Instalar paquetes y llamar librerías

#install.package("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Importar base de datos

df <- read.csv("/Users/mariajoseflores/Downloads/walmart.csv")

Entender la base de datos

summary(df)
##      Store        Date            Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Length:6435        Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   Class :character   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Mode  :character   Median : 960746   Median :0.00000  
##  Mean   :23                      Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34                      3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45                      Max.   :3818686   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313
str(df)
## 'data.frame':    6435 obs. of  8 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : chr  "05-02-2010" "12-02-2010" "19-02-2010" "26-02-2010" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...
df$Date <- as.Date(df$Date, format = "%d-%m-%Y")
str(df)
## 'data.frame':    6435 obs. of  8 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...

Entender la base de datos

df$Year <- format(df$Date, "%Y")
df$Year <- as.integer(df$Year)
  
df$Month <- format(df$Date, "%m")
df$Month <- as.integer(df$Month)

df$WeekYear <- format(df$Date, "%W")
df$WeekYear <- as.integer(df$WeekYear)

df$WeekDay <- format(df$Date, "%u")
df$WeekDay <- as.integer(df$WeekDay) ## 1: Lunes

summary(df)
##      Store         Date             Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Min.   :2010-02-05   Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   1st Qu.:2010-10-08   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Median :2011-06-17   Median : 960746   Median :0.00000  
##  Mean   :23   Mean   :2011-06-17   Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34   3rd Qu.:2012-02-24   3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45   Max.   :2012-10-26   Max.   :3818686   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313  
##       Year          Month           WeekYear        WeekDay 
##  Min.   :2010   Min.   : 1.000   Min.   : 1.00   Min.   :5  
##  1st Qu.:2010   1st Qu.: 4.000   1st Qu.:14.00   1st Qu.:5  
##  Median :2011   Median : 6.000   Median :26.00   Median :5  
##  Mean   :2011   Mean   : 6.448   Mean   :25.82   Mean   :5  
##  3rd Qu.:2012   3rd Qu.: 9.000   3rd Qu.:38.00   3rd Qu.:5  
##  Max.   :2012   Max.   :12.000   Max.   :52.00   Max.   :5
str(df)
## 'data.frame':    6435 obs. of  12 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...
##  $ Year        : int  2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
##  $ Month       : int  2 2 2 2 3 3 3 3 4 4 ...
##  $ WeekYear    : int  5 6 7 8 9 10 11 12 13 14 ...
##  $ WeekDay     : int  5 5 5 5 5 5 5 5 5 5 ...
head(df)
##   Store       Date Weekly_Sales Holiday_Flag Temperature Fuel_Price      CPI
## 1     1 2010-02-05      1643691            0       42.31      2.572 211.0964
## 2     1 2010-02-12      1641957            1       38.51      2.548 211.2422
## 3     1 2010-02-19      1611968            0       39.93      2.514 211.2891
## 4     1 2010-02-26      1409728            0       46.63      2.561 211.3196
## 5     1 2010-03-05      1554807            0       46.50      2.625 211.3501
## 6     1 2010-03-12      1439542            0       57.79      2.667 211.3806
##   Unemployment Year Month WeekYear WeekDay
## 1        8.106 2010     2        5       5
## 2        8.106 2010     2        6       5
## 3        8.106 2010     2        7       5
## 4        8.106 2010     2        8       5
## 5        8.106 2010     3        9       5
## 6        8.106 2010     3       10       5

Generar la regresión

regresion <- lm(Weekly_Sales~., data=df)
summary(regresion)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1094109  -382170   -42356   375814  2586732 
## 
## Coefficients: (2 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -8.253e+08  5.346e+08  -1.544   0.1227    
## Store        -1.538e+04  5.201e+02 -29.578  < 2e-16 ***
## Date         -1.237e+03  7.416e+02  -1.668   0.0953 .  
## Holiday_Flag  4.662e+04  2.627e+04   1.774   0.0761 .  
## Temperature  -1.799e+03  3.903e+02  -4.608 4.15e-06 ***
## Fuel_Price    6.349e+04  2.556e+04   2.484   0.0130 *  
## CPI          -2.106e+03  1.916e+02 -10.987  < 2e-16 ***
## Unemployment -2.218e+04  3.930e+03  -5.644 1.74e-08 ***
## Year          4.205e+05  2.714e+05   1.549   0.1213    
## Month         5.178e+04  2.269e+04   2.282   0.0225 *  
## WeekYear             NA         NA      NA       NA    
## WeekDay              NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 520800 on 6425 degrees of freedom
## Multiple R-squared:  0.1495, Adjusted R-squared:  0.1484 
## F-statistic: 125.5 on 9 and 6425 DF,  p-value: < 2.2e-16

