229 -3782.196465 15140.058
## 818       5705.911 -540.03058 11951.852 -3846.432075 15258.253
## 819       5732.890 -572.88381 12038.664 -3910.958960 15376.739
## 820       5759.870 -605.92689 12125.667 -3975.776197 15495.516
## 821       5786.850 -639.15921 12212.859 -4040.882870 15614.582
## 822       5813.829 -672.58020 12300.239 -4106.278070 15733.937
## 823       5840.809 -706.18926 12387.808 -4171.960902 15853.579
## 824       5867.789 -739.98581 12475.564 -4237.930473 15973.508
## 825       5894.769 -773.96927 12563.507 -4304.185902 16093.723
## 826       5921.748 -808.13907 12651.636 -4370.726315 16214.223
## 827       5948.728 -842.49464 12739.951 -4437.550846 16335.007
## 828       5975.708 -877.03543 12828.451 -4504.658638 16456.074
## 829       6002.688 -911.76088 12917.136 -4572.048840 16577.424
## 830       6029.667 -946.67044 13006.005 -4639.720609 16699.055
## 831       6056.647 -981.76355 13095.058 -4707.673110 16820.967

Selanjutnya ingin dibandingkan plot data latih dan data uji adalah sebagai berikut.

#Visually evaluate the prediction
plot(btcprice.ts)
lines(des.1$fitted[,1], lty=2, col="blue")
lines(ramalandes1$mean, col="red")

Untuk mendapatkan nilai parameter optimum dari DES, argumen alpha dan beta dapat dibuat NULL seperti berikut.

#Lamda dan gamma optimum
des.opt<- HoltWinters(train.ts, gamma = FALSE)
des.opt
## Holt-Winters exponential smoothing with trend and without seasonal component.
## 
## Call:
## HoltWinters(x = train.ts, gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 1
##  beta : 0.01120346
##  gamma: FALSE
## 
## Coefficients:
##          [,1]
## a 1548.286300
## b    5.759443
plot(des.opt)

#ramalan
ramalandesopt<- forecast(des.opt, h=167)
ramalandesopt
##     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 665       1554.046 1527.222 1580.869 1513.023 1595.069
## 666       1559.805 1521.658 1597.952 1501.464 1618.146
## 667       1565.565 1518.583 1612.547 1493.712 1637.417
## 668       1571.324 1516.771 1625.877 1487.893 1654.755
## 669       1577.084 1515.753 1638.414 1483.287 1670.880
## 670       1582.843 1515.287 1650.399 1479.525 1686.161
## 671       1588.602 1515.232 1661.973 1476.392 1700.813
## 672       1594.362 1515.495 1673.229 1473.745 1714.979
## 673       1600.121 1516.013 1684.230 1471.488 1728.755
## 674       1605.881 1516.739 1695.022 1469.551 1742.211
## 675       1611.640 1517.641 1705.640 1467.880 1755.400
## 676       1617.400 1518.689 1716.110 1466.435 1768.364
## 677       1623.159 1519.865 1726.453 1465.184 1781.134
## 678       1628.919 1521.150 1736.687 1464.101 1793.736
## 679       1634.678 1522.531 1746.825 1463.164 1806.192
## 680       1640.437 1523.996 1756.879 1462.356 1818.519
## 681       1646.197 1525.536 1766.858 1461.662 1830.732
## 682       1651.956 1527.141 1776.771 1461.068 1842.844
## 683       1657.716 1528.806 1786.626 1460.565 1854.866
## 684       1663.475 1530.524 1796.427 1460.143 1866.807
## 685       1669.235 1532.289 1806.181 1459.794 1878.675
## 686       1674.994 1534.097 1815.891 1459.510 1890.478
## 687       1680.753 1535.943 1825.564 1459.286 1902.221
## 688       1686.513 1537.825 1835.201 1459.115 1913.911
## 689       1692.272 1539.739 1844.806 1458.993 1925.552
## 690       1698.032 1541.681 1854.382 1458.914 1937.149
## 691       1703.791 1543.650 1863.932 1458.877 1948.706
## 692       1709.551 1545.643 1873.459 1458.875 1960.226
## 693       1715.310 1547.657 1882.963 1458.907 1971.713
## 694       1721.070 1549.691 1892.448 1458.969 1983.170
## 695       1726.829 1551.744 1901.914 1459.059 1994.599
## 696       1732.588 1553.812 1911.365 1459.174 2006.003
## 697       1738.348 1555.896 1920.800 1459.311 2017.385
## 698       1744.107 1557.993 1930.222 1459.469 2028.745
## 699       1749.867 1560.102 1939.632 1459.646 2040.087
## 700       1755.626 1562.222 1949.030 1459.840 2051.412
## 701       1761.386 1564.353 1958.419 1460.050 2062.722
## 702       1767.145 1566.492 1967.798 1460.273 2074.018
## 703       1772.905 1568.640 1977.170 1460.508 2085.301
## 704       1778.664 1570.794 1986.534 1460.755 2096.573
## 705       1784.423 1572.956 1995.891 1461.011 2107.836
## 706       1790.183 1575.123 2005.243 1461.276 2119.089
## 707       1795.942 1577.295 2014.590 1461.549 2130.335
## 708       1801.702 1579.471 2023.933 1461.829 2141.575
## 709       1807.461 1581.651 2033.272 1462.114 2152.808
## 710       1813.221 1583.834 2042.607 1462.404 2164.037
## 711       1818.980 1586.020 2051.940 1462.699 2175.262
## 712       1824.740 1588.208 2061.271 1462.996 2186.483
## 713       1830.499 1590.398 2070.600 1463.296 2197.702
## 714       1836.258 1592.589 2079.928 1463.598 2208.919
## 715       1842.018 1594.781 2089.255 1463.902 2220.134
## 716       1847.777 1596.973 2098.581 1464.206 2231.349
## 717       1853.537 1599.166 2107.908 1464.510 2242.564
## 718       1859.296 1601.358 2117.235 1464.813 2253.779
## 719       1865.056 1603.549 2126.562 1465.116 2264.996
## 720       1870.815 1605.739 2135.891 1465.417 2276.214
## 721       1876.575 1607.929 2145.221 1465.716 2287.433
## 722       1882.334 1610.116 2154.552 1466.013 2298.655
## 723       1888.093 1612.302 2163.885 1466.307 2309.880
## 724       1893.853 1614.486 2173.220 1466.598 2321.108
## 725       1899.612 1616.667 2182.557 1466.885 2332.339
## 726       1905.372 1618.846 2191.897 1467.169 2343.575
## 727       1911.131 1621.023 2201.240 1467.448 2354.814
## 728       1916.891 1623.196 2210.585 1467.723 2366.058
## 729       1922.650 1625.366 2219.934 1467.993 2377.307
## 730       1928.410 1627.533 2229.286 1468.258 2388.561
## 731       1934.169 1629.696 2238.642 1468.518 2399.820
## 732       1939.928 1631.856 2248.001 1468.772 2411.085
## 733       1945.688 1634.012 2257.364 1469.020 2422.356
## 734       1951.447 1636.163 2266.731 1469.262 2433.633
## 735       1957.207 1638.311 2276.103 1469.498 2444.916
## 736       1962.966 1640.454 2285.478 1469.727 2456.206
## 737       1968.726 1642.593 2294.858 1469.949 2467.502
## 738       1974.485 1644.728 2304.243 1470.165 2478.806
## 739       1980.245 1646.857 2313.632 1470.373 2490.116
## 740       1986.004 1648.982 2323.026 1470.574 2501.434
## 741       1991.763 1651.102 2332.425 1470.767 2512.760
## 742       1997.523 1653.217 2341.828 1470.953 2524.093
## 743       2003.282 1655.327 2351.237 1471.131 2535.434
## 744       2009.042 1657.432 2360.652 1471.301 2546.783
## 745       2014.801 1659.531 2370.071 1471.463 2558.140
## 746       2020.561 1661.625 2379.496 1471.616 2569.505
## 747       2026.320 1663.714 2388.926 1471.762 2580.879
## 748       2032.080 1665.797 2398.362 1471.898 2592.261
## 749       2037.839 1667.874 2407.804 1472.027 2603.651
## 750       2043.598 1669.946 2417.251 1472.146 2615.051
## 751       2049.358 1672.012 2426.704 1472.257 2626.459
## 752       2055.117 1674.072 2436.163 1472.358 2637.876
## 753       2060.877 1676.126 2445.628 1472.451 2649.303
## 754       2066.636 1678.174 2455.099 1472.534 2660.738
## 755       2072.396 1680.216 2464.576 1472.608 2672.183
## 756       2078.155 1682.252 2474.058 1472.673 2683.637
## 757       2083.915 1684.282 2483.548 1472.729 2695.101
## 758       2089.674 1686.305 2493.043 1472.774 2706.573
## 759       2095.433 1688.322 2502.544 1472.811 2718.056
## 760       2101.193 1690.333 2512.052 1472.838 2729.548
## 761       2106.952 1692.338 2521.567 1472.855 2741.050
## 762       2112.712 1694.336 2531.087 1472.862 2752.562
## 763       2118.471 1696.328 2540.614 1472.859 2764.083
## 764       2124.231 1698.313 2550.148 1472.847 2775.615
## 765       2129.990 1700.292 2559.688 1472.824 2787.156
## 766       2135.750 1702.265 2569.235 1472.791 2798.708
## 767       2141.509 1704.230 2578.788 1472.749 2810.269
## 768       2147.268 1706.189 2588.348 1472.696 2821.841
## 769       2153.028 1708.142 2597.914 1472.633 2833.423
## 770       2158.787 1710.087 2607.487 1472.560 2845.015
## 771       2164.547 1712.026 2617.067 1472.476 2856.617
## 772       2170.306 1713.958 2626.654 1472.382 2868.230
## 773       2176.066 1715.884 2636.247 1472.278 2879.853
## 774       2181.825 1717.802 2645.848 1472.164 2891.487
## 775       2187.585 1719.714 2655.455 1472.039 2903.131
## 776       2193.344 1721.619 2665.069 1471.903 2914.785
## 777       2199.103 1723.517 2674.690 1471.757 2926.450
## 778       2204.863 1725.408 2684.318 1471.600 2938.126
## 779       2210.622 1727.292 2693.952 1471.433 2949.812
## 780       2216.382 1729.170 2703.594 1471.255 2961.508
## 781       2222.141 1731.040 2713.242 1471.067 2973.216
## 782       2227.901 1732.903 2722.898 1470.867 2984.934
## 783       2233.660 1734.759 2732.561 1470.657 2996.663
## 784       2239.420 1736.609 2742.230 1470.437 3008.402
## 785       2245.179 1738.451 2751.907 1470.205 3020.153
## 786       2250.938 1740.286 2761.591 1469.963 3031.914
## 787       2256.698 1742.114 2771.281 1469.710 3043.685
## 788       2262.457 1743.935 2780.979 1469.446 3055.468
## 789       2268.217 1745.749 2790.684 1469.172 3067.262
## 790       2273.976 1747.556 2800.396 1468.886 3079.066
## 791       2279.736 1749.356 2810.115 1468.590 3090.881
## 792       2285.495 1751.149 2819.841 1468.283 3102.707
## 793       2291.255 1752.934 2829.575 1467.965 3114.544
## 794       2297.014 1754.713 2839.315 1467.635 3126.392
## 795       2302.773 1756.484 2849.063 1467.295 3138.251
## 796       2308.533 1758.248 2858.818 1466.944 3150.121
## 797       2314.292 1760.005 2868.580 1466.583 3162.002
## 798       2320.052 1761.754 2878.349 1466.210 3173.894
## 799       2325.811 1763.497 2888.125 1465.826 3185.797
## 800       2331.571 1765.232 2897.909 1465.431 3197.710
## 801       2337.330 1766.960 2907.700 1465.025 3209.635
## 802       2343.089 1768.681 2917.498 1464.608 3221.571
## 803       2348.849 1770.395 2927.303 1464.180 3233.518
## 804       2354.608 1772.102 2937.115 1463.741 3245.476
## 805       2360.368 1773.801 2946.935 1463.291 3257.445
## 806       2366.127 1775.493 2956.762 1462.830 3269.425
## 807       2371.887 1777.178 2966.596 1462.358 3281.416
## 808       2377.646 1778.855 2976.437 1461.875 3293.418
## 809       2383.406 1780.526 2986.285 1461.381 3305.431
## 810       2389.165 1782.189 2996.141 1460.875 3317.455
## 811       2394.924 1783.845 3006.004 1460.359 3329.490
## 812       2400.684 1785.494 3015.874 1459.832 3341.536
## 813       2406.443 1787.135 3025.752 1459.293 3353.594
## 814       2412.203 1788.769 3035.636 1458.743 3365.662
## 815       2417.962 1790.396 3045.528 1458.183 3377.742
## 816       2423.722 1792.016 3055.427 1457.611 3389.832
## 817       2429.481 1793.628 3065.334 1457.028 3401.934
## 818       2435.241 1795.234 3075.247 1456.435 3414.047
## 819       2441.000 1796.832 3085.168 1455.830 3426.170
## 820       2446.759 1798.422 3095.097 1455.214 3438.305
## 821       2452.519 1800.006 3105.032 1454.586 3450.451
## 822       2458.278 1801.582 3114.974 1453.948 3462.608
## 823       2464.038 1803.151 3124.924 1453.299 3474.777
## 824       2469.797 1804.713 3134.881 1452.639 3486.956
## 825       2475.557 1806.268 3144.846 1451.967 3499.146
## 826       2481.316 1807.815 3154.817 1451.285 3511.347
## 827       2487.076 1809.355 3164.796 1450.591 3523.560
## 828       2492.835 1810.888 3174.782 1449.887 3535.783
## 829       2498.594 1812.413 3184.775 1449.171 3548.018
## 830       2504.354 1813.932 3194.776 1448.444 3560.263
## 831       2510.113 1815.443 3204.784 1447.707 3572.520

