Theorie
Review
Simulationen
Diskussion
Theorie
Review
Simulationen
Diskussion
Review
Simulationen
Diskussion
Prozesse fĂĽr intentionale Wissenssuche und die Koordination von Theorie und Evidenz (Mayer et al., 2014).
Naturwissenschaftliche Fragen formulieren, Hypothesen generieren, Untersuchungen planen, Daten analysieren/Schlussfolgerungen ziehen (Mayer, 2007).
Review
Simulationen
Diskussion
\(p(x_{pi})=\frac{exp(x_{pi}(\theta_p-\sigma_i))}{{1+exp(\theta_p-\sigma_i)}}\)
Personenfähigkeit \(\theta_p\), Aufgabenschwierigkeit \(\sigma_i\)
\(p(x_{pi})=\frac{exp(x_{pi}(\theta_p-\sigma_i))}{{1+exp(\theta_p-\sigma_i)}}\)
Personenfähigkeit \(\theta_p\), Aufgabenschwierigkeit \(\sigma_i\)
\(p(x_{pi})=\frac{exp(x_{pi}(\theta_p-\sigma_i))}{{1+exp(\theta_p-\sigma_i)}}\)
Personenfähigkeit \(\theta_p\), Aufgabenschwierigkeit \(\sigma_i\)
\(p(x_{pi})=\frac{exp(x_{pi}(\theta_p-\sigma_i))}{{1+exp(\theta_p-\sigma_i)}}\)
Personenfähigkeit \(\theta_p\), Aufgabenschwierigkeit \(\sigma_i\)
Starkes Modell, starke Annahmen.
Theorie
Simulationen
Diskussion
| Referenz | Infit | Kriterium | Reliabilität | lrt | irem | mat | Software |
|---|---|---|---|---|---|---|---|
| Mayer at al. (2014) | x | - | EAP/PV | - | - | - | ConQuest |
| Koerber et al. (2014) | x | 0.85-1.15 (-) | EAP/PV | - | x | x | ConQuest |
| Hartmann et al. (2015) | x | - | EAP/PV | - | x | x | ConQuest |
| Nowak et al. (2013) | x | 0.8-1.2 (Adams, 2002) | EAP/PV | x | x | x | ConQuest |
| Grube (2010) | x | 0.8-1.2 (Adams, 2000) | EAP/PV | x | x | x | ConQuest |
| Heene (2007) | x | 0.8-1.2 (Wright, 2000) | PSR/ISR | - | x | - | ConQuest, WS, FC, WM |
| Brown et al. (2010) | x | - | PSR | - | - | - | ConQuest |
Theorie
Review
Diskussion
Theorie
Review
Diskussion
Theorie
Simulationen
Diskussion
Theorie
Simulationen
Diskussion
| Referenz | Theoretische Modelle | Gefittete Modelle | Bester fit | Reliabilität | Itemfit |
|---|---|---|---|---|---|
| Mayer at al. (2014) | 4D | 1D | na | 1D | 1D |
| Koerber et al. (2014) | 1D, 5D | 1D | na | 1D | 1D |
| Hartmann et al. (2015) | 1D | 1D | na | 1D | 1D |
| Nowak et al. (2013) | 1D, 3D | 1D, 3D | 3D | 1D | 1D |
| Grube (2010) | 4D | 1D, 4D | 4D | 1D | 1D |
| Heene (2007) | 1D | 1D | na | 1D | 1D |
| Brown et al. (2010) | 1D | 1D | na | 1D | 1D |
Theorie
Review
Simulationen
Die IRT Schule (Andrich, 2004; Engelhard, 2013; Linacre, 2010).
Die Rasch Schule (Andrich, 2004; Engelhard, 2013; Linacre, 2010).
Educational Testing vs. Psychological Theorizing.
Educational Testing for Psychological Theorizing: Auswirkungen.
Theorie
Review
Simulationen
Exkurs: Mehrdimensionalität.
Rasch needs to be battle-tested.
Use R.
Theoretische Foschung.
Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38(1), 123–140.
