Walmart

Instalar paquetes y llamar librerias

#install.packages("tidyverse")
library("tidyverse")
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Importar la base de datos

df<- read_csv("walmart.csv")
## Rows: 6435 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Date
## dbl (7): Store, Weekly_Sales, Holiday_Flag, Temperature, Fuel_Price, CPI, Un...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
summary(df)
##      Store        Date            Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Length:6435        Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   Class :character   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Mode  :character   Median : 960746   Median :0.00000  
##  Mean   :23                      Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34                      3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45                      Max.   :3818687   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313
str(df)
## spc_tbl_ [6,435 × 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ Store       : num [1:6435] 1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : chr [1:6435] "05-02-2010" "12-02-2010" "19-02-2010" "26-02-2010" ...
##  $ Weekly_Sales: num [1:6435] 1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: num [1:6435] 0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num [1:6435] 42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num [1:6435] 2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num [1:6435] 211 211 211 211 211 ...
##  $ Unemployment: num [1:6435] 8.11 8.11 8.11 8.11 8.11 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   Store = col_double(),
##   ..   Date = col_character(),
##   ..   Weekly_Sales = col_double(),
##   ..   Holiday_Flag = col_double(),
##   ..   Temperature = col_double(),
##   ..   Fuel_Price = col_double(),
##   ..   CPI = col_double(),
##   ..   Unemployment = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
df$Date<- as.Date(df$Date,format="%d-%m-%Y")
str(df)
## spc_tbl_ [6,435 × 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ Store       : num [1:6435] 1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date[1:6435], format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num [1:6435] 1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: num [1:6435] 0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num [1:6435] 42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num [1:6435] 2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num [1:6435] 211 211 211 211 211 ...
##  $ Unemployment: num [1:6435] 8.11 8.11 8.11 8.11 8.11 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   Store = col_double(),
##   ..   Date = col_character(),
##   ..   Weekly_Sales = col_double(),
##   ..   Holiday_Flag = col_double(),
##   ..   Temperature = col_double(),
##   ..   Fuel_Price = col_double(),
##   ..   CPI = col_double(),
##   ..   Unemployment = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>

Agregar variables a la base de datos

df$Year<-format(df$Date, "%Y")
df$Year<-as.integer(df$Year)

df$Month<-format(df$Date, "%m")
df$Month<-as.integer(df$Month)

df$WeekYear<-format(df$Date, "%W")
df$WeekYear<-as.integer(df$WeekYear)

df$WeekDay<-format(df$Date, "%w")
df$WeekDay<-as.integer(df$WeekDay)

df$Day<-format(df$Date, "%d")
df$Day<-as.integer(df$Day)

Regression lineal

regresion<- lm(Weekly_Sales~., data=df)
summary(regresion)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1094800  -382464   -42860   375406  2587123 
## 
## Coefficients: (2 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.384e+09  9.127e+09  -0.261   0.7940    
## Store        -1.538e+04  5.202e+02 -29.576  < 2e-16 ***
## Date         -3.399e+03  1.266e+04  -0.268   0.7883    
## Holiday_Flag  4.773e+04  2.706e+04   1.763   0.0779 .  
## Temperature  -1.817e+03  4.053e+02  -4.484 7.47e-06 ***
## Fuel_Price    6.124e+04  2.876e+04   2.130   0.0332 *  
## CPI          -2.109e+03  1.928e+02 -10.941  < 2e-16 ***
## Unemployment -2.209e+04  3.967e+03  -5.569 2.67e-08 ***
## Year          1.212e+06  4.633e+06   0.262   0.7937    
## Month         1.177e+05  3.858e+05   0.305   0.7604    
## WeekYear             NA         NA      NA       NA    
## WeekDay              NA         NA      NA       NA    
## Day           2.171e+03  1.269e+04   0.171   0.8642    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared:  0.1495, Adjusted R-squared:  0.1482 
## F-statistic:   113 on 10 and 6424 DF,  p-value: < 2.2e-16