Selanjutnya akan dilakukan perhitungan akurasi pada data latih maupun data uji dengan ukuran akurasi SSE, MSE dan MAPE.

Akurasi Data Latih

#Akurasi Data Training
ssedes.train1<-des.1$SSE
msedes.train1<-ssedes.train1/length(train.ts)
sisaandes1<-ramalandes1$residuals
head(sisaandes1)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]       NA       NA 2.333000 0.472780 5.622493 4.861863
mapedes.train1 <- sum(abs(sisaandes1[3:length(train.ts)]/train.ts[3:length(train.ts)])
                      *100)/length(train.ts)

akurasides.1 <- matrix(c(ssedes.train1,msedes.train1,mapedes.train1))
row.names(akurasides.1)<- c("SSE", "MSE", "MAPE")
colnames(akurasides.1) <- c("Akurasi lamda=0.2 dan gamma=0.2")
akurasides.1
##      Akurasi lamda=0.2 dan gamma=0.2
## SSE                     8.388072e+05
## MSE                     1.263264e+03
## MAPE                    3.291585e+00
ssedes.train2<-des.2$SSE
msedes.train2<-ssedes.train2/length(train.ts)
sisaandes2<-ramalandes2$residuals
head(sisaandes2)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]        NA        NA  2.333000 -0.787040  4.763411  1.470678
mapedes.train2 <- sum(abs(sisaandes2[3:length(train.ts)]/train.ts[3:length(train.ts)])
                      *100)/length(train.ts)

akurasides.2 <- matrix(c(ssedes.train2,msedes.train2,mapedes.train2))
row.names(akurasides.2)<- c("SSE", "MSE", "MAPE")
colnames(akurasides.2) <- c("Akurasi lamda=0.6 dan gamma=0.3")
akurasides.2
##      Akurasi lamda=0.6 dan gamma=0.3
## SSE                     3.769123e+05
## MSE                     5.676390e+02
## MAPE                    2.094042e+00

Hasil pemulusan time series menunjukkan bahwa model dengan parameter λ = 0.6 dan γ = 0.3 memiliki performa yang lebih baik dibandingkan dengan model λ = 0.2 dan γ = 0.2. Hal ini terlihat dari nilai SSE, MSE, dan MAPE yang lebih kecil, yaitu masing-masing sebesar 376,912; 567; dan 2.09%. Sementara itu, model pertama menghasilkan nilai kesalahan yang lebih besar, yaitu SSE = 838,807; MSE = 1,263; dan MAPE = 3.29%. Dengan demikian, dapat disimpulkan bahwa model dengan λ = 0.6 dan γ = 0.3 lebih sesuai digunakan untuk meramalkan data karena memberikan tingkat akurasi yang lebih tinggi.

Akurasi Data Uji

# Akurasi Data Uji
# Cek dan sesuaikan panjang dulu
common_length <- min(length(ramalandes1$mean), length(testing$price))

# Akurasi Data Testing - FIXED
selisihdes1 <- ramalandes1$mean[1:common_length] - testing$price[1:common_length]
SSEtestingdes1 <- sum(selisihdes1^2)
MSEtestingdes1 <- SSEtestingdes1/common_length
MAPEtestingdes1 <- sum(abs(selisihdes1/testing$price[1:common_length])*100)/common_length

selisihdes2 <- ramalandes2$mean[1:common_length] - testing$price[1:common_length]
SSEtestingdes2 <- sum(selisihdes2^2)
MSEtestingdes2 <- SSEtestingdes2/common_length
MAPEtestingdes2 <- sum(abs(selisihdes2/testing$price[1:common_length])*100)/common_length

selisihdesopt <- ramalandesopt$mean[1:common_length] - testing$price[1:common_length]
SSEtestingdesopt <- sum(selisihdesopt^2)
MSEtestingdesopt <- SSEtestingdesopt/common_length
MAPEtestingdesopt <- sum(abs(selisihdesopt/testing$price[1:common_length])*100)/common_length

# Buat matrix akurasi
akurasitestingdes <- matrix(
  c(SSEtestingdes1, MSEtestingdes1, MAPEtestingdes1,
    SSEtestingdes2, MSEtestingdes2, MAPEtestingdes2,
    SSEtestingdesopt, MSEtestingdesopt, MAPEtestingdesopt),
  nrow = 3, ncol = 3, byrow = FALSE
)

row.names(akurasitestingdes) <- c("SSE", "MSE", "MAPE")
colnames(akurasitestingdes) <- c("des ske1", "des ske2", "des opt")

print(akurasitestingdes)
##          des ske1     des ske2      des opt
## SSE  9.023515e+07 9.939989e+07 3.873175e+08
## MSE  5.403302e+05 5.952089e+05 2.319266e+06
## MAPE 1.783127e+01 1.864297e+01 3.447167e+01

Kesimpulan: model des.ske1 memberikan hasil ramalan terbaik dibandingkan dengan model des.ske2 dan des.opt. Nilai SSE (9.02×10⁷), MSE (5.43×10⁵), dan MAPE (17.94%) dari des.ske1 semuanya lebih kecil daripada dua model lainnya. Hal ini menunjukkan bahwa kesalahan prediksi model des.ske1 relatif paling rendah, sehingga model tersebut lebih sesuai digunakan untuk meramalkan data. Sebaliknya, model des.opt memiliki error yang paling besar pada semua ukuran (SSE, MSE, maupun MAPE), sehingga performanya paling buruk di antara ketiga model.

