El paquete caret(Classification And Regression Training) es una herramienta poderosa para la implementación de modelos de Machine Learning.
#install.packages("caret") #Algoritmmos de aprendizaje automatico
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
#install.packages("datasets") #Para usar la base de datos "iris"
library(datasets)
#install.packages("ggplot2") #Graficas con mejor diseño
library(ggplot2)
#install.packages("lattice") #Crear graficos
library(lattice)
#install.packages("DataExplorer") #Análisis descriptivo
library(DataExplorer)
#install.packages("kernlab")
library(kernlab)
##
## Attaching package: 'kernlab'
## The following object is masked from 'package:ggplot2':
##
## alpha
#install.packages("rpart")
library(rpart)
df <- data.frame(iris)
summary(df)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
str(df)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#create_report(df)
plot_missing(df)
plot_histogram(df)
plot_correlation(df)
# Partir los datos 80-20
#normalmente 80 - 20
set.seed(123)
renglones_entrenamiento <-
createDataPartition(df$Species, p=0.8, list=FALSE)
entrenamiento <- iris[renglones_entrenamiento, ]
prueba <- df[-renglones_entrenamiento, ]
Los métodos mas utilizados para modelar aprendizaje automático son:
SUV:Suport Vector Machine o Maquina de Vectores de Soporte. Hay varios subtipos: Lineal (svmLineal), radial (suvRadial), Polinómio (suvPoly), etc. Árbol de Decision: rpart Redes Neuronales: nnet Random Forest o Bosques Aleatorios: rf. La validacion cruzada (cross validation, CV) es una técnica para evaluar el rendimeinto de un modelo, dividiendo los datos en multiples subconjuntos, permitiendo medir su capacidad de generalización y evitar sobreajuste (overfitting)
La Matriz de confución (Confusion Matrix) permite analizar que tan bien funciona un modelo y que tipos de errores comete. Lo que hace es comparar las predicciones del modelo con los valores reales de la variable objetivo.
Si la precisión es muy alta em entrenamiento (95-100%), pero baja en prueba (60-70%) es una señal de sobreajuste (overfitting).
modelo1 <- train(Species ~ ., data = entrenamiento,
method = "svmLinear", #Cambiar
preProcess=c("scale","center"),
trControl= trainControl(method = "cv", number=10),
tuneGrid= data.frame(C=1) #Cambia hiperparámentros
)
resultado_entrenamiento1 <- predict(modelo1,entrenamiento)
resultado_prueba1 <- predict(modelo1, prueba)
# Matriz de confusión del resultado del entrenamiento
mcre1 <- confusionMatrix(resultado_entrenamiento1, entrenamiento$Species)
mcre1
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 39 0
## virginica 0 1 40
##
## Overall Statistics
##
## Accuracy : 0.9917
## 95% CI : (0.9544, 0.9998)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9875
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9750 1.0000
## Specificity 1.0000 1.0000 0.9875
## Pos Pred Value 1.0000 1.0000 0.9756
## Neg Pred Value 1.0000 0.9877 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3250 0.3333
## Detection Prevalence 0.3333 0.3250 0.3417
## Balanced Accuracy 1.0000 0.9875 0.9938
# Matriz de confusión del resultado de la prueba
mcrp1 <- confusionMatrix(resultado_prueba1, prueba$Species)
mcrp1
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 1
## virginica 0 0 9
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.8278, 0.9992)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 2.963e-13
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.9000
## Specificity 1.0000 0.9500 1.0000
## Pos Pred Value 1.0000 0.9091 1.0000
## Neg Pred Value 1.0000 1.0000 0.9524
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.3000
## Detection Prevalence 0.3333 0.3667 0.3000
## Balanced Accuracy 1.0000 0.9750 0.9500
modelo2 <- train(Species ~ ., data = entrenamiento,
method = "svmRadial", #Cambiar
preProcess=c("scale","center"),
trControl= trainControl(method = "cv", number=10),
tuneGrid= data.frame(sigma=1, C=1) #Cambia hiperparámentros
)
resultado_entrenamiento2 <- predict(modelo2,entrenamiento)
resultado_prueba2 <- predict(modelo2, prueba)
# Matriz de confusión del resultado del entrenamiento
mcre2 <- confusionMatrix(resultado_entrenamiento2, entrenamiento$Species)
mcre2
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 39 0
