Teoría

El paquete Caret (Classification And Regression Training) es un paquete integral con una amplia variedad de algoritmos para el aprendizaje automático.

Instalar paquetes y llamar librerías

#install.packages("caret")
#install.packages("datasets")
#install.packages("DataExplorer")


library(tidyverse)
library(ggplot2)
library(lattice)
library(caret)
library(datasets)
library(kernlab)
library(DataExplorer)

Cargar base de datos

df <- data.frame(iris)

Entender la base de datos

summary(df)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 
str(df)
## 'data.frame':    150 obs. of  5 variables:
##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
# create_report(df)
plot_missing(df)

plot_histogram(df)

plot_correlation(df)

#La variable que queremos predecir debe tener formato de FACTOR

Partir la base de datos

#Normalmente 80-20
set.seed(123)
renglones_entrenamiento <- createDataPartition(df$Species, p = 0.8, list = FALSE) 
# el argumento list asegura la aleatoridad en las particiones
entrenamiento <- df[renglones_entrenamiento,]
prueba <- df[-renglones_entrenamiento,]

# Los [] sirven para indexar filas y columnas, el segundo argumento son las columnas pero el primero puede servir para tomar cierto numero de renglones. 

Distintos tipos de Métodos para Modelar

Lo métodos más utilizados para modelar aprendizaje automático son:

  • SVM: Support Vector Machine o Máquina de Vectores de Soporte. Hay varios subtipos: Linear (svmLinear), Radial (svmRadial), Polinómico (svmPoly), etc.

  • Árbol de Decisión: rpart

  • Redes Neuronales: nnet

  • Random Forest o Bosques Aleatorios: rf

Modelo 1. SVM Lineal

modelo1 <- train(Species ~ ., data = entrenamiento, #Species es la y 
                 method = "svmLinear", # Cambiar
                 preProcess= c("scale", "center"),
                 trControl = trainControl(method = "cv", number =10), 
                 tuneGride = data.frame(c=1) # Cambiar
                 )

resultado_entrenamiento1 <- predict(modelo1, entrenamiento)
resultado_prueba1 <- predict(modelo1, prueba)

# Matriz de Confusion 
# Es una tabal de evaluación que desglosa el rendimiento del modelo de clasificación. 


# Matriz de Confusión del Resultado del Entrenamiento
mcre1 <- confusionMatrix(resultado_entrenamiento1, entrenamiento$Species)
mcre1
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         39         0
##   virginica       0          1        40
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9917          
##                  95% CI : (0.9544, 0.9998)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.9875          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9750           1.0000
## Specificity                 1.0000            1.0000           0.9875
## Pos Pred Value              1.0000            1.0000           0.9756
## Neg Pred Value              1.0000            0.9877           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3250           0.3333
## Detection Prevalence        0.3333            0.3250           0.3417
## Balanced Accuracy           1.0000            0.9875           0.9938
# Matriz de Confusión del Resultado del Prueba
mcrp1 <- confusionMatrix(resultado_prueba1, prueba$Species)
mcrp1
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0         10         1
##   virginica       0          0         9
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9667          
##                  95% CI : (0.8278, 0.9992)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 2.963e-13       
##                                           
##                   Kappa : 0.95            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.9000
## Specificity                 1.0000            0.9500           1.0000
## Pos Pred Value              1.0000            0.9091           1.0000
## Neg Pred Value              1.0000            1.0000           0.9524
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.3000
## Detection Prevalence        0.3333            0.3667           0.3000
## Balanced Accuracy           1.0000            0.9750           0.9500

Sobreajuste se nota cuando comparas la precisión del enetrenamiento con el de prueba y si el de prueba es muy bajo entonces hay sobreajuste.