Peramalan

#Forecast
forecast1 <- predict(des.1, n.ahead = 167)
forecast2 <- predict(des.2, n.ahead = 167)
forecast.opt <- predict(des.opt, n.ahead = 167)

Plot Deret Waktu

library(forecast)

# Misalnya meramalkan 10 periode ke depan
horizon <- 200

# Forecast dengan horizon baru (future forecasting)
forecast_des1 <- forecast(ramalandes1$model, h = horizon)
forecast_des2 <- forecast(ramalandes2$model, h = horizon)
forecast_desopt <- forecast(ramalandesopt$model, h = horizon)

# Lihat hasil peramalan
forecast_des1
##     Point Forecast    Lo 80    Hi 80    Lo 95     Hi 95
## 665       1540.995 1495.368 1586.622 1471.214  1610.776
## 666       1567.805 1520.882 1614.728 1496.043  1639.567
## 667       1594.615 1545.984 1643.246 1520.241  1668.990
## 668       1621.425 1570.650 1672.201 1543.771  1699.080
## 669       1648.236 1594.869 1701.602 1566.619  1729.852
## 670       1675.046 1618.645 1731.446 1588.788  1761.303
## 671       1701.856 1641.989 1761.723 1610.297  1793.415
## 672       1728.666 1664.918 1792.414 1631.173  1826.160
## 673       1755.476 1687.456 1823.496 1651.449  1859.503
## 674       1782.286 1709.626 1854.947 1671.162  1893.411
## 675       1809.097 1731.450 1886.743 1690.346  1927.847
## 676       1835.907 1752.951 1918.863 1709.036  1962.777
## 677       1862.717 1774.148 1951.285 1727.263  1998.171
## 678       1889.527 1795.062 1983.992 1745.056  2033.999
## 679       1916.337 1815.709 2016.966 1762.439  2070.235
## 680       1943.147 1836.103 2050.192 1779.438  2106.857
## 681       1969.958 1856.259 2083.656 1796.070  2143.845
## 682       1996.768 1876.188 2117.348 1812.356  2181.179
## 683       2023.578 1895.900 2151.256 1828.311  2218.844
## 684       2050.388 1915.406 2185.371 1843.950  2256.826
## 685       2077.198 1934.713 2219.684 1859.286  2295.111
## 686       2104.008 1953.829 2254.188 1874.329  2333.688
## 687       2130.819 1972.761 2288.876 1889.091  2372.546
## 688       2157.629 1991.516 2323.742 1903.581  2411.677
## 689       2184.439 2010.098 2358.780 1917.807  2451.071
## 690       2211.249 2028.512 2393.986 1931.777  2490.721
## 691       2238.059 2046.764 2429.354 1945.499  2530.620
## 692       2264.870 2064.858 2464.881 1958.978  2570.761
## 693       2291.680 2082.797 2500.563 1972.221  2611.138
## 694       2318.490 2100.585 2536.395 1985.233  2651.747
## 695       2345.300 2118.225 2572.375 1998.019  2692.581
## 696       2372.110 2135.721 2608.500 2010.584  2733.636
## 697       2398.920 2153.075 2644.766 2022.932  2774.909
## 698       2425.731 2170.290 2681.171 2035.068  2816.393
## 699       2452.541 2187.369 2717.713 2046.995  2858.086
## 700       2479.351 2204.313 2754.389 2058.717  2899.985
## 701       2506.161 2221.126 2791.196 2070.237  2942.085
## 702       2532.971 2237.809 2828.134 2081.559  2984.383
## 703       2559.781 2254.364 2865.199 2092.686  3026.877
## 704       2586.592 2270.793 2902.390 2103.620  3069.563
## 705       2613.402 2287.099 2939.705 2114.364  3112.439
## 706       2640.212 2303.282 2977.142 2124.922  3155.502
## 707       2667.022 2319.344 3014.700 2135.295  3198.750
## 708       2693.832 2335.287 3052.377 2145.485  3242.179
## 709       2720.642 2351.113 3090.172 2155.496  3285.789
## 710       2747.453 2366.822 3128.083 2165.329  3329.576
## 711       2774.263 2382.417 3166.109 2174.986  3373.539
## 712       2801.073 2397.898 3204.248 2184.470  3417.676
## 713       2827.883 2413.267 3242.499 2193.782  3461.984
## 714       2854.693 2428.525 3280.862 2202.925  3506.462
## 715       2881.504 2443.673 3319.334 2211.899  3551.108
## 716       2908.314 2458.712 3357.915 2220.707  3595.920
## 717       2935.124 2473.644 3396.604 2229.351  3640.897
## 718       2961.934 2488.469 3435.399 2237.832  3686.036
## 719       2988.744 2503.189 3474.300 2246.151  3731.337
## 720       3015.554 2517.804 3513.305 2254.311  3776.798
## 721       3042.365 2532.315 3552.414 2262.312  3822.417
## 722       3069.175 2546.725 3591.625 2270.156  3868.193
## 723       3095.985 2561.032 3630.938 2277.845  3914.125
## 724       3122.795 2575.238 3670.352 2285.379  3960.211
## 725       3149.605 2589.345 3709.865 2292.761  4006.449
## 726       3176.415 2603.352 3749.478 2299.991  4052.840
## 727       3203.226 2617.262 3789.190 2307.071  4099.380
## 728       3230.036 2631.073 3828.998 2314.002  4146.070
## 729       3256.846 2644.788 3868.904 2320.784  4192.907
## 730       3283.656 2658.407 3908.905 2327.420  4239.892
## 731       3310.466 2671.931 3949.002 2333.911  4287.022
## 732       3337.276 2685.360 3989.193 2340.256  4334.297
## 733       3364.087 2698.695 4029.478 2346.458  4381.715
## 734       3390.897 2711.937 4069.856 2352.518  4429.276
## 735       3417.707 2725.087 4110.327 2358.436  4476.978
## 736       3444.517 2738.145 4150.890 2364.214  4524.821
## 737       3471.327 2751.111 4191.543 2369.852  4572.803
## 738       3498.137 2763.987 4232.288 2375.351  4620.924
## 739       3524.948 2776.773 4273.122 2380.713  4669.182
## 740       3551.758 2789.470 4314.046 2385.939  4717.577
## 741       3578.568 2802.077 4355.059 2391.028  4766.108
## 742       3605.378 2814.597 4396.159 2395.983  4814.774
## 743       3632.188 2827.029 4437.348 2400.803  4863.573
## 744       3658.999 2839.374 4478.623 2405.491  4912.507
## 745       3685.809 2851.632 4519.985 2410.045  4961.572
## 746       3712.619 2863.804 4561.434 2414.469  5010.769
## 747       3739.429 2875.891 4602.967 2418.761  5060.097
## 748       3766.239 2887.892 4644.586 2422.924  5109.555
## 749       3793.049 2899.809 4686.289 2426.957  5159.142
## 750       3819.860 2911.642 4728.077 2430.861  5208.858
## 751       3846.670 2923.392 4769.948 2434.638  5258.701
## 752       3873.480 2935.058 4811.901 2438.288  5308.672
## 753       3900.290 2946.642 4853.938 2441.811  5358.769
## 754       3927.100 2958.144 4896.057 2445.209  5408.991
## 755       3953.910 2969.564 4938.257 2448.482  5459.339
## 756       3980.721 2980.902 4980.539 2451.631  5509.811
## 757       4007.531 2992.160 5022.901 2454.656  5560.406
## 758       4034.341 3003.338 5065.344 2457.558  5611.124
## 759       4061.151 3014.435 5107.867 2460.337  5661.965
## 760       4087.961 3025.453 5150.469 2462.995  5712.927
## 761       4114.771 3036.392 5193.151 2465.532  5764.011
## 762       4141.582 3047.252 5235.911 2467.949  5815.215
## 763       4168.392 3058.033 5278.750 2470.245  5866.538
## 764       4195.202 3068.737 5321.667 2472.423  5917.981
## 765       4222.012 3079.363 5364.661 2474.481  5969.543
## 766       4248.822 3089.912 5407.733 2476.422  6021.223
## 767       4275.633 3100.384 5450.881 2478.245  6073.020
## 768       4302.443 3110.779 5494.106 2479.951  6124.934
## 769       4329.253 3121.099 5537.407 2481.541  6176.965
## 770       4356.063 3131.342 5580.784 2483.014  6229.112
## 771       4382.873 3141.511 5624.236 2484.373  6281.374
## 772       4409.683 3151.604 5667.763 2485.616  6333.750
## 773       4436.494 3161.622 5711.365 2486.746  6386.241
## 774       4463.304 3171.566 5755.042 2487.761  6438.846
## 775       4490.114 3181.436 5798.792 2488.664  6491.564
## 776       4516.924 3191.232 5842.616 2489.453  6544.395
## 777       4543.734 3200.955 5886.514 2490.130  6597.338
## 778       4570.544 3210.604 5930.484 2490.696  6650.393
## 779       4597.355 3220.181 5974.528 2491.150  6703.559
## 780       4624.165 3229.686 6018.644 2491.493  6756.837
## 781       4650.975 3239.118 6062.832 2491.726  6810.224
## 782       4677.785 3248.478 6107.092 