Andrich, D. (2004). Controversy and the Rasch model.
Blair, G. M. (1940). The validity of the Noll test of scientific thinking. Journal of Educational Psychology, 31(1), 53.
Brown, N. J. S., Nagashima, S. O., Fu, A., Timms, M., & Wilson, M. (2010). A Framework for Analyzing Scientific Reasoning in Assessments. Educational Assessment, 15(3-4), 142–174. http://doi.org/10.1080/10627197.2010.530562
Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variables strategy. Child Development, 70(5), 1098–1120.
Christensen, K. B., Kreiner, S., & Mesbah, M. (2013). Itemfit Statistics.
Cullen, L. T. (2012). Rasch models: foundations, recent developments, and applications. [S.l.]: Springer.
De la Torre, J., & Minchen, N. (2014). Cognitively Diagnostic Assessments and the Cognitive Diagnosis Model Framework. PsicologĂa Educativa, 20(2), 89–97. http://doi.org/10.1016/j.pse.2014.11.001
Enders, C. K. (2010). Applied missing data analysis. New York: Guilford Press.
Fan, X. (1998). Item response theory and classical test theory: An empirical comparison of their item/person statistics. Educational and Psychological Measurement, 58, 357-381.
Fox, J.-P. (2010). Bayesian Item Response Modeling. New York, NY: Springer New York.
Grube, C. (2010). Kompetenzen naturwissenschaflticher Erkenntnisgewinnung. Unveröffentlichte Dissertation an der Universität Kassel.
Hartmann, S., Upmeier zu Belzen, A., Krüger, D., & Pant, H. A. (2015). Scientific Reasoning in Higher Education: Constructing and Evaluating the Criterion-Related Validity of an Assessment of Preservice Science Teachers’ Competencies. Zeitschrift Für Psychologie, 223(1), 47–53. http://doi.org/10.1027/2151-2604/a000199
Hattie, J., Krakowski, K., Rogers, H. J., & Swaminathan, H. (1996). An assessment of Stout’s index of essential unidimensionality. Applied Psychological Measurement, 20(1), 1–14.
Heene, M. (2007). Konstruktion and Evaluation eines Studierendenauswahlverfahrens für Psychologie an der Universität Heidelberg. Unveröffentlichte Dissertation and er Universität Heidelberg.
Heene, M., (2011). An old problem with a new solution.
Heene, M., Bollmann, S., & Bühner, M. (2014). Much ado About Nothing, or Much to do About Something?: Effects of Scale Shortening on Criterion Validity and Mean Differences. Journal of Individual Differences, 35(4), 245–249. http://doi.org/10.1027/1614-0001/a000146
Koerber, S., Mayer, D., Osterhaus, C., Schwippert, K., & Sodian, B. (2014). The Development of Scientific Thinking in Elementary School: A Comprehensive Inventory. Child Development, n/a–n/a. http://doi.org/10.1111/cdev.12298
Koller, I., Maier, M. J., & Hatzinger, R. (2015). An Empirical Power Analysis of Quasi-Exact Tests for the Rasch Model: Measurement Invariance in Small Samples. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 1(-1), 1–10. http://doi.org/10.1027/1614-2241/a000090
Kreiner, S., & Christensen, K. B. (2007). Validity and objectivity in health-related scales: analysis by graphical loglinear Rasch models. In Multivariate and mixture distribution Rasch models (pp. 329-346). Springer New York.
Kreiner, S., & Christensen, K. B. (2013). Analyses of model fit and robustness. a new look at the PISA scaling model underlying ranking of countries according to reading literacy. Psychometrika, 1–22.