## virginica 0 1 40
##
## Overall Statistics
##
## Accuracy : 0.9917
## 95% CI : (0.9544, 0.9998)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9875
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9750 1.0000
## Specificity 1.0000 1.0000 0.9875
## Pos Pred Value 1.0000 1.0000 0.9756
## Neg Pred Value 1.0000 0.9877 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3250 0.3333
## Detection Prevalence 0.3333 0.3250 0.3417
## Balanced Accuracy 1.0000 0.9875 0.9938
# Matriz de confusión del resultado de la prueba
mcrp2 <- confusionMatrix(resultado_prueba2, prueba$Species)
mcrp2
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 2
## virginica 0 0 8
##
## Overall Statistics
##
## Accuracy : 0.9333
## 95% CI : (0.7793, 0.9918)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 8.747e-12
##
## Kappa : 0.9
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.8000
## Specificity 1.0000 0.9000 1.0000
## Pos Pred Value 1.0000 0.8333 1.0000
## Neg Pred Value 1.0000 1.0000 0.9091
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.2667
## Detection Prevalence 0.3333 0.4000 0.2667
## Balanced Accuracy 1.0000 0.9500 0.9000
modelo3 <- train(Species ~ ., data = entrenamiento,
method = "svmPoly", #Cambiar
preProcess=c("scale","center"),
trControl= trainControl(method = "cv", number=10),
tuneGrid= data.frame(degree=1, scale=1, C=1) #Cambia hiperparámentros
)
resultado_entrenamiento3 <- predict(modelo3,entrenamiento)
resultado_prueba3 <- predict(modelo3, prueba)
# Matriz de confusión del resultado del entrenamiento
mcre3 <- confusionMatrix(resultado_entrenamiento3, entrenamiento$Species)
mcre3
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 39 0
## virginica 0 1 40
##
## Overall Statistics
##
## Accuracy : 0.9917
## 95% CI : (0.9544, 0.9998)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9875
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9750 1.0000
## Specificity 1.0000 1.0000 0.9875
## Pos Pred Value 1.0000 1.0000 0.9756
## Neg Pred Value 1.0000 0.9877 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3250 0.3333
## Detection Prevalence 0.3333 0.3250 0.3417
## Balanced Accuracy 1.0000 0.9875 0.9938
# Matriz de confusión del resultado de la prueba
mcrp3 <- confusionMatrix(resultado_prueba3, prueba$Species)
mcrp3
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 1
## virginica 0 0 9
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.8278, 0.9992)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 2.963e-13
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.9000
## Specificity 1.0000 0.9500 1.0000
## Pos Pred Value 1.0000 0.9091 1.0000
## Neg Pred Value 1.0000 1.0000 0.9524
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.3000
## Detection Prevalence 0.3333 0.3667 0.3000
## Balanced Accuracy 1.0000 0.9750 0.9500
modelo4 <- train(Species ~ ., data = entrenamiento,
method = "rpart", #Cambiar
preProcess=c("scale","center"),
trControl= trainControl(method = "cv", number=10),
tuneLength =10 #Cambia hiperparámentros
)
resultado_entrenamiento4 <- predict(modelo4,entrenamiento)
resultado_prueba4 <- predict(modelo4, prueba)
# Matriz de confusión del resultado del entrenamiento
mcre4 <- confusionMatrix(resultado_entrenamiento4, entrenamiento$Species)
mcre4
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 39 3
## virginica 0 1 37
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.9169, 0.9908)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9750 0.9250
## Specificity 1.0000 0.9625 0.9875
## Pos Pred Value 1.0000 0.9286 0.9737
## Neg Pred Value 1.0000 0.9872 0.9634
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3250 0.3083
## Detection Prevalence 0.3333 0.3500 0.3167
## Balanced Accuracy 1.0000 0.9688 0.9563
# Matriz de confusión del resultado de la prueba
mcrp4 <- confusionMatrix(resultado_prueba4, prueba$Species)
mcrp4
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 2
## virginica 0 0 8
##
## Overall Statistics
##
## Accuracy : 0.9333
## 95% CI : (0.7793, 0.9918)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 8.747e-12
##
## Kappa : 0.9
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.8000
## Specificity 1.0000 0.9000 1.0000
## Pos Pred Value 1.0000 0.8333 1.0000
## Neg Pred Value 1.0000 1.0000 0.9091
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.2667