2491.849  6863.721
## 783       4704.595 3257.767 6151.424 2491.863  6917.328
## 784       4731.405 3266.985 6195.826 2491.767  6971.044
## 785       4758.216 3276.131 6240.300 2491.563  7024.868
## 786       4785.026 3285.207 6284.845 2491.251  7078.801
## 787       4811.836 3294.212 6329.460 2490.831  7132.841
## 788       4838.646 3303.148 6374.145 2490.304  7186.988
## 789       4865.456 3312.013 6418.900 2489.670  7241.243
## 790       4892.267 3320.809 6463.724 2488.930  7295.603
## 791       4919.077 3329.536 6508.618 2488.083  7350.070
## 792       4945.887 3338.193 6553.581 2487.131  7404.642
## 793       4972.697 3346.782 6598.612 2486.074  7459.320
## 794       4999.507 3355.302 6643.712 2484.912  7514.102
## 795       5026.317 3363.754 6688.881 2483.646  7568.989
## 796       5053.128 3372.138 6734.117 2482.276  7623.980
## 797       5079.938 3380.454 6779.422 2480.802  7679.074
## 798       5106.748 3388.703 6824.793 2479.224  7734.271
## 799       5133.558 3396.884 6870.232 2477.544  7789.572
## 800       5160.368 3404.998 6915.738 2475.762  7844.975
## 801       5187.178 3413.046 6961.311 2473.877  7900.480
## 802       5213.989 3421.027 7006.950 2471.891  7956.087
## 803       5240.799 3428.942 7052.656 2469.803  8011.795
## 804       5267.609 3436.791 7098.427 2467.614  8067.604
## 805       5294.419 3444.574 7144.265 2465.324  8123.514
## 806       5321.229 3452.291 7190.168 2462.934  8179.524
## 807       5348.039 3459.943 7236.136 2460.445  8235.634
## 808       5374.850 3467.529 7282.170 2457.855  8291.844
## 809       5401.660 3475.051 7328.269 2455.166  8348.154
## 810       5428.470 3482.508 7374.432 2452.378  8404.562
## 811       5455.280 3489.901 7420.660 2449.492  8461.069
## 812       5482.090 3497.229 7466.952 2446.507  8517.674
## 813       5508.901 3504.493 7513.308 2443.424  8574.377
## 814       5535.711 3511.694 7559.728 2440.244  8631.178
## 815       5562.521 3518.830 7606.211 2436.966  8688.076
## 816       5589.331 3525.904 7652.758 2433.591  8745.071
## 817       5616.141 3532.914 7699.369 2430.120  8802.163
## 818       5642.951 3539.861 7746.042 2426.552  8859.351
## 819       5669.762 3546.745 7792.778 2422.888  8916.636
## 820       5696.572 3553.566 7839.577 2419.128  8974.016
## 821       5723.382 3560.325 7886.439 2415.272  9031.492
## 822       5750.192 3567.022 7933.362 2411.322  9089.063
## 823       5777.002 3573.657 7980.348 2407.276  9146.728
## 824       5803.812 3580.230 8027.395 2403.136  9204.489
## 825       5830.623 3586.741 8074.504 2398.902  9262.344
## 826       5857.433 3593.191 8121.675 2394.573  9320.292
## 827       5884.243 3599.579 8168.907 2390.151  9378.335
## 828       5911.053 3605.906 8216.200 2385.635  9436.471
## 829       5937.863 3612.173 8263.554 2381.026  9494.700
## 830       5964.673 3618.378 8310.969 2376.325  9553.022
## 831       5991.484 3624.523 8358.444 2371.530  9611.437
## 832       6018.294 3630.608 8405.980 2366.643  9669.944
## 833       6045.104 3636.632 8453.576 2361.664  9728.544
## 834       6071.914 3642.597 8501.232 2356.594  9787.235
## 835       6098.724 3648.501 8548.948 2351.431  9846.017
## 836       6125.535 3654.346 8596.723 2346.178  9904.891
## 837       6152.345 3660.131 8644.558 2340.833  9963.856
## 838       6179.155 3665.857 8692.453 2335.398 10022.912
## 839       6205.965 3671.524 8740.406 2329.872 10082.059
## 840       6232.775 3677.131 8788.419 2324.255 10141.295
## 841       6259.585 3682.680 8836.491 2318.549 10200.622
## 842       6286.396 3688.170 8884.621 2312.753 10260.038
## 843       6313.206 3693.602 8932.810 2306.867 10319.544
## 844       6340.016 3698.975 8981.057 2300.892 10379.139
## 845       6366.826 3704.290 9029.362 2294.829 10438.824
## 846       6393.636 3709.547 9077.726 2288.676 10498.597
## 847       6420.446 3714.746 9126.147 2282.434 10558.458
## 848       6447.257 3719.887 9174.626 2276.105 10618.408
## 849       6474.067 3724.971 9223.163 2269.687 10678.446
## 850       6500.877 3729.997 9271.757 2263.182 10738.572
## 851       6527.687 3734.966 9320.408 2256.588 10798.786
## 852       6554.497 3739.878 9369.117 2249.908 10859.087
## 853       6581.307 3744.732 9417.883 2243.140 10919.475
## 854       6608.118 3749.530 9466.705 2236.285 10979.950
## 855       6634.928 3754.271 9515.584 2229.344 11040.512
## 856       6661.738 3758.956 9564.520 2222.316 11101.160
## 857       6688.548 3763.584 9613.512 2215.202 11161.894
## 858       6715.358 3768.156 9662.560 2208.002 11222.715
## 859       6742.169 3772.672 9711.665 2200.716 11283.621
## 860       6768.979 3777.132 9760.825 2193.344 11344.613
## 861       6795.789 3781.536 9810.042 2185.887 11405.691
## 862       6822.599 3785.884 9859.314 2178.345 11466.853
## 863       6849.409 3790.177 9908.641 2170.718 11528.101
## 864       6876.219 3794.415 9958.024 2163.006 11589.433
forecast_des2
##     Point Forecast       Lo 80     Hi 80        Lo 95     Hi 95
## 665       1578.010  1547.40963  1608.611  1531.210699  1624.810
## 666       1604.990  1566.18148  1643.798  1545.637564  1664.342
## 667       1631.970  1583.29653  1680.643  1557.530560  1706.409
## 668       1658.949  1599.06612  1718.833  1567.365845  1750.533
## 669       1685.929  1613.69635  1758.162  1575.458644  1796.400
## 670       1712.909  1627.32584  1798.492  1582.020943  1843.797
## 671       1739.889  1640.05212  1839.725  1587.201893  1892.575
## 672       1766.868  1651.94723  1881.789  1591.111687  1942.625
## 673       1793.848  1663.06679  1924.629  1593.835374  1993.861
## 674       1820.828  1673.45532  1968.200  1595.441044  2046.215
## 675       1847.808  1683.14954  2012.466  1595.984855  2099.630
## 676       1874.787  1692.18046  2057.394  1595.514255  2154.060
## 677       1901.767  1700.57483  2102.959  1594.070111  2209.464
## 678       1928.747  1708.35600  2149.138  1591.688183  2265.805
## 679       1955.727  1715.54472  2195.908  1588.400165  2323.053
## 680       1982.706  1722.15954  2243.253  1584.234449  2381.178
## 681       2009.686  1728.21725  2291.155  1579.216698  2440.155
## 682       2036.666  1733.73312  2339.598  1573.370279  2499.961
## 683       2063.645  1738.72115  2388.570  1566.716611  2560.574
## 684       2090.625  1743.19427  2438.056  1559.275436  2621.975
## 685       2117.605  1747.16441  2488.045  1551.065036  2684.145
## 686       2144.585  1750.64271  2538.527  1542.102417  2747.067
## 687       2171.564  1753.63953  2589.489  1532.403454  2810.725
## 688       2198.544  1756.16461  2640.924  1521.983021  2875.105
## 689       2225.524  1758.22709  2692.821  1510.855091  2940.193
## 690       2252.504  1759.83556  2745.172  1499.032831  3005.974
## 691       2279.483  1760.99818  2797.969  1486.528680  3072.438
## 692       2306.463  1761.72262  2851.204  1473.354411  3139.572
## 693       2333.443  1762.01620  2904.870  1459.521193  3207.365
## 694       2360.423  1761.88586  2958.959  1445.039645  3275.806
## 695       2387.402  1761.33821  3013.467  1429.919875  3344.885
## 696       2414.382  1760.37956  3068.385  1414.171527  3414.593
## 697       2441.362  1759.01592  3123.708  1397.803810  3484.920
## 698       2468.342  1757.25306  3179.430  1380.825535  3555.858
## 699       2495.321  1755.09650  3235.546  1363.245143  3627.398
## 700       2522.301  1752.55152  3292.051  1345.070728  3699.531
## 701       2549.281  1749.62322  3348.938  1326.310063  3772.252
## 702       2576.261  1746.31647  3406.205  1306.970620  3845.550
## 703       2603.240  1742.63599  3463.845  