Kuhn, D. (2007). Reasoning about multiple variables: Control of variables is not the only challenge. Science Education, 91(5), 710–726. http://doi.org/10.1002/sce.20214
Kuhn, D., Iordanou, K., Pease, M., & Wirkala, C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? Cognitive Development, 23(4), 435–451. http://doi.org/10.1016/j.cogdev.2008.09.006
Kuhn, D., & Pease, M. (2008). What Needs to Develop in the Development of Inquiry Skills? Cognition and Instruction, 26(4), 512–559. http://doi.org/10.1080/07370000802391745
Kuhn, D., Ramsey, S., & Arvidsson, T. S. (2015). Developing multivariable thinkers. Cognitive Development, 35, 92–110. http://doi.org/10.1016/j.cogdev.2014.11.003
Maydeu-Olivares, A. (2013). Goodness-of-Fit Assessment of Item Response Theory Models. Measurement: Interdisciplinary Research & Perspective, 11(3), 71–101. http://doi.org/10.1080/15366367.2013.831680
Maydeu-Olivares, A., & Joe, H. (2014). Assessing Approximate Fit in Categorical Data Analysis. Multivariate Behavioral Research, 49(4), 305–328. http://doi.org/10.1080/00273171.2014.911075
Mayer, D., Sodian, B., Koerber, S., & Schwippert, K. (2014). Scientific reasoning in elementary school children: Assessment and relations with cognitive abilities. Learning and Instruction, 29, 43–55. http://doi.org/10.1016/j.learninstruc.2013.07.005
Mayer, J. (2007). Erkenntnisgewinnung als wissenschaftliches Problemlösen. In Theorien in der biologiedidaktischen Forschung (pp. 177–186). Springer. Retrieved from http://link.springer.com/content/pdf/10.1007/978-3-540-68166-3_16.pdf
Moghadamzadeh, A., Salehi, K., & Khodaie, E. (2011). A comparison Method of Equating Classic and Item Response Theory (IRT): A Case of Iranian Study in the University Entrance Exam. Procedia - Social and Behavioral Sciences, 29, 1368–1372. http://doi.org/10.1016/j.sbspro.2011.11.375
Nandakumar, R. (1991). Traditional dimensionality versus essential dimensionality. Journal of Educational Measurement, 28(2), 99-117.
Nowak, K. H., Nehring, A., Tiemann, R., & Upmeier zu Belzen, A. (2013). Assessing students’ abilities in processes of scientific inquiry in biology using a paper-and-pencil test. Journal of Biological Education, 47(3), 182–188. http://doi.org/10.1080/00219266.2013.822747
Piaget, J., & Inhelder, B. (2013). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures (Vol. 84). Routledge.
Ross, J. A. (1988). Controlling variables: A meta-analysis of training studies. Review of Educational Research, 58(4), 405–437.
Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43–53. http://doi.org/10.1016/j.newideapsych.2011.02.007
Sinharay, S. (2006). Posterior Predictive Assessment of Item Response Theory Models. Applied Psychological Measurement, 30(4), 298–321. http://doi.org/10.1177/0146621605285517
Smith, R. M., & others. (1995). Using item mean squares to evaluate fit to the Rasch model. Retrieved from http://eric.ed.gov/?id=ED384617
Sodian, B., Zaitchik, D., & Carey, S. (1991). Young hcildren's differentiation of hypothetical beliefs from evidence. Child Development, 62, 753-766.
Strobl, C., Kopf, J., & Zeileis, A. (2013). Rasch trees: A new method for detecting differential item functioning in the Rasch model. Psychometrika, 1–28.
Strout, W. F. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation. Psychometrika, 55(2), 293–325.
Van Buuren, S. (2012). Flexible imputation of missing data. CRC press.
Van der Graaf, J., Segers, E., & Verhoeven, L. (2015). Scientific reasoning abilities in kindergarten: dynamic assessment of the control of variables strategy. Instructional Science, 43(3), 381–400. http://doi.org/10.1007/s11251-015-9344-y
Zimmerman, C. (2000). The Development of Scientific Reasoning Skills. Developmental Review, 20(1), 99–149. http://doi.org/10.1006/drev.1999.0497
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. http://doi.org/10.1016/j.dr.2006.12.001
"a discrete quantitative difference need not be caused by a quantitative factor at all, let alone one that is a continuous quantity." (Michell, 2013)
Einfaches Modell mit versteckten TĂĽcken