Ajustar la regresión

df_ajustada <- df %>%
  dplyr::select(-dplyr::any_of(c("Date","Year","Month","WeekYear","WeekDay")))

regresion_ajustada <- lm(Weekly_Sales ~ ., data = df_ajustada)
summary(regresion_ajustada)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df_ajustada)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1033609  -393019   -38294   371884  2711539 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1995738.3    75421.7  26.461  < 2e-16 ***
## Store         -15388.7      521.9 -29.486  < 2e-16 ***
## Holiday_Flag   73034.5    25942.7   2.815  0.00489 ** 
## Temperature     -975.4      376.0  -2.594  0.00950 ** 
## Fuel_Price      9596.1    14810.3   0.648  0.51705    
## CPI            -2319.5      184.8 -12.553  < 2e-16 ***
## Unemployment  -21881.2     3788.0  -5.776 7.99e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 523100 on 6428 degrees of freedom
## Multiple R-squared:  0.1416, Adjusted R-squared:  0.1408 
## F-statistic: 176.7 on 6 and 6428 DF,  p-value: < 2.2e-16
LS0tCnRpdGxlOiAiUmVncmVzacOzbiBMaW5lYWwiCmF1dGhvcjogIk1hcmlhIEpvc2UgRmxvcmVzIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKICAgIHRoZW1lOiBjb3NtbwotLS0KCgo8Y2VudGVyPgohW10oaHR0cHM6Ly9jZG4uZHJpYmJibGUuY29tL3VzZXJ1cGxvYWQvNTI0OTk0OC9maWxlL29yaWdpbmFsLWFmNmM3MjJkNDY5ZTE3MTdkMWQxMzAyOTlmMzMyNzhkLmdpZikKPGNlbnRlcj4KCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gIEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMgPC9zcGFuPgpgYGB7cn0KI2luc3RhbGwucGFja2FnZSgidGlkeXZlcnNlIikKbGlicmFyeSh0aWR5dmVyc2UpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiAgSW1wb3J0YXIgYmFzZSBkZSBkYXRvcyA8L3NwYW4+CmBgYHtyfQpkZiA8LSByZWFkLmNzdigiL1VzZXJzL21hcmlham9zZWZsb3Jlcy9Eb3dubG9hZHMvd2FsbWFydC5jc3YiKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPgpgYGB7cn0Kc3VtbWFyeShkZikKc3RyKGRmKQpkZiREYXRlIDwtIGFzLkRhdGUoZGYkRGF0ZSwgZm9ybWF0ID0gIiVkLSVtLSVZIikKc3RyKGRmKQpgYGAKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiAgRW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvcyA8L3NwYW4+CmBgYHtyfQpkZiRZZWFyIDwtIGZvcm1hdChkZiREYXRlLCAiJVkiKQpkZiRZZWFyIDwtIGFzLmludGVnZXIoZGYkWWVhcikKICAKZGYkTW9udGggPC0gZm9ybWF0KGRmJERhdGUsICIlbSIpCmRmJE1vbnRoIDwtIGFzLmludGVnZXIoZGYkTW9udGgpCgpkZiRXZWVrWWVhciA8LSBmb3JtYXQoZGYkRGF0ZSwgIiVXIikKZGYkV2Vla1llYXIgPC0gYXMuaW50ZWdlcihkZiRXZWVrWWVhcikKCmRmJFdlZWtEYXkgPC0gZm9ybWF0KGRmJERhdGUsICIldSIpCmRmJFdlZWtEYXkgPC0gYXMuaW50ZWdlcihkZiRXZWVrRGF5KSAjIyAxOiBMdW5lcwoKc3VtbWFyeShkZikKc3RyKGRmKQpoZWFkKGRmKQpgYGAKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiAgR2VuZXJhciBsYSByZWdyZXNpw7NuIDwvc3Bhbj4KYGBge3J9CnJlZ3Jlc2lvbiA8LSBsbShXZWVrbHlfU2FsZXN+LiwgZGF0YT1kZikKc3VtbWFyeShyZWdyZXNpb24pCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiAgQWp1c3RhciBsYSByZWdyZXNpw7NuIDwvc3Bhbj4KYGBge3J9CmRmX2FqdXN0YWRhIDwtIGRmICU+JQogIGRwbHlyOjpzZWxlY3QoLWRwbHlyOjphbnlfb2YoYygiRGF0ZSIsIlllYXIiLCJNb250aCIsIldlZWtZZWFyIiwiV2Vla0RheSIpKSkKCnJlZ3Jlc2lvbl9hanVzdGFkYSA8LSBsbShXZWVrbHlfU2FsZXMgfiAuLCBkYXRhID0gZGZfYWp1c3RhZGEpCnN1bW1hcnkocmVncmVzaW9uX2FqdXN0YWRhKQpgYGAKCgoKCgoKCgo=