1287.059588  3919.421
## 704       2630.220  1738.58629  3521.854  1266.583894  3993.856
## 705       2657.200  1734.17174  3580.228  1245.550216  4068.849
## 706       2684.180  1729.39656  3638.962  1223.964997  4144.394
## 707       2711.159  1724.26482  3698.054  1201.834463  4220.484
## 708       2738.139  1718.78045  3757.498  1179.164630  4297.113
## 709       2765.119  1712.94726  3817.290  1155.961318  4374.276
## 710       2792.098  1706.76892  3877.428  1132.230162  4451.967
## 711       2819.078  1700.24902  3937.907  1107.976620  4530.180
## 712       2846.058  1693.39101  3998.725  1083.205985  4608.910
## 713       2873.038  1686.19825  4059.877  1057.923389  4688.152
## 714       2900.017  1678.67399  4121.361  1032.133815  4767.901
## 715       2926.997  1670.82140  4183.173  1005.842101  4848.152
## 716       2953.977  1662.64355  4245.310   979.052952  4928.901
## 717       2980.957  1654.14343  4307.770   951.770938  5010.142
## 718       3007.936  1645.32396  4370.549   924.000507  5091.872
## 719       3034.916  1636.18796  4433.644   895.745989  5174.086
## 720       3061.896  1626.73819  4497.054   867.011598  5256.780
## 721       3088.876  1616.97733  4560.774   837.801443  5339.950
## 722       3115.855  1606.90801  4624.803   808.119525  5423.591
## 723       3142.835  1596.53277  4689.137   777.969749  5507.700
## 724       3169.815  1585.85410  4753.776   747.355920  5592.274
## 725       3196.795  1574.87443  4818.715   716.281756  5677.307
## 726       3223.774  1563.59614  4883.953   684.750884  5762.798
## 727       3250.754  1552.02153  4949.487   652.766847  5848.741
## 728       3277.734  1540.15289  5015.315   620.333107  5935.135
## 729       3304.714  1527.99241  5081.435   587.453046  6021.974
## 730       3331.693  1515.54226  5147.844   554.129973  6109.257
## 731       3358.673  1502.80455  5214.542   520.367124  6196.979
## 732       3385.653  1489.78137  5281.524   486.167662  6285.138
## 733       3412.633  1476.47472  5348.790   451.534687  6373.730
## 734       3439.612  1462.88659  5416.338   416.471229  6462.753
## 735       3466.592  1449.01893  5484.165   380.980261  6552.204
## 736       3493.572  1434.87364  5552.270   345.064689  6642.079
## 737       3520.551  1420.45257  5620.650   308.727365  6732.376
## 738       3547.531  1405.75757  5689.305   271.971081  6823.091
## 739       3574.511  1390.79041  5758.232   234.798577  6914.223
## 740       3601.491  1375.55286  5827.429   197.212539  7005.769
## 741       3628.470  1360.04663  5896.894   159.215600  7097.725
## 742       3655.450  1344.27342  5966.627   120.810344  7190.090
## 743       3682.430  1328.23489  6036.625    81.999308  7282.861
## 744       3709.410  1311.93265  6106.887    42.784981  7376.034
## 745       3736.389  1295.36832  6177.411     3.169808  7469.609
## 746       3763.369  1278.54346  6248.195   -36.843812  7563.582
## 747       3790.349  1261.45961  6319.238   -77.253521  7657.951
## 748       3817.329  1244.11828  6390.539  -118.057003  7752.714
## 749       3844.308  1226.52097  6462.096  -159.251982  7847.869
## 750       3871.288  1208.66913  6533.907  -200.836221  7943.412
## 751       3898.268  1190.56421  6605.972  -242.807522  8039.343
## 752       3925.248  1172.20761  6678.288  -285.163722  8135.659
## 753       3952.227  1153.60074  6750.854  -327.902696  8232.357
## 754       3979.207  1134.74495  6823.669  -371.022352  8329.437
## 755       4006.187  1115.64159  6896.732  -414.520633  8426.894
## 756       4033.167  1096.29198  6970.041  -458.395514  8524.729
## 757       4060.146  1076.69743  7043.595  -502.645004  8622.938
## 758       4087.126  1056.85922  7117.393  -547.267141  8721.519
## 759       4114.106  1036.77861  7191.433  -592.259996  8820.472
## 760       4141.086  1016.45684  7265.714  -637.621667  8919.793
## 761       4168.065   995.89515  7340.235  -683.350284  9019.481
## 762       4195.045   975.09472  7414.995  -729.444002  9119.534
## 763       4222.025   954.05675  7489.993  -775.901006  9219.951
## 764       4249.004   932.78242  7565.227  -822.719506  9320.728
## 765       4275.984   911.27287  7640.696  -869.897741  9421.866
## 766       4302.964   889.52923  7716.399  -917.433972  9523.362
## 767       4329.944   867.55264  7792.335  -965.326487  9625.214
## 768       4356.923   845.34418  7868.503 -1013.573599  9727.421
## 769       4383.903   822.90496  7944.901 -1062.173643  9829.980
## 770       4410.883   800.23604  8021.530 -1111.124977  9932.891
## 771       4437.863   777.33848  8098.387 -1160.425985 10036.151
## 772       4464.842   754.21332  8175.472 -1210.075069 10139.760
## 773       4491.822   730.86160  8252.783 -1260.070655 10243.715
## 774       4518.802   707.28433  8330.319 -1310.411191 10348.015
## 775       4545.782   683.48251  8408.081 -1361.095142 10452.658
## 776       4572.761   659.45714  8486.066 -1412.120998 10557.644
## 777       4599.741   635.20918  8564.273 -1463.487265 10662.970
## 778       4626.721   610.73960  8642.702 -1515.192471 10768.634
## 779       4653.701   586.04935  8721.352 -1567.235161 10874.636
## 780       4680.680   561.13937  8800.221 -1619.613900 10980.975
## 781       4707.660   536.01058  8879.310 -1672.327271 11087.647
## 782       4734.640   510.66391  8958.616 -1725.373873 11194.654
## 783       4761.620   485.10025  9038.139 -1778.752325 11301.991
## 784       4788.599   459.32051  9117.878 -1832.461261 11409.660
## 785       4815.579   433.32555  9197.833 -1886.499334 11517.657
## 786       4842.559   407.11625  9278.001 -1940.865211 11625.983
## 787       4869.539   380.69347  9358.384 -1995.557576 11734.635
## 788       4896.518   354.05806  9438.979 -2050.575129 11843.612
## 789       4923.498   327.21086  9519.785 -2105.916585 11952.913
## 790       4950.478   300.15271  9600.803 -2161.580674 12062.536
## 791       4977.458   272.88442  9682.031 -2217.566142 12172.481
## 792       5004.437   245.40679  9763.468 -2273.871748 12282.746
## 793       5031.417   217.72065  9845.113 -2330.496266 12393.330
## 794       5058.397   189.82677  9926.967 -2387.438484 12504.232
## 795       5085.376   161.72594 10009.027 -2444.697204 12615.450
## 796       5112.356   133.41894 10091.293 -2502.271240 12726.984
## 797       5139.336   104.90653 10173.765 -2560.159422 12838.831
## 798       5166.316    76.18947 10256.442 -2618.360589 12950.992
## 799       5193.295    47.26851 10339.322 -2676.873597 13063.464
## 800       5220.275    18.14438 10422.406 -2735.697311 13176.248
## 801       5247.255   -11.18217 10505.692 -2794.830611 13289.340
## 802       5274.235   -40.71042 10589.180 -2854.272387 13402.742
## 803       5301.214   -70.43965 10672.868 -2914.021542 13516.450
## 804       5328.194  -100.36916 10756.757 -2974.076990 13630.465
## 805       5355.174  -130.49825 10840.846 -3034.437657 13744.785
## 806       5382.154  -160.82621 10925.133 -3095.102480 13859.410
## 807       5409.133  -191.35235 11009.619 -3156.070407 13974.337
## 808       5436.113  -222.07601 11094.302 -3217.340397 14089.567
## 809       5463.093  -252.99650 11179.182 -3278.911418 14205.097
## 810       5490.073  -284.11316 11264.258 -3340.782452 14320.928
## 811       5517.052  -315.42532 11349.530 -3402.952488 14437.057
## 812       5544.032  -346.93234 11434.996 -3465.420527 14553.485
## 813       5571.012  -378.63357 11520.657 -3528.185579 14670.209
## 814       5597.992  -410.52836 11606.511 -3591.246664 14787.230
## 815       5624.971  -442.61608 11692.559 -3654.602813 14904.545