Modelo 2. SVM Radial

modelo2 <- train(Species ~ ., data = entrenamiento, #Species es la y 
                 method = "svmRadial", # Cambiar
                 preProcess= c("scale", "center"),
                 trControl = trainControl(method = "cv", number =10), 
                 tuneGride = data.frame(sigma = 1, c=1) # Cambiar
                 )

resultado_entrenamiento2 <- predict(modelo2, entrenamiento)
resultado_prueba2 <- predict(modelo2, prueba)

# Matriz de Confusion 
# Es una tabal de evaluación que desglosa el rendimiento del modelo de clasificación. 


# Matriz de Confusión del Resultado del Entrenamiento
mcre2 <- confusionMatrix(resultado_entrenamiento2, entrenamiento$Species)
mcre2
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         39         0
##   virginica       0          1        40
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9917          
##                  95% CI : (0.9544, 0.9998)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.9875          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9750           1.0000
## Specificity                 1.0000            1.0000           0.9875
## Pos Pred Value              1.0000            1.0000           0.9756
## Neg Pred Value              1.0000            0.9877           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3250           0.3333
## Detection Prevalence        0.3333            0.3250           0.3417
## Balanced Accuracy           1.0000            0.9875           0.9938
# Matriz de Confusión del Resultado del Prueba
mcrp2 <- confusionMatrix(resultado_prueba2, prueba$Species)
mcrp2
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0         10         2
##   virginica       0          0         8
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9333          
##                  95% CI : (0.7793, 0.9918)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 8.747e-12       
##                                           
##                   Kappa : 0.9             
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.8000
## Specificity                 1.0000            0.9000           1.0000
## Pos Pred Value              1.0000            0.8333           1.0000
## Neg Pred Value              1.0000            1.0000           0.9091
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.2667
## Detection Prevalence        0.3333            0.4000           0.2667
## Balanced Accuracy           1.0000            0.9500           0.9000

Modelo 3. SVM Polinómico

modelo3 <- train(Species ~ ., data = entrenamiento, #Species es la y 
                 method = "svmPoly", # Cambiar
                 preProcess= c("scale", "center"),
                 trControl = trainControl(method = "cv", number =10), 
                 tuneGride = data.frame(degree = 1, sigma = 1, c=1) # Cambiar
                 )

resultado_entrenamiento3 <- predict(modelo3, entrenamiento)
resultado_prueba3 <- predict(modelo3, prueba)

# Matriz de Confusion 
# Es una tabal de evaluación que desglosa el rendimiento del modelo de clasificación. 


# Matriz de Confusión del Resultado del Entrenamiento
mcre3 <- confusionMatrix(resultado_entrenamiento3, entrenamiento$Species)
mcre3
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         40         4
##   virginica       0          0        36
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9667          
##                  95% CI : (0.9169, 0.9908)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.95            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.9000
## Specificity                 1.0000            0.9500           1.0000
## Pos Pred Value              1.0000            0.9091           1.0000
## Neg Pred Value              1.0000            1.0000           0.9524
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.3000
## Detection Prevalence        0.3333            0.3667           0.3000
## Balanced Accuracy           1.0000            0.9750           0.9500
# Matriz de Confusión del Resultado del Prueba
mcrp3 <- confusionMatrix(resultado_prueba3, prueba$Species)
mcrp3
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0         10         2
##   virginica       0          0         8
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9333          
##                  95% CI : (0.7793, 0.9918)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 8.747e-12       
##                                           
##                   Kappa : 0.9             
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.8000
## Specificity                 1.0000            0.9000           1.0000
## Pos Pred Value              1.0000            0.8333           1.0000
## Neg Pred Value              1.0000            1.0000           0.9091
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.2667
## Detection Prevalence        0.3333            0.4000           0.2667
## Balanced Accuracy           1.0000            0.9500           0.9000

Modelo 4. Árbol de Decisión

modelo4 <- train(Species ~ ., data = entrenamiento, #Species es la y 
                 method = "rpart", # Cambiar
                 preProcess= c("scale", "center"),
                 trControl = trainControl(method = "cv", number =10), 
                 tuneLength = 10 # Cambiar
                 )

resultado_entrenamiento4 <- predict(modelo4, entrenamiento)
resultado_prueba4 <- predict(modelo4, prueba)

