
Instalar paquetes y llamar librerías
# install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# install.packages("conflicted")
library(conflicted)
conflicts_prefer(dplyr::filter)
## [conflicted] Will prefer dplyr::filter over any other package.
conflicts_prefer(dplyr::lag)
## [conflicted] Will prefer dplyr::lag over any other package.
conflicts_prefer(ggplot2::annotate)
## [conflicted] Will prefer ggplot2::annotate over any other package.
conflicts_prefer(purrr::lift)
## [conflicted] Will prefer purrr::lift over any other package.
conflicts_prefer(neuralnet::compute)
## [conflicted] Will prefer neuralnet::compute over any other package.
df <- read.csv("~/Library/CloudStorage/OneDrive-InstitutoTecnologicoydeEstudiosSuperioresdeMonterrey/SEM 7/M2/walmart.csv")
Entender la base de datos
df$Date <- as.Date(df$Date, format="%d-%m-%Y")
summary(df)
## Store Date Weekly_Sales Holiday_Flag
## Min. : 1 Min. :2010-02-05 Min. : 209986 Min. :0.00000
## 1st Qu.:12 1st Qu.:2010-10-08 1st Qu.: 553350 1st Qu.:0.00000
## Median :23 Median :2011-06-17 Median : 960746 Median :0.00000
## Mean :23 Mean :2011-06-17 Mean :1046965 Mean :0.06993
## 3rd Qu.:34 3rd Qu.:2012-02-24 3rd Qu.:1420159 3rd Qu.:0.00000
## Max. :45 Max. :2012-10-26 Max. :3818686 Max. :1.00000
## Temperature Fuel_Price CPI Unemployment
## Min. : -2.06 Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.: 47.46 1st Qu.:2.933 1st Qu.:131.7 1st Qu.: 6.891
## Median : 62.67 Median :3.445 Median :182.6 Median : 7.874
## Mean : 60.66 Mean :3.359 Mean :171.6 Mean : 7.999
## 3rd Qu.: 74.94 3rd Qu.:3.735 3rd Qu.:212.7 3rd Qu.: 8.622
## Max. :100.14 Max. :4.468 Max. :227.2 Max. :14.313
str(df)
## 'data.frame': 6435 obs. of 8 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: int 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
Agregar variables a la base de datos
df$Year <- format(df$Date, "%Y")
df$Year <- as.integer(df$Year)
df$Month <- format(df$Date, "%m")
df$Month <- as.integer(df$Month)
df$WeekYear <- format(df$Date, "%W")
df$WeekYear <- as.integer(df$WeekYear)
df$WeekDay <- format(df$Date, "%u")
df$WeekDay <- as.integer(df$WeekDay) # toda la información es recopilada los viernes
df$Day <- format(df$Date, "%d")
df$Day <- as.integer(df$Day)
summary(df)
## Store Date Weekly_Sales Holiday_Flag
## Min. : 1 Min. :2010-02-05 Min. : 209986 Min. :0.00000
## 1st Qu.:12 1st Qu.:2010-10-08 1st Qu.: 553350 1st Qu.:0.00000
## Median :23 Median :2011-06-17 Median : 960746 Median :0.00000
## Mean :23 Mean :2011-06-17 Mean :1046965 Mean :0.06993
## 3rd Qu.:34 3rd Qu.:2012-02-24 3rd Qu.:1420159 3rd Qu.:0.00000
## Max. :45 Max. :2012-10-26 Max. :3818686 Max. :1.00000
## Temperature Fuel_Price CPI Unemployment
## Min. : -2.06 Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.: 47.46 1st Qu.:2.933 1st Qu.:131.7 1st Qu.: 6.891
## Median : 62.67 Median :3.445 Median :182.6 Median : 7.874
## Mean : 60.66 Mean :3.359 Mean :171.6 Mean : 7.999
## 3rd Qu.: 74.94 3rd Qu.:3.735 3rd Qu.:212.7 3rd Qu.: 8.622
## Max. :100.14 Max. :4.468 Max. :227.2 Max. :14.313
## Year Month WeekYear WeekDay Day
## Min. :2010 Min. : 1.000 Min. : 1.00 Min. :5 Min. : 1.00
## 1st Qu.:2010 1st Qu.: 4.000 1st Qu.:14.00 1st Qu.:5 1st Qu.: 8.00
## Median :2011 Median : 6.000 Median :26.00 Median :5 Median :16.00
## Mean :2011 Mean : 6.448 Mean :25.82 Mean :5 Mean :15.68
## 3rd Qu.:2012 3rd Qu.: 9.000 3rd Qu.:38.00 3rd Qu.:5 3rd Qu.:23.00
## Max. :2012 Max. :12.000 Max. :52.00 Max. :5 Max. :31.00
str(df)
## 'data.frame': 6435 obs. of 13 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: int 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