## 816       5651.951  -474.89611 11778.798 -3718.253063 15022.155
## 817       5678.931  -507.36781 11865.229 -3782.196465 15140.058
## 818       5705.911  -540.03058 11951.852 -3846.432075 15258.253
## 819       5732.890  -572.88381 12038.664 -3910.958960 15376.739
## 820       5759.870  -605.92689 12125.667 -3975.776197 15495.516
## 821       5786.850  -639.15921 12212.859 -4040.882870 15614.582
## 822       5813.829  -672.58020 12300.239 -4106.278070 15733.937
## 823       5840.809  -706.18926 12387.808 -4171.960902 15853.579
## 824       5867.789  -739.98581 12475.564 -4237.930473 15973.508
## 825       5894.769  -773.96927 12563.507 -4304.185902 16093.723
## 826       5921.748  -808.13907 12651.636 -4370.726315 16214.223
## 827       5948.728  -842.49464 12739.951 -4437.550846 16335.007
## 828       5975.708  -877.03543 12828.451 -4504.658638 16456.074
## 829       6002.688  -911.76088 12917.136 -4572.048840 16577.424
## 830       6029.667  -946.67044 13006.005 -4639.720609 16699.055
## 831       6056.647  -981.76355 13095.058 -4707.673110 16820.967
## 832       6083.627 -1017.03969 13184.293 -4775.905515 16943.159
## 833       6110.607 -1052.49830 13273.712 -4844.417004 17065.630
## 834       6137.586 -1088.13887 13363.312 -4913.206764 17188.380
## 835       6164.566 -1123.96087 13453.093 -4982.273988 17311.406
## 836       6191.546 -1159.96376 13543.055 -5051.617876 17434.710
## 837       6218.526 -1196.14704 13633.198 -5121.237637 17558.289
## 838       6245.505 -1232.51019 13723.521 -5191.132485 17682.143
## 839       6272.485 -1269.05270 13814.023 -5261.301640 17806.272
## 840       6299.465 -1305.77406 13904.704 -5331.744331 17930.674
## 841       6326.445 -1342.67378 13995.563 -5402.459791 18055.349
## 842       6353.424 -1379.75135 14086.600 -5473.447261 18180.296
## 843       6380.404 -1417.00629 14177.814 -5544.705988 18305.514
## 844       6407.384 -1454.43811 14269.206 -5616.235225 18431.003
## 845       6434.364 -1492.04632 14360.773 -5688.034230 18556.761
## 846       6461.343 -1529.83044 14452.517 -5760.102270 18682.789
## 847       6488.323 -1567.79000 14544.436 -5832.438614 18809.085
## 848       6515.303 -1605.92452 14636.530 -5905.042541 18935.648
## 849       6542.282 -1644.23353 14728.799 -5977.913333 19062.478
## 850       6569.262 -1682.71657 14821.241 -6051.050280 19189.575
## 851       6596.242 -1721.37318 14913.857 -6124.452674 19316.937
## 852       6623.222 -1760.20290 15006.646 -6198.119816 19444.563
## 853       6650.201 -1799.20527 15099.608 -6272.051011 19572.454
## 854       6677.181 -1838.37985 15192.742 -6346.245571 19700.608
## 855       6704.161 -1877.72619 15286.048 -6420.702811 19829.025
## 856       6731.141 -1917.24384 15379.525 -6495.422052 19957.703
## 857       6758.120 -1956.93236 15473.173 -6570.402623 20086.643
## 858       6785.100 -1996.79132 15566.992 -6645.643853 20215.844
## 859       6812.080 -2036.82028 15660.980 -6721.145081 20345.305
## 860       6839.060 -2077.01882 15755.138 -6796.905649 20475.025
## 861       6866.039 -2117.38650 15849.465 -6872.924903 20605.004
## 862       6893.019 -2157.92291 15943.961 -6949.202195 20735.240
## 863       6919.999 -2198.62761 16038.625 -7025.736882 20865.735
## 864       6946.979 -2239.50020 16133.457 -7102.528325 20996.486
forecast_desopt
##     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 665       1554.046 1527.222 1580.869 1513.023 1595.069
## 666       1559.805 1521.658 1597.952 1501.464 1618.146
## 667       1565.565 1518.583 1612.547 1493.712 1637.417
## 668       1571.324 1516.771 1625.877 1487.893 1654.755
## 669       1577.084 1515.753 1638.414 1483.287 1670.880
## 670       1582.843 1515.287 1650.399 1479.525 1686.161
## 671       1588.602 1515.232 1661.973 1476.392 1700.813
## 672       1594.362 1515.495 1673.229 1473.745 1714.979
## 673       1600.121 1516.013 1684.230 1471.488 1728.755
## 674       1605.881 1516.739 1695.022 1469.551 1742.211
## 675       1611.640 1517.641 1705.640 1467.880 1755.400
## 676       1617.400 1518.689 1716.110 1466.435 1768.364
## 677       1623.159 1519.865 1726.453 1465.184 1781.134
## 678       1628.919 1521.150 1736.687 1464.101 1793.736
## 679       1634.678 1522.531 1746.825 1463.164 1806.192
## 680       1640.437 1523.996 1756.879 1462.356 1818.519
## 681       1646.197 1525.536 1766.858 1461.662 1830.732
## 682       1651.956 1527.141 1776.771 1461.068 1842.844
## 683       1657.716 1528.806 1786.626 1460.565 1854.866
## 684       1663.475 1530.524 1796.427 1460.143 1866.807
## 685       1669.235 1532.289 1806.181 1459.794 1878.675
## 686       1674.994 1534.097 1815.891 1459.510 1890.478
## 687       1680.753 1535.943 1825.564 1459.286 1902.221
## 688       1686.513 1537.825 1835.201 1459.115 1913.911
## 689       1692.272 1539.739 1844.806 1458.993 1925.552
## 690       1698.032 1541.681 1854.382 1458.914 1937.149
## 691       1703.791 1543.650 1863.932 1458.877 1948.706
## 692       1709.551 1545.643 1873.459 1458.875 1960.226
## 693       1715.310 1547.657 1882.963 1458.907 1971.713
## 694       1721.070 1549.691 1892.448 1458.969 1983.170
## 695       1726.829 1551.744 1901.914 1459.059 1994.599
## 696       1732.588 1553.812 1911.365 1459.174 2006.003
## 697       1738.348 1555.896 1920.800 1459.311 2017.385
## 698       1744.107 1557.993 1930.222 1459.469 2028.745
## 699       1749.867 1560.102 1939.632 1459.646 2040.087
## 700       1755.626 1562.222 1949.030 1459.840 2051.412
## 701       1761.386 1564.353 1958.419 1460.050 2062.722
## 702       1767.145 1566.492 1967.798 1460.273 2074.018
## 703       1772.905 1568.640 1977.170 1460.508 2085.301
## 704       1778.664 1570.794 1986.534 1460.755 2096.573
## 705       1784.423 1572.956 1995.891 1461.011 2107.836
## 706       1790.183 1575.123 2005.243 1461.276 2119.089
## 707       1795.942 1577.295 2014.590 1461.549 2130.335
## 708       1801.702 1579.471 2023.933 1461.829 2141.575
## 709       1807.461 1581.651 2033.272 1462.114 2152.808
## 710       1813.221 1583.834 2042.607 1462.404 2164.037
## 711       1818.980 1586.020 2051.940 1462.699 2175.262
## 712       1824.740 1588.208 2061.271 1462.996 2186.483
## 713       1830.499 1590.398 2070.600 1463.296 2197.702
## 714       1836.258 1592.589 2079.928 1463.598 2208.919
## 715       1842.018 1594.781 2089.255 1463.902 2220.134
## 716       1847.777 1596.973 2098.581 1464.206 2231.349
## 717       1853.537 1599.166 2107.908 1464.510 2242.564
## 718       1859.296 1601.358 2117.235 1464.813 2253.779
## 719       1865.056 1603.549 2126.562 1465.116 2264.996
## 720       1870.815 1605.739 2135.891 1465.417 2276.214
## 721       1876.575 1607.929 2145.221 1465.716 2287.433
## 722       1882.334 1610.116 2154.552 1466.013 2298.655
## 723       1888.093 1612.302 2163.885 1466.307 2309.880
## 724       1893.853 1614.486 2173.220 1466.598 2321.108
## 725       1899.612 1616.667 2182.557 1466.885 2332.339
## 726       1905.372 1618.846 2191.897 1467.169 2343.575
## 727       1911.131 1621.023 2201.240 1467.448 2354.814
## 728       1916.891 1623.196 2210.585 1467.723 2366.058
## 729       1922.650 1625.366 2219.934 1467.993 2377.307
## 730       1928.410 1627.533 2229.286 1468.258 2388.561
## 731       1934.169 1629.696 2238.642 1468.518 2399.820
## 732       1939.928 1631.856 2248.001 1468.772 2411.085
## 733       1945.688 1634.012 2257.364 1469.020 2422.356
## 734       1951.447 1636.163 2266.731 1469.262 2433.633
## 735       1957.207 1638.311 2276.103 1469.498 2444.916
## 736       1962.966 1640.454 2285.478 1469.727 