# Matriz de Confusion 
# Es una tabal de evaluación que desglosa el rendimiento del modelo de clasificación. 


# Matriz de Confusión del Resultado del Entrenamiento
mcre4 <- confusionMatrix(resultado_entrenamiento4, entrenamiento$Species)
mcre4
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         39         3
##   virginica       0          1        37
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9667          
##                  95% CI : (0.9169, 0.9908)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.95            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9750           0.9250
## Specificity                 1.0000            0.9625           0.9875
## Pos Pred Value              1.0000            0.9286           0.9737
## Neg Pred Value              1.0000            0.9872           0.9634
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3250           0.3083
## Detection Prevalence        0.3333            0.3500           0.3167
## Balanced Accuracy           1.0000            0.9688           0.9563
# Matriz de Confusión del Resultado del Prueba
mcrp4 <- confusionMatrix(resultado_prueba4, prueba$Species)
mcrp4
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0         10         2
##   virginica       0          0         8
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9333          
##                  95% CI : (0.7793, 0.9918)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 8.747e-12       
##                                           
##                   Kappa : 0.9             
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.8000
## Specificity                 1.0000            0.9000           1.0000
## Pos Pred Value              1.0000            0.8333           1.0000
## Neg Pred Value              1.0000            1.0000           0.9091
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.2667
## Detection Prevalence        0.3333            0.4000           0.2667
## Balanced Accuracy           1.0000            0.9500           0.9000