## $ Year : int 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
## $ Month : int 2 2 2 2 3 3 3 3 4 4 ...
## $ WeekYear : int 5 6 7 8 9 10 11 12 13 14 ...
## $ WeekDay : int 5 5 5 5 5 5 5 5 5 5 ...
## $ Day : int 5 12 19 26 5 12 19 26 2 9 ...
Generar la regresión
regresion <- lm(Weekly_Sales~., data=df)
summary(regresion)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1094800 -382464 -42860 375406 2587123
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.384e+09 9.127e+09 -0.261 0.7940
## Store -1.538e+04 5.202e+02 -29.576 < 2e-16 ***
## Date -3.399e+03 1.266e+04 -0.268 0.7883
## Holiday_Flag 4.773e+04 2.706e+04 1.763 0.0779 .
## Temperature -1.817e+03 4.053e+02 -4.484 7.47e-06 ***
## Fuel_Price 6.124e+04 2.876e+04 2.130 0.0332 *
## CPI -2.109e+03 1.928e+02 -10.941 < 2e-16 ***
## Unemployment -2.209e+04 3.967e+03 -5.569 2.67e-08 ***
## Year 1.212e+06 4.633e+06 0.262 0.7937
## Month 1.177e+05 3.858e+05 0.305 0.7604
## WeekYear NA NA NA NA
## WeekDay NA NA NA NA
## Day 2.171e+03 1.269e+04 0.171 0.8642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared: 0.1495, Adjusted R-squared: 0.1482
## F-statistic: 113 on 10 and 6424 DF, p-value: < 2.2e-16
Ajustar la regresión
df_ajustada <- df %>% select(-Date, -Fuel_Price, -Year:-Day)
regresion <- lm(Weekly_Sales~., data=df)
summary(regresion)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1094800 -382464 -42860 375406 2587123
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.384e+09 9.127e+09 -0.261 0.7940
## Store -1.538e+04 5.202e+02 -29.576 < 2e-16 ***
## Date -3.399e+03 1.266e+04 -0.268 0.7883
## Holiday_Flag 4.773e+04 2.706e+04 1.763 0.0779 .
## Temperature -1.817e+03 4.053e+02 -4.484 7.47e-06 ***
## Fuel_Price 6.124e+04 2.876e+04 2.130 0.0332 *
## CPI -2.109e+03 1.928e+02 -10.941 < 2e-16 ***
## Unemployment -2.209e+04 3.967e+03 -5.569 2.67e-08 ***
## Year 1.212e+06 4.633e+06 0.262 0.7937
## Month 1.177e+05 3.858e+05 0.305 0.7604
## WeekYear NA NA NA NA
## WeekDay NA NA NA NA
## Day 2.171e+03 1.269e+04 0.171 0.8642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared: 0.1495, Adjusted R-squared: 0.1482
## F-statistic: 113 on 10 and 6424 DF, p-value: < 2.2e-16