2456.206
## 737       1968.726 1642.593 2294.858 1469.949 2467.502
## 738       1974.485 1644.728 2304.243 1470.165 2478.806
## 739       1980.245 1646.857 2313.632 1470.373 2490.116
## 740       1986.004 1648.982 2323.026 1470.574 2501.434
## 741       1991.763 1651.102 2332.425 1470.767 2512.760
## 742       1997.523 1653.217 2341.828 1470.953 2524.093
## 743       2003.282 1655.327 2351.237 1471.131 2535.434
## 744       2009.042 1657.432 2360.652 1471.301 2546.783
## 745       2014.801 1659.531 2370.071 1471.463 2558.140
## 746       2020.561 1661.625 2379.496 1471.616 2569.505
## 747       2026.320 1663.714 2388.926 1471.762 2580.879
## 748       2032.080 1665.797 2398.362 1471.898 2592.261
## 749       2037.839 1667.874 2407.804 1472.027 2603.651
## 750       2043.598 1669.946 2417.251 1472.146 2615.051
## 751       2049.358 1672.012 2426.704 1472.257 2626.459
## 752       2055.117 1674.072 2436.163 1472.358 2637.876
## 753       2060.877 1676.126 2445.628 1472.451 2649.303
## 754       2066.636 1678.174 2455.099 1472.534 2660.738
## 755       2072.396 1680.216 2464.576 1472.608 2672.183
## 756       2078.155 1682.252 2474.058 1472.673 2683.637
## 757       2083.915 1684.282 2483.548 1472.729 2695.101
## 758       2089.674 1686.305 2493.043 1472.774 2706.573
## 759       2095.433 1688.322 2502.544 1472.811 2718.056
## 760       2101.193 1690.333 2512.052 1472.838 2729.548
## 761       2106.952 1692.338 2521.567 1472.855 2741.050
## 762       2112.712 1694.336 2531.087 1472.862 2752.562
## 763       2118.471 1696.328 2540.614 1472.859 2764.083
## 764       2124.231 1698.313 2550.148 1472.847 2775.615
## 765       2129.990 1700.292 2559.688 1472.824 2787.156
## 766       2135.750 1702.265 2569.235 1472.791 2798.708
## 767       2141.509 1704.230 2578.788 1472.749 2810.269
## 768       2147.268 1706.189 2588.348 1472.696 2821.841
## 769       2153.028 1708.142 2597.914 1472.633 2833.423
## 770       2158.787 1710.087 2607.487 1472.560 2845.015
## 771       2164.547 1712.026 2617.067 1472.476 2856.617
## 772       2170.306 1713.958 2626.654 1472.382 2868.230
## 773       2176.066 1715.884 2636.247 1472.278 2879.853
## 774       2181.825 1717.802 2645.848 1472.164 2891.487
## 775       2187.585 1719.714 2655.455 1472.039 2903.131
## 776       2193.344 1721.619 2665.069 1471.903 2914.785
## 777       2199.103 1723.517 2674.690 1471.757 2926.450
## 778       2204.863 1725.408 2684.318 1471.600 2938.126
## 779       2210.622 1727.292 2693.952 1471.433 2949.812
## 780       2216.382 1729.170 2703.594 1471.255 2961.508
## 781       2222.141 1731.040 2713.242 1471.067 2973.216
## 782       2227.901 1732.903 2722.898 1470.867 2984.934
## 783       2233.660 1734.759 2732.561 1470.657 2996.663
## 784       2239.420 1736.609 2742.230 1470.437 3008.402
## 785       2245.179 1738.451 2751.907 1470.205 3020.153
## 786       2250.938 1740.286 2761.591 1469.963 3031.914
## 787       2256.698 1742.114 2771.281 1469.710 3043.685
## 788       2262.457 1743.935 2780.979 1469.446 3055.468
## 789       2268.217 1745.749 2790.684 1469.172 3067.262
## 790       2273.976 1747.556 2800.396 1468.886 3079.066
## 791       2279.736 1749.356 2810.115 1468.590 3090.881
## 792       2285.495 1751.149 2819.841 1468.283 3102.707
## 793       2291.255 1752.934 2829.575 1467.965 3114.544
## 794       2297.014 1754.713 2839.315 1467.635 3126.392
## 795       2302.773 1756.484 2849.063 1467.295 3138.251
## 796       2308.533 1758.248 2858.818 1466.944 3150.121
## 797       2314.292 1760.005 2868.580 1466.583 3162.002
## 798       2320.052 1761.754 2878.349 1466.210 3173.894
## 799       2325.811 1763.497 2888.125 1465.826 3185.797
## 800       2331.571 1765.232 2897.909 1465.431 3197.710
## 801       2337.330 1766.960 2907.700 1465.025 3209.635
## 802       2343.089 1768.681 2917.498 1464.608 3221.571
## 803       2348.849 1770.395 2927.303 1464.180 3233.518
## 804       2354.608 1772.102 2937.115 1463.741 3245.476
## 805       2360.368 1773.801 2946.935 1463.291 3257.445
## 806       2366.127 1775.493 2956.762 1462.830 3269.425
## 807       2371.887 1777.178 2966.596 1462.358 3281.416
## 808       2377.646 1778.855 2976.437 1461.875 3293.418
## 809       2383.406 1780.526 2986.285 1461.381 3305.431
## 810       2389.165 1782.189 2996.141 1460.875 3317.455
## 811       2394.924 1783.845 3006.004 1460.359 3329.490
## 812       2400.684 1785.494 3015.874 1459.832 3341.536
## 813       2406.443 1787.135 3025.752 1459.293 3353.594
## 814       2412.203 1788.769 3035.636 1458.743 3365.662
## 815       2417.962 1790.396 3045.528 1458.183 3377.742
## 816       2423.722 1792.016 3055.427 1457.611 3389.832
## 817       2429.481 1793.628 3065.334 1457.028 3401.934
## 818       2435.241 1795.234 3075.247 1456.435 3414.047
## 819       2441.000 1796.832 3085.168 1455.830 3426.170
## 820       2446.759 1798.422 3095.097 1455.214 3438.305
## 821       2452.519 1800.006 3105.032 1454.586 3450.451
## 822       2458.278 1801.582 3114.974 1453.948 3462.608
## 823       2464.038 1803.151 3124.924 1453.299 3474.777
## 824       2469.797 1804.713 3134.881 1452.639 3486.956
## 825       2475.557 1806.268 3144.846 1451.967 3499.146
## 826       2481.316 1807.815 3154.817 1451.285 3511.347
## 827       2487.076 1809.355 3164.796 1450.591 3523.560
## 828       2492.835 1810.888 3174.782 1449.887 3535.783
## 829       2498.594 1812.413 3184.775 1449.171 3548.018
## 830       2504.354 1813.932 3194.776 1448.444 3560.263
## 831       2510.113 1815.443 3204.784 1447.707 3572.520
## 832       2515.873 1816.947 3214.799 1446.958 3584.788
## 833       2521.632 1818.444 3224.821 1446.198 3597.066
## 834       2527.392 1819.933 3234.850 1445.427 3609.356
## 835       2533.151 1821.415 3244.887 1444.645 3621.657
## 836       2538.911 1822.890 3254.931 1443.852 3633.969
## 837       2544.670 1824.358 3264.982 1443.048 3646.292
## 838       2550.429 1825.819 3275.040 1442.233 3658.626
## 839       2556.189 1827.272 3285.105 1441.407 3670.971
## 840       2561.948 1828.719 3295.178 1440.570 3683.326
## 841       2567.708 1830.158 3305.258 1439.722 3695.693
## 842       2573.467 1831.590 3315.345 1438.863 3708.071
## 843       2579.227 1833.014 3325.439 1437.993 3720.460
## 844       2584.986 1834.432 3335.541 1437.112 3732.860
## 845       2590.746 1835.842 3345.649 1436.220 3745.271
## 846       2596.505 1837.245 3355.765 1435.317 3757.693
## 847       2602.264 1838.641 3365.888 1434.403 3770.126
## 848       2608.024 1840.030 3376.018 1433.478 3782.569
## 849       2613.783 1841.412 3386.155 1432.543 3795.024
## 850       2619.543 1842.786 3396.300 1431.596 3807.490
## 851       2625.302 1844.153 3406.451 1430.638 3819.966
## 852       2631.062 1845.514 3416.610 1429.670 3832.454
## 853       2636.821 1846.867 3426.776 1428.690 3844.952
## 854       2642.581 1848.213 3436.949 1427.700 3857.462
## 855       2648.340 1849.551 3447.129 1426.698 3869.982
## 856       2654.099 1850.883 3457.316 1425.686 3882.513
## 857       2659.859 1852.208 3467.510 1424.663 3895.055
## 858       2665.618 1853.525 3477.712 1423.629 3907.608
## 859       2671.378 1854.835 3487.920 1422.584 3920.172
## 860       2677.137 1856.138 3498.136 1421.528 3932.746
## 861       2682.897 1857.435 3508.359 1420.461 3945.332
## 862       2688.656 1858.724 3518.589 1419.384 3957.928
## 863       2694.416 1860.006 3528.826 1418.296 3970.535
## 864       2700.175 1861.280 3539.070 1417.196 3983.153
# Plot hasil peramalan
plot(forecast_des1, main = "Peramalan DES1 (200 periode ke depan)")