Modelo 5. Redes Neuronales

modelo5 <- train(Species ~ ., data = entrenamiento, #Species es la y 
                 method = "nnet", # Cambiar
                 preProcess= c("scale", "center"),
                 trControl = trainControl(method = "cv", number =10)                 
                 )
## # weights:  11
## initial  value 117.009298 
## iter  10 value 30.693062
## iter  20 value 4.480530
## iter  30 value 2.124646
## iter  40 value 1.724334
## iter  50 value 1.558463
## iter  60 value 1.384759
## iter  70 value 1.194959
## iter  80 value 1.157489
## iter  90 value 1.037588
## iter 100 value 1.021675
## final  value 1.021675 
## stopped after 100 iterations
## # weights:  27
## initial  value 144.555680 
## iter  10 value 7.295675
## iter  20 value 0.951236
## iter  30 value 0.019779
## iter  40 value 0.001778
## final  value 0.000054 
## converged
## # weights:  43
## initial  value 159.941630 
## iter  10 value 29.130468
## iter  20 value 2.433214
## iter  30 value 0.203630
## iter  40 value 0.008716
## final  value 0.000085 
## converged
## # weights:  11
## initial  value 122.779692 
## iter  10 value 57.486922
## iter  20 value 43.651900
## iter  30 value 43.557151
## final  value 43.557011 
## converged
## # weights:  27
## initial  value 125.993185 
## iter  10 value 26.004322
## iter  20 value 19.109050
## iter  30 value 18.927620
## iter  40 value 18.923505
## final  value 18.923489 
## converged
## # weights:  43
## initial  value 162.888687 
## iter  10 value 20.938843
## iter  20 value 18.031113
## iter  30 value 17.715120
## iter  40 value 17.596630
## iter  50 value 17.399696
## iter  60 value 17.368518
## iter  70 value 17.368513
## iter  70 value 17.368513
## iter  70 value 17.368513
## final  value 17.368513 
## converged
## # weights:  11
## initial  value 118.505234 
## iter  10 value 40.039271
## iter  20 value 5.135436
## iter  30 value 3.734191
## iter  40 value 3.277615
## iter  50 value 3.145069
## iter  60 value 2.954089
## iter  70 value 2.904871
## iter  80 value 2.904015
## iter  90 value 2.903149
## iter 100 value 2.902252
## final  value 2.902252 
## stopped after 100 iterations
## # weights:  27
## initial  value 122.899975 
## iter  10 value 7.401054
## iter  20 value 0.334446
## iter  30 value 0.315600
## iter  40 value 0.297078
## iter  50 value 0.290032
## iter  60 value 0.266801
## iter  70 value 0.252113
## iter  80 value 0.242813
## iter  90 value 0.232748
## iter 100 value 0.223962
## final  value 0.223962 
## stopped after 100 iterations
## # weights:  43
## initial  value 130.368788 
## iter  10 value 6.085146
## iter  20 value 0.541576
## iter  30 value 0.324721
## iter  40 value 0.310666
## iter  50 value 0.288764
## iter  60 value 0.261876
## iter  70 value 0.241344
## iter  80 value 0.232620
## iter  90 value 0.221434
## iter 100 value 0.211098
## final  value 0.211098 
## stopped after 100 iterations
## # weights:  11
## initial  value 114.821771 
## iter  10 value 44.055072
## iter  20 value 11.932704
## iter  30 value 3.206457
## iter  40 value 2.877159
## iter  50 value 2.634047
## iter  60 value 2.327700
## iter  70 value 2.138623
## iter  80 value 1.010075
## iter  90 value 0.852535
## iter 100 value 0.693471
## final  value 0.693471 
## stopped after 100 iterations
## # weights:  27
## initial  value 121.119589 
## iter  10 value 4.241406
## iter  20 value 0.011919
## final  value 0.000059 
## converged
## # weights:  43
## initial  value 146.114510 
## iter  10 value 5.225415
## iter  20 value 0.151541
## iter  30 value 0.000108
## iter  30 value 0.000056
## iter  30 value 0.000055
## final  value 0.000055 
## converged
## # weights:  11
## initial  value 117.838276 
## iter  10 value 43.963261
## iter  20 value 42.933568
## iter  20 value 42.933567
## iter  20 value 42.933567
## final  value 42.933567 
## converged
## # weights:  27
## initial  value 150.828476 
## iter  10 value 24.131661
## iter  20 value 19.605948
## iter  30 value 19.530553
## iter  40 value 19.527242
## final  value 19.527057 
## converged
## # weights:  43
## initial  value 125.354310 
## iter  10 value 21.660478
## iter  20 value 17.958628
## iter  