## Detection Prevalence 0.3333 0.4000 0.2667
## Balanced Accuracy 1.0000 0.9500 0.9000
modelo5 <- train(Species ~ ., data = entrenamiento,
method = "nnet", #Cambiar
preProcess=c("scale","center"),
trControl= trainControl(method = "cv", number=10),
#Cambiar parametros
trace=FALSE #Para ocultar resultado
)
resultado_entrenamiento5 <- predict(modelo5,entrenamiento)
resultado_prueba5 <- predict(modelo5, prueba)
# Matriz de confusión del resultado del entrenamiento
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$Species)
mcre5
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 36 0
## virginica 0 4 40
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.9169, 0.9908)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9000 1.0000
## Specificity 1.0000 1.0000 0.9500
## Pos Pred Value 1.0000 1.0000 0.9091
## Neg Pred Value 1.0000 0.9524 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3000 0.3333
## Detection Prevalence 0.3333 0.3000 0.3667
## Balanced Accuracy 1.0000 0.9500 0.9750
# Matriz de confusión del resultado de la prueba
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$Species)
mcrp5
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 9 0
## virginica 0 1 10
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.8278, 0.9992)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 2.963e-13
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9000 1.0000
## Specificity 1.0000 1.0000 0.9500
## Pos Pred Value 1.0000 1.0000 0.9091
## Neg Pred Value 1.0000 0.9524 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3000 0.3333
## Detection Prevalence 0.3333 0.3000 0.3667
## Balanced Accuracy 1.0000 0.9500 0.9750
modelo6 <- train(Species ~ ., data = entrenamiento,
method = "rf", #Cambiar
preProcess=c("scale","center"),
trControl= trainControl(method = "cv", number=10),
tuneGrid = expand.grid(mtry = c(2,4,6)) #Cambiar parametros
)
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
resultado_entrenamiento6 <- predict(modelo6,entrenamiento)
resultado_prueba6 <- predict(modelo6, prueba)
# Matriz de confusión del resultado del entrenamiento
mcre6 <- confusionMatrix(resultado_entrenamiento6, entrenamiento$Species)
mcre6
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 40 0
## virginica 0 0 40
##
## Overall Statistics
##
## Accuracy : 1
## 95% CI : (0.9697, 1)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 1.0000
## Specificity 1.0000 1.0000 1.0000
## Pos Pred Value 1.0000 1.0000 1.0000
## Neg Pred Value 1.0000 1.0000 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.3333
## Detection Prevalence 0.3333 0.3333 0.3333
## Balanced Accuracy 1.0000 1.0000 1.0000
# Matriz de confusión del resultado de la prueba
mcrp6 <- confusionMatrix(resultado_prueba6, prueba$Species)
mcrp6
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 2
## virginica 0 0 8
##
## Overall Statistics
##
## Accuracy : 0.9333
## 95% CI : (0.7793, 0.9918)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 8.747e-12
##
## Kappa : 0.9
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.8000
## Specificity 1.0000 0.9000 1.0000
## Pos Pred Value 1.0000 0.8333 1.0000
## Neg Pred Value 1.0000 1.0000 0.9091
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.2667
## Detection Prevalence 0.3333 0.4000 0.2667
## Balanced Accuracy 1.0000 0.9500 0.9000
resultados <- data.frame(
"SVM Lineal" = c(mcre1$overall["Accuracy"], mcrp1$overall["Accuracy"]),
"SVM Radial" = c(mcre2$overall["Accuracy"], mcrp2$overall["Accuracy"]),
"SVM Polinomico" = c(mcre3$overall["Accuracy"], mcrp3$overall["Accuracy"]),
"Arbol de Decisiones" = c(mcre4$overall["Accuracy"], mcrp4$overall["Accuracy"]),
"Redes Neuronales" = c(mcre5$overall["Accuracy"], mcrp5$overall["Accuracy"]),
"Bosques Aleatorios" = c(mcre6$overall["Accuracy"], mcrp6$overall["Accuracy"])
)
rownames(resultados) <- c("Precision de Entrenamiento", "Precisión de Prueba")
resultados
## SVM.Lineal SVM.Radial SVM.Polinomico
## Precision de Entrenamiento 0.9916667 0.9916667 0.9916667
## Precisión de Prueba 0.9666667 0.9333333 0.9666667
## Arbol.de.Decisiones Redes.Neuronales
## Precision de Entrenamiento 0.9666667 0.9666667
## Precisión de Prueba 0.9333333 0.9666667
## Bosques.Aleatorios
## Precision de Entrenamiento 1.0000000
## Precisión de Prueba 0.9333333