Walmart

Instalar paquetes y llamar librerias
#install.packages("tidyverse")
library("tidyverse")
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Importar la base de datos
df<- read_csv("walmart.csv")
## Rows: 6435 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Date
## dbl (7): Store, Weekly_Sales, Holiday_Flag, Temperature, Fuel_Price, CPI, Un...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
summary(df)
## Store Date Weekly_Sales Holiday_Flag
## Min. : 1 Length:6435 Min. : 209986 Min. :0.00000
## 1st Qu.:12 Class :character 1st Qu.: 553350 1st Qu.:0.00000
## Median :23 Mode :character Median : 960746 Median :0.00000
## Mean :23 Mean :1046965 Mean :0.06993
## 3rd Qu.:34 3rd Qu.:1420159 3rd Qu.:0.00000
## Max. :45 Max. :3818687 Max. :1.00000
## Temperature Fuel_Price CPI Unemployment
## Min. : -2.06 Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.: 47.46 1st Qu.:2.933 1st Qu.:131.7 1st Qu.: 6.891
## Median : 62.67 Median :3.445 Median :182.6 Median : 7.874
## Mean : 60.66 Mean :3.359 Mean :171.6 Mean : 7.999
## 3rd Qu.: 74.94 3rd Qu.:3.735 3rd Qu.:212.7 3rd Qu.: 8.622
## Max. :100.14 Max. :4.468 Max. :227.2 Max. :14.313
str(df)
## spc_tbl_ [6,435 × 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ Store : num [1:6435] 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : chr [1:6435] "05-02-2010" "12-02-2010" "19-02-2010" "26-02-2010" ...
## $ Weekly_Sales: num [1:6435] 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: num [1:6435] 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num [1:6435] 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num [1:6435] 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num [1:6435] 211 211 211 211 211 ...
## $ Unemployment: num [1:6435] 8.11 8.11 8.11 8.11 8.11 ...
## - attr(*, "spec")=
## .. cols(
## .. Store = col_double(),
## .. Date = col_character(),
## .. Weekly_Sales = col_double(),
## .. Holiday_Flag = col_double(),
## .. Temperature = col_double(),
## .. Fuel_Price = col_double(),
## .. CPI = col_double(),
## .. Unemployment = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
df$Date<- as.Date(df$Date,format="%d-%m-%Y")
str(df)
## spc_tbl_ [6,435 × 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ Store : num [1:6435] 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date[1:6435], format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num [1:6435] 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: num [1:6435] 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num [1:6435] 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num [1:6435] 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num [1:6435] 211 211 211 211 211 ...
## $ Unemployment: num [1:6435] 8.11 8.11 8.11 8.11 8.11 ...
## - attr(*, "spec")=
## .. cols(
## .. Store = col_double(),
## .. Date = col_character(),
## .. Weekly_Sales = col_double(),
## .. Holiday_Flag = col_double(),
## .. Temperature = col_double(),
## .. Fuel_Price = col_double(),
## .. CPI = col_double(),
## .. Unemployment = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
Agregar variables a la base de datos
df$Year<-format(df$Date, "%Y")
df$Year<-as.integer(df$Year)
df$Month<-format(df$Date, "%m")
df$Month<-as.integer(df$Month)
df$WeekYear<-format(df$Date, "%W")
df$WeekYear<-as.integer(df$WeekYear)
df$WeekDay<-format(df$Date, "%w")
df$WeekDay<-as.integer(df$WeekDay)
df$Day<-format(df$Date, "%d")
df$Day<-as.integer(df$Day)
Regression lineal
regresion<- lm(Weekly_Sales~., data=df)
summary(regresion)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1094800 -382464 -42860 375406 2587123
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.384e+09 9.127e+09 -0.261 0.7940
## Store -1.538e+04 5.202e+02 -29.576 < 2e-16 ***
## Date -3.399e+03 1.266e+04 -0.268 0.7883
## Holiday_Flag 4.773e+04 2.706e+04 1.763 0.0779 .
## Temperature -1.817e+03 4.053e+02 -4.484 7.47e-06 ***
## Fuel_Price 6.124e+04 2.876e+04 2.130 0.0332 *
## CPI -2.109e+03 1.928e+02 -10.941 < 2e-16 ***
## Unemployment -2.209e+04 3.967e+03 -5.569 2.67e-08 ***
## Year 1.212e+06 4.633e+06 0.262 0.7937
## Month 1.177e+05 3.858e+05 0.305 0.7604
## WeekYear NA NA NA NA
## WeekDay NA NA NA NA
## Day 2.171e+03 1.269e+04 0.171 0.8642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared: 0.1495, Adjusted R-squared: 0.1482
## F-statistic: 113 on 10 and 6424 DF, p-value: < 2.2e-16
Ajustarla regression
df_ajustada<-df %>% select(-Fuel_Price,-Date, -Year:-Date)
regresion_ajustada<- lm(Weekly_Sales~., data=df)
summary(regresion_ajustada)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1094800 -382464 -42860 375406 2587123
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.384e+09 9.127e+09 -0.261 0.7940