30 value 17.736044
## iter  40 value 17.719752
## iter  50 value 17.719581
## iter  50 value 17.719581
## iter  50 value 17.719581
## final  value 17.719581 
## converged
## # weights:  11
## initial  value 118.990031 
## iter  10 value 46.484314
## iter  20 value 39.225686
## iter  30 value 9.650620
## iter  40 value 4.514044
## iter  50 value 3.865438
## iter  60 value 3.508071
## iter  70 value 3.041838
## iter  80 value 2.965815
## iter  90 value 2.953655
## iter 100 value 2.950243
## final  value 2.950243 
## stopped after 100 iterations
## # weights:  27
## initial  value 122.010199 
## iter  10 value 10.036298
## iter  20 value 0.341101
## iter  30 value 0.272783
## iter  40 value 0.249672
## iter  50 value 0.228956
## iter  60 value 0.219568
## iter  70 value 0.215171
## iter  80 value 0.210042
## iter  90 value 0.197683
## iter 100 value 0.188999
## final  value 0.188999 
## stopped after 100 iterations
## # weights:  43
## initial  value 129.722314 
## iter  10 value 4.282782
## iter  20 value 0.309622
## iter  30 value 0.272824
## iter  40 value 0.255595
## iter  50 value 0.245836
## iter  60 value 0.226164
## iter  70 value 0.216460
## iter  80 value 0.208423
## iter  90 value 0.204559
## iter 100 value 0.200969
## final  value 0.200969 
## stopped after 100 iterations
## # weights:  11
## initial  value 129.077732 
## iter  10 value 50.893757
## iter  20 value 49.341214
## iter  30 value 47.711365
## iter  40 value 45.883507
## iter  50 value 45.433657
## iter  60 value 44.762037
## iter  70 value 20.639842
## iter  80 value 5.307883
## iter  90 value 4.186131
## iter 100 value 3.928824
## final  value 3.928824 
## stopped after 100 iterations
## # weights:  27
## initial  value 129.835217 
## iter  10 value 9.829857
## iter  20 value 1.817620
## iter  30 value 0.001192
## final  value 0.000064 
## converged
## # weights:  43
## initial  value 157.390266 
## iter  10 value 8.338611
## iter  20 value 1.541313
## iter  30 value 0.005079
## final  value 0.000075 
## converged
## # weights:  11
## initial  value 129.818872 
## iter  10 value 75.525777
## iter  20 value 57.964228
## iter  30 value 43.875992
## final  value 43.827214 
## converged
## # weights:  27
## initial  value 130.968358 
## iter  10 value 45.968354
## iter  20 value 22.634991
## iter  30 value 21.409538
## iter  40 value 21.358119
## iter  50 value 21.351406
## iter  60 value 21.351186
## final  value 21.351182 
## converged
## # weights:  43
## initial  value 213.775591 
## iter  10 value 21.725412
## iter  20 value 18.822673
## iter  30 value 18.513150
## iter  40 value 18.456837
## iter  50 value 18.449317
## final  value 18.449280 
## converged
## # weights:  11
## initial  value 118.962754 
## iter  10 value 26.053147
## iter  20 value 6.333793
## iter  30 value 4.570285
## iter  40 value 4.297908
## iter  50 value 4.105559
## iter  60 value 3.903061
## iter  70 value 3.826761
## iter  80 value 3.823960
## iter  90 value 3.823294
## iter 100 value 3.822242
## final  value 3.822242 
## stopped after 100 iterations
## # weights:  27
## initial  value 132.606102 
## iter  10 value 22.897922
## iter  20 value 1.809082
## iter  30 value 0.796543
## iter  40 value 0.759424
## iter  50 value 0.614426
## iter  60 value 0.580862
## iter  70 value 0.550861
## iter  80 value 0.541313
## iter  90 value 0.484870
## iter 100 value 0.476444
## final  value 0.476444 
## stopped after 100 iterations
## # weights:  43
## initial  value 108.487853 
## iter  10 value 9.006639
## iter  20 value 1.563172
## iter  30 value 0.682425
## iter  40 value 0.633490
## iter  50 value 0.545956
## iter  60 value 0.496924
## iter  70 value 0.473405
## iter  80 value 0.439298
## iter  90 value 0.395353
## iter 100 value 0.365287
## final  value 0.365287 
## stopped after 100 iterations
## # weights:  11
## initial  value 119.337907 
## iter  10 value 53.721540
## iter  20 value 51.519354
## iter  30 value 50.670578
## iter  40 value 49.482013
## iter  50 value 40.619548
## iter  60 value 14.073622
## iter  70 value 5.816424
## iter  80 value 4.847922
## iter  90 value 3.451476
## iter 100 value 2.080745
## final  value 2.080745 