plot(forecast_des2, main = "Peramalan DES2 (200 periode ke depan)")

plot(forecast_desopt, main = "Peramalan DES Optimal (200 periode ke depan)")

# Plot data aktual (training)
plot(train.ts, main="Forecasting dengan Double Exponential Smoothing",
     type="l", col="black", xlim=c(1, length(train.ts) + horizon),
     xlab="Time", ylab="Value")

# Tambahkan hasil ramalan
lines(forecast_des1$mean, col="red", lty=1)
lines(forecast_des2$mean, col="blue", lty=1)
lines(forecast_desopt$mean, col="green", lty=1)

# (Opsional) Tambahkan interval prediksi model terbaik
lines(forecast_desopt$lower[,2], col="green", lty=2)
lines(forecast_desopt$upper[,2], col="green", lty=2)

# Tambahkan legend
legend("topleft",
       legend=c("Data Aktual", "DES1", "DES2", "DES Optimal"),
       col=c("black", "red", "blue", "green"),
       lty=1, cex=0.7)

Akurasi Data Latih

# --- Akurasi untuk model des.1 ---
SSE1 <- des.1$SSE
MSE1 <- des.1$SSE / length(train.ts)
RMSE1 <- sqrt(MSE1)

# --- Akurasi untuk model des.2 ---
SSE2 <- des.2$SSE
MSE2 <- des.2$SSE / length(train.ts)
RMSE2 <- sqrt(MSE2)

# --- Akurasi untuk model des.opt ---
SSE.opt <- des.opt$SSE
MSE.opt <- des.opt$SSE / length(train.ts)
RMSE.opt <- sqrt(MSE.opt)

# --- Gabungkan ke dalam 1 data frame ---
akurasi.train <- data.frame(
  Model = c("des.1 (α=0.2, β=0.2)", "des.2 (α=0.6, β=0.3)", "des.opt (optimal)"),
  SSE = c(SSE1, SSE2, SSE.opt),
  MSE = c(MSE1, MSE2, MSE.opt),
  RMSE = c(RMSE1, RMSE2, RMSE.opt)
)

akurasi.train
##                  Model      SSE       MSE     RMSE
## 1 des.1 (α=0.2, β=0.2) 838807.2 1263.2638 35.54242
## 2 des.2 (α=0.6, β=0.3) 376912.3  567.6390 23.82518
## 3    des.opt (optimal) 290888.8  438.0856 20.93049

Akurasi Data Uji

# --- Akurasi Data Testing untuk des.1 ---
forecast1 <- data.frame(ramalandes1$mean)   # ambil nilai ramalan
testing.df <- data.frame(test.ts)           # ubah test.ts ke data frame
selisih1 <- forecast1 - testing.df
## Warning in .cbind.ts(list(e1, e2), c(deparse(substitute(e1))[1L],
## deparse(substitute(e2))[1L]), : non-intersecting series
SSEtest1 <- sum(selisih1^2)
MSEtest1 <- SSEtest1 / length(test.ts)
RMSEtest1 <- sqrt(MSEtest1)

# --- Akurasi Data Testing untuk des.2 ---
forecast2 <- data.frame(ramalandes2$mean)
selisih2 <- forecast2 - testing.df
## Warning in .cbind.ts(list(e1, e2), c(deparse(substitute(e1))[1L],
## deparse(substitute(e2))[1L]), : non-intersecting series
SSEtest2 <- sum(selisih2^2)
MSEtest2 <- SSEtest2 / length(test.ts)
RMSEtest2 <- sqrt(MSEtest2)

# --- Akurasi Data Testing untuk des.opt ---
forecast.opt <- data.frame(ramalandesopt$mean)
selisih.opt <- forecast.opt - testing.df
## Warning in .cbind.ts(list(e1, e2), c(deparse(substitute(e1))[1L],
## deparse(substitute(e2))[1L]), : non-intersecting series
SSEtest.opt <- sum(selisih.opt^2)
MSEtest.opt <- SSEtest.opt / length(test.ts)
RMSEtest.opt <- sqrt(MSEtest.opt)

# --- Gabungkan hasil ke dalam tabel ---
akurasi.test <- data.frame(
  Model = c("des.1 (α=0.2, β=0.2)", 
            "des.2 (α=0.6, β=0.3)", 
            "des.opt (optimal)"),
  SSE_Test = c(SSEtest1, SSEtest2, SSEtest.opt),
  MSE_Test = c(MSEtest1, MSEtest2, MSEtest.opt),
  RMSE_Test = c(RMSEtest1, RMSEtest2, RMSEtest.opt)
)

akurasi.test
##                  Model SSE_Test MSE_Test RMSE_Test
## 1 des.1 (α=0.2, β=0.2)        0        0         0
## 2 des.2 (α=0.6, β=0.3)        0        0         0
## 3    des.opt (optimal)        0        0         0
length(test.ts)                 # panjang data uji
## [1] 167
length(ramalandesopt$mean)      # panjang hasil ramalan
## [1] 167
# ambil vektor forecast dan testing dengan panjang yang sama
n <- min(length(test.ts), length(ramalandes1$mean))

forecast1 <- as.numeric(ramalandes1$mean[1:n])
testing.vec <- as.numeric(test.ts[1:n])

# cek beberapa nilai dulu
head(forecast1)
## [1] 1540.995 1567.805 1594.615 1621.425 1648.236 1675.046
head(testing.vec)
## [1] 1555.471 1639.322 1706.931 1756.803 1807.372 1676.994
# selisih
selisih1 <- forecast1 - testing.vec
head(selisih1)
## [1]  -14.476491  -71.517517 -112.316143 -135.377169 -159.136995   -1.948122
# hitung error
SSEtest1 <- sum(selisih1^2)
MSEtest1 <- mean(selisih1^2)
RMSEtest1 <- sqrt(MSEtest1)

SSEtest1; MSEtest1; RMSEtest1
## [1] 90235151
## [1] 540330.2
## [1] 735.0716
head(test.ts)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1] 1555.471 1639.322 1706.931 1756.803 1807.372 1676.994
tail(test.ts)
## Time Series:
## Start = 162 
## End = 167 
## Frequency = 1 
## [1] 5697.392 5754.221 5595.235 5572.199 5699.584 5984.086
head(ramalandes1$mean)
## Time Series:
## Start = 665 
## End = 670 
## Frequency = 1 
## [1] 1540.995 1567.805 1594.615 1621.425 1648.236 1675.046
tail(ramalandes1$mean)
## Time Series:
## Start = 826 
## End = 831 
## Frequency = 1 
## [1] 5857.433 5884.243 5911.053 5937.863 5964.673 5991.484
# fungsi untuk hitung SSE, MSE, RMSE antara ramalan & testing
hitung_error <- function(ramalan, testing){
  n <- min(length(testing), length(ramalan$mean))  # samakan panjang
  forecast.vec <- as.numeric(ramalan$mean[1:n])    # vektor forecast
  testing.vec  <- as.numeric(testing[1:n])         # vektor testing
  
  selisih <- forecast.vec - testing.vec
  
  SSE <- sum(selisih^2)
  MSE <- mean(selisih^2)
  RMSE <- sqrt(MSE)
  
  return(c(SSE=SSE, MSE=MSE, RMSE=RMSE))
}

# hitung untuk semua model
err1  <- hitung_error(ramalandes1, test.ts)
err2  <- hitung_error(ramalandes2, test.ts)
errop <- hitung_error(ramalandesopt, test.ts)

# gabungkan jadi tabel
akurasi.test <- data.frame(
  Model = c("des.1 (α=0.2, β=0.2)", 
            "des.2 (α=0.6, β=0.3)", 
            "des.opt (optimal)"),
  SSE_Test = c(err1["SSE"], err2["SSE"], errop["SSE"]),
  MSE_Test = c(err1["MSE"], err2["MSE"], errop["MSE"]),
  RMSE_Test = c(err1["RMSE"], err2["RMSE"], errop["RMSE"])
)

akurasi.test
##                  Model  SSE_Test  MSE_Test RMSE_Test
## 1 des.1 (α=0.2, β=0.2)  90235151  540330.2  735.0716
## 2 des.2 (α=0.6, β=0.3)  99399886  595208.9  771.4978
## 3    des.opt (optimal) 387317450 2319266.2 1522.9137

Kesimpulan: hasil evaluasi menggunakan data testing, model des.1 (α=0.2, β=0.2) menghasilkan nilai SSE sebesar 90,235,151 dan MSE sebesar 540,330, lebih rendah dibandingkan model des.2 (α=0.6, β=0.3) yang memiliki SSE 99,399,886 dan MSE 595,208. Sementara itu, model des.opt (parameter optimal dari fungsi HoltWinters) justru menunjukkan error yang jauh lebih besar, yaitu SSE 387,317,450 dan MSE 2,319,266. Hal ini menunjukkan bahwa pada data BTC yang digunakan, model dengan parameter α=0.2 dan β=0.2 (des.1) lebih baik dalam memprediksi harga dibandingkan dua model lainnya.