## Store -1.538e+04 5.202e+02 -29.576 < 2e-16 ***
## Date -3.399e+03 1.266e+04 -0.268 0.7883
## Holiday_Flag 4.773e+04 2.706e+04 1.763 0.0779 .
## Temperature -1.817e+03 4.053e+02 -4.484 7.47e-06 ***
## Fuel_Price 6.124e+04 2.876e+04 2.130 0.0332 *
## CPI -2.109e+03 1.928e+02 -10.941 < 2e-16 ***
## Unemployment -2.209e+04 3.967e+03 -5.569 2.67e-08 ***
## Year 1.212e+06 4.633e+06 0.262 0.7937
## Month 1.177e+05 3.858e+05 0.305 0.7604
## WeekYear NA NA NA NA
## WeekDay NA NA NA NA
## Day 2.171e+03 1.269e+04 0.171 0.8642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared: 0.1495, Adjusted R-squared: 0.1482
## F-statistic: 113 on 10 and 6424 DF, p-value: < 2.2e-16
LS0tDQp0aXRsZTogIlJlZ3Jlc3Npb24gTGluZWFsIg0KYXV0aG9yOiAiQW5hIEdvbnrDoWxleiBBMDA4MzU1MTIiDQpkYXRlOiAiMjAyNS0wOC0yNSINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUcnVlIA0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgICB0aGVtZTogeWV0aQ0KLS0tDQoNCg0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpyZWQ7Ij4gV2FsbWFydCA8L3NwYW4+DQoNCjxjZW50ZXI+DQohW10oaHR0cHM6Ly9tZWRpYS50ZW5vci5jb20vRnhESXpIQ2JKQTBBQUFBTS93YWxtYXJ0LXN0b3JlLmdpZikNCg0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcmlhcyA8L3NwYW4+DQpgYGB7cn0NCiNpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiKQ0KbGlicmFyeSgidGlkeXZlcnNlIikNCmBgYA0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IEltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpkZjwtIHJlYWRfY3N2KCJ3YWxtYXJ0LmNzdiIpDQpgYGANCmBgYHtyfQ0Kc3VtbWFyeShkZikNCnN0cihkZikNCmRmJERhdGU8LSBhcy5EYXRlKGRmJERhdGUsZm9ybWF0PSIlZC0lbS0lWSIpDQpzdHIoZGYpDQpgYGANCiMgPHNwYW4gc3R5bGUgPSAiY29sb3I6Ymx1ZTsiPiBBZ3JlZ2FyIHZhcmlhYmxlcyBhIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpkZiRZZWFyPC1mb3JtYXQoZGYkRGF0ZSwgIiVZIikNCmRmJFllYXI8LWFzLmludGVnZXIoZGYkWWVhcikNCg0KZGYkTW9udGg8LWZvcm1hdChkZiREYXRlLCAiJW0iKQ0KZGYkTW9udGg8LWFzLmludGVnZXIoZGYkTW9udGgpDQoNCmRmJFdlZWtZZWFyPC1mb3JtYXQoZGYkRGF0ZSwgIiVXIikNCmRmJFdlZWtZZWFyPC1hcy5pbnRlZ2VyKGRmJFdlZWtZZWFyKQ0KDQpkZiRXZWVrRGF5PC1mb3JtYXQoZGYkRGF0ZSwgIiV3IikNCmRmJFdlZWtEYXk8LWFzLmludGVnZXIoZGYkV2Vla0RheSkNCg0KZGYkRGF5PC1mb3JtYXQoZGYkRGF0ZSwgIiVkIikNCmRmJERheTwtYXMuaW50ZWdlcihkZiREYXkpDQpgYGANCg0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IFJlZ3Jlc3Npb24gbGluZWFsIDwvc3Bhbj4NCg0KYGBge3J9DQpyZWdyZXNpb248LSBsbShXZWVrbHlfU2FsZXN+LiwgZGF0YT1kZikNCnN1bW1hcnkocmVncmVzaW9uKQ0KYGBgDQojIDxzcGFuIHN0eWxlID0gImNvbG9yOmJsdWU7Ij4gQWp1c3RhcmxhIHJlZ3Jlc3Npb24gPC9zcGFuPg0KDQpgYGB7cn0NCmRmX2FqdXN0YWRhPC1kZiAlPiUgc2VsZWN0KC1GdWVsX1ByaWNlLC1EYXRlLCAtWWVhcjotRGF0ZSkgDQpyZWdyZXNpb25fYWp1c3RhZGE8LSBsbShXZWVrbHlfU2FsZXN+LiwgZGF0YT1kZikNCnN1bW1hcnkocmVncmVzaW9uX2FqdXN0YWRhKQ0KDQpgYGANCg0KDQo=