LS0tCnRpdGxlOiAiUmVncmVzacOzbiBMaW5lYWwiCmF1dGhvcjogIkFubmEgRHVyw6FuIEEwMTI4NTY3NCIKZGF0ZTogJ2ByIFN5cy5EYXRlKClgJwpvdXRwdXQ6CiAgICAgICAgaHRtbF9kb2N1bWVudDoKICAgICAgICAgICAgICAgIHRvYzogVFJVRQogICAgICAgICAgICAgICAgdG9jX2Zsb2F0OiBUUlVFCiAgICAgICAgICAgICAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICAgICAgICAgICAgICB0aGVtZTogY29zbW8KLS0tCgohW10oaHR0cHM6Ly93d3cubWFjYXJ0YS5teC93cC1jb250ZW50L3VwbG9hZHMvMjAyMi8wNi94V2FsbWFydC5qcGcucGFnZXNwZWVkLmljLnBGTGdBbVpfZE0uanBnKQoKIyA8c3BhbiBzdHlsZT0iY29sb3I6IzhCM0E2MiI+IEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMgPC9zcGFuPgpgYGB7cn0KIyBpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KHRpZHl2ZXJzZSkKIyBpbnN0YWxsLnBhY2thZ2VzKCJjb25mbGljdGVkIikKbGlicmFyeShjb25mbGljdGVkKQoKY29uZmxpY3RzX3ByZWZlcihkcGx5cjo6ZmlsdGVyKQpjb25mbGljdHNfcHJlZmVyKGRwbHlyOjpsYWcpCmNvbmZsaWN0c19wcmVmZXIoZ2dwbG90Mjo6YW5ub3RhdGUpICAgICAKY29uZmxpY3RzX3ByZWZlcihwdXJycjo6bGlmdCkKY29uZmxpY3RzX3ByZWZlcihuZXVyYWxuZXQ6OmNvbXB1dGUpCmBgYApgYGB7cn0KZGYgPC0gcmVhZC5jc3YoIn4vTGlicmFyeS9DbG91ZFN0b3JhZ2UvT25lRHJpdmUtSW5zdGl0dXRvVGVjbm9sb2dpY295ZGVFc3R1ZGlvc1N1cGVyaW9yZXNkZU1vbnRlcnJleS9TRU0gNy9NMi93YWxtYXJ0LmNzdiIpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6IzhCM0E2MiI+IEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPgpgYGB7cn0KZGYkRGF0ZSA8LSBhcy5EYXRlKGRmJERhdGUsIGZvcm1hdD0iJWQtJW0tJVkiKQpzdW1tYXJ5KGRmKQpzdHIoZGYpCmBgYAojIDxzcGFuIHN0eWxlPSJjb2xvcjojOEIzQTYyIj4gQWdyZWdhciB2YXJpYWJsZXMgYSBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4KYGBge3J9CmRmJFllYXIgPC0gZm9ybWF0KGRmJERhdGUsICIlWSIpCmRmJFllYXIgPC0gIGFzLmludGVnZXIoZGYkWWVhcikKCmRmJE1vbnRoIDwtIGZvcm1hdChkZiREYXRlLCAiJW0iKQpkZiRNb250aCA8LSAgYXMuaW50ZWdlcihkZiRNb250aCkKCmRmJFdlZWtZZWFyIDwtIGZvcm1hdChkZiREYXRlLCAiJVciKQpkZiRXZWVrWWVhciA8LSAgYXMuaW50ZWdlcihkZiRXZWVrWWVhcikKCmRmJFdlZWtEYXkgPC0gZm9ybWF0KGRmJERhdGUsICIldSIpCmRmJFdlZWtEYXkgPC0gIGFzLmludGVnZXIoZGYkV2Vla0RheSkgIyB0b2RhIGxhIGluZm9ybWFjacOzbiBlcyByZWNvcGlsYWRhIGxvcyB2aWVybmVzCgpkZiREYXkgPC0gZm9ybWF0KGRmJERhdGUsICIlZCIpCmRmJERheSA8LSAgYXMuaW50ZWdlcihkZiREYXkpCgpzdW1tYXJ5KGRmKQpzdHIoZGYpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6IzhCM0E2MiI+IEdlbmVyYXIgbGEgcmVncmVzacOzbiA8L3NwYW4+CmBgYHtyfQpyZWdyZXNpb24gPC0gbG0oV2Vla2x5X1NhbGVzfi4sIGRhdGE9ZGYpCnN1bW1hcnkocmVncmVzaW9uKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiM4QjNBNjIiPiBBanVzdGFyIGxhIHJlZ3Jlc2nDs24gPC9zcGFuPgpgYGB7cn0KZGZfYWp1c3RhZGEgPC0gZGYgJT4lIHNlbGVjdCgtRGF0ZSwgLUZ1ZWxfUHJpY2UsIC1ZZWFyOi1EYXkpCnJlZ3Jlc2lvbiA8LSBsbShXZWVrbHlfU2FsZXN+LiwgZGF0YT1kZikKc3VtbWFyeShyZWdyZXNpb24pCmBgYAoK