Ajustarla regression

df_ajustada<-df %>% select(-Fuel_Price,-Date, -Year:-Date) 
regresion_ajustada<- lm(Weekly_Sales~., data=df)
summary(regresion_ajustada)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1094800  -382464   -42860   375406  2587123 
## 
## Coefficients: (2 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.384e+09  9.127e+09  -0.261   0.7940    
## Store        -1.538e+04  5.202e+02 -29.576  < 2e-16 ***
## Date         -3.399e+03  1.266e+04  -0.268   0.7883    
## Holiday_Flag  4.773e+04  2.706e+04   1.763   0.0779 .  
## Temperature  -1.817e+03  4.053e+02  -4.484 7.47e-06 ***
## Fuel_Price    6.124e+04  2.876e+04   2.130   0.0332 *  
## CPI          -2.109e+03  1.928e+02 -10.941  < 2e-16 ***
## Unemployment -2.209e+04  3.967e+03  -5.569 2.67e-08 ***
## Year          1.212e+06  4.633e+06   0.262   0.7937    
## Month         1.177e+05  3.858e+05   0.305   0.7604    
## WeekYear             NA         NA      NA       NA    
## WeekDay              NA         NA      NA       NA    
## Day           2.171e+03  1.269e+04   0.171   0.8642    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared:  0.1495, Adjusted R-squared:  0.1482 
## F-statistic:   113 on 10 and 6424 DF,  p-value: < 2.2e-16
LS0tDQp0aXRsZTogIlJlZ3Jlc3Npb24gTGluZWFsIg0KYXV0aG9yOiAiQW5hIEdvbnrDoWxleiBBMDA4MzU1MTIiDQpkYXRlOiAiMjAyNS0wOC0yNSINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUcnVlIA0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgICB0aGVtZTogeWV0aQ0KLS0tDQoNCg0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpyZWQ7Ij4gV2FsbWFydCA8L3NwYW4+DQoNCjxjZW50ZXI+DQohW10oaHR0cHM6Ly9tZWRpYS50ZW5vci5jb20vRnhESXpIQ2JKQTBBQUFBTS93YWxtYXJ0LXN0b3JlLmdpZikNCg0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcmlhcyA8L3NwYW4+DQpgYGB7cn0NCiNpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiKQ0KbGlicmFyeSgidGlkeXZlcnNlIikNCmBgYA0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IEltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpkZjwtIHJlYWRfY3N2KCJ3YWxtYXJ0LmNzdiIpDQpgYGANCmBgYHtyfQ0Kc3VtbWFyeShkZikNCnN0cihkZikNCmRmJERhdGU8LSBhcy5EYXRlKGRmJERhdGUsZm9ybWF0PSIlZC0lbS0lWSIpDQpzdHIoZGYpDQpgYGANCiMgPHNwYW4gc3R5bGUgPSAiY29sb3I6Ymx1ZTsiPiBBZ3JlZ2FyIHZhcmlhYmxlcyBhIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpkZiRZZWFyPC1mb3JtYXQoZGYkRGF0ZSwgIiVZIikNCmRmJFllYXI8LWFzLmludGVnZXIoZGYkWWVhcikNCg0KZGYkTW9udGg8LWZvcm1hdChkZiREYXRlLCAiJW0iKQ0KZGYkTW9udGg8LWFzLmludGVnZXIoZGYkTW9udGgpDQoNCmRmJFdlZWtZZWFyPC1mb3JtYXQoZGYkRGF0ZSwgIiVXIikNCmRmJFdlZWtZZWFyPC1hcy5pbnRlZ2VyKGRmJFdlZWtZZWFyKQ0KDQpkZiRXZWVrRGF5PC1mb3JtYXQoZGYkRGF0ZSwgIiV3IikNCmRmJFdlZWtEYXk8LWFzLmludGVnZXIoZGYkV2Vla0RheSkNCg0KZGYkRGF5PC1mb3JtYXQoZGYkRGF0ZSwgIiVkIikNCmRmJERheTwtYXMuaW50ZWdlcihkZiREYXkpDQpgYGANCg0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IFJlZ3Jlc3Npb24gbGluZWFsIDwvc3Bhbj4NCg0KYGBge3J9DQpyZWdyZXNpb248LSBsbShXZWVrbHlfU2FsZXN+LiwgZGF0YT1kZikNCnN1bW1hcnkocmVncmVzaW9uKQ0KYGBgDQojIDxzcGFuIHN0eWxlID0gImNvbG9yOmJsdWU7Ij4gQWp1c3RhcmxhIHJlZ3Jlc3Npb24gPC9zcGFuPg0KDQpgYGB7cn0NCmRmX2FqdXN0YWRhPC1kZiAlPiUgc2VsZWN0KC1GdWVsX1ByaWNlLC1EYXRlLCAtWWVhcjotRGF0ZSkgDQpyZWdyZXNpb25fYWp1c3RhZGE8LSBsbShXZWVrbHlfU2FsZXN+LiwgZGF0YT1kZikNCnN1bW1hcnkocmVncmVzaW9uX2FqdXN0YWRhKQ0KDQpgYGANCg0KDQo=