## stopped after 100 iterations
## # weights:  27
## initial  value 140.648336 
## iter  10 value 49.133514
## iter  20 value 34.297381
## iter  30 value 33.313181
## iter  40 value 17.096108
## iter  50 value 9.985887
## iter  60 value 1.717089
## iter  70 value 0.288081
## iter  80 value 0.001470
## final  value 0.000094 
## converged
## # weights:  43
## initial  value 125.329208 
## iter  10 value 4.485921
## iter  20 value 0.228080
## iter  30 value 0.006659
## final  value 0.000088 
## converged
## # weights:  11
## initial  value 124.049774 
## iter  10 value 57.031473
## iter  20 value 44.512638
## iter  30 value 44.385507
## final  value 44.384992 
## converged
## # weights:  27
## initial  value 126.045603 
## iter  10 value 39.049105
## iter  20 value 22.776253
## iter  30 value 20.135451
## iter  40 value 19.958468
## iter  50 value 19.949415
## iter  60 value 19.949154
## final  value 19.949153 
## converged
## # weights:  43
## initial  value 131.415649 
## iter  10 value 23.127808
## iter  20 value 19.282709
## iter  30 value 19.178237
## iter  40 value 19.174237
## iter  50 value 19.173870
## iter  60 value 19.173657
## final  value 19.173655 
## converged
## # weights:  11
## initial  value 121.517667 
## iter  10 value 70.104915
## iter  20 value 51.842884
## iter  30 value 37.560847
## iter  40 value 17.174634
## iter  50 value 7.825111
## iter  60 value 4.130372
## iter  70 value 4.047645
## iter  80 value 3.974757
## iter  90 value 3.892953
## iter 100 value 3.880627
## final  value 3.880627 
## stopped after 100 iterations
## # weights:  27
## initial  value 156.724237 
## iter  10 value 31.687326
## iter  20 value 13.871604
## iter  30 value 11.415025
## iter  40 value 4.734947
## iter  50 value 1.658477
## iter  60 value 1.395765
## iter  70 value 0.901869
## iter  80 value 0.612757
## iter  90 value 0.549314
## iter 100 value 0.538747
## final  value 0.538747 
## stopped after 100 iterations
## # weights:  43
## initial  value 132.598227 
## iter  10 value 13.217554
## iter  20 value 3.162245
## iter  30 value 0.557260
## iter  40 value 0.448381
## iter  50 value 0.415241
## iter  60 value 0.381674
## iter  70 value 0.363224
## iter  80 value 0.355472
## iter  90 value 0.350360
## iter 100 value 0.345746
## final  value 0.345746 
## stopped after 100 iterations
## # weights:  11
## initial  value 132.139541 
## iter  10 value 53.874624
## iter  20 value 49.262219
## iter  30 value 49.200325
## iter  40 value 48.489657
## iter  50 value 47.952170
## iter  60 value 47.819369
## iter  70 value 47.659295
## iter  80 value 47.630938
## iter  90 value 47.585539
## iter 100 value 47.552074
## final  value 47.552074 
## stopped after 100 iterations
## # weights:  27
## initial  value 122.797825 
## iter  10 value 11.536029
## iter  20 value 1.166215
## iter  30 value 0.002579
## final  value 0.000066 
## converged
## # weights:  43
## initial  value 111.656108 
## iter  10 value 4.672364
## iter  20 value 0.141012
## iter  30 value 0.001779
## iter  40 value 0.000649
## final  value 0.000068 
## converged
## # weights:  11
## initial  value 123.343747 
## iter  10 value 54.681912
## iter  20 value 43.801812
## iter  30 value 43.746268
## final  value 43.745415 
## converged
## # weights:  27
## initial  value 123.511781 
## iter  10 value 25.492386
## iter  20 value 20.202171
## iter  30 value 19.920891
## final  value 19.919737 
## converged
## # weights:  43
## initial  value 109.464495 
## iter  10 value 21.689217
## iter  20 value 18.433883
## iter  30 value 18.149227
## iter  40 value 18.115337
## iter  50 value 18.114134
## final  value 18.114127 
## converged
## # weights:  11
## initial  value 128.961908 
## iter  10 value 49.469897
## iter  20 value 44.367486
## iter  30 value 21.778378
## iter  40 value 6.844399
## iter  50 value 4.596111
## iter  60 value 4.420636
## iter  70 value 3.971717
## iter  80 value 3.937134
## iter  90 value 3.837716
## iter 100 value 3.831022
## final  value 3.831022 
## stopped after 100 iterations
## # weights:  27
## initial  value 117.146045 
## iter  10 value 7.488152
## iter  20 value 0.471752
## iter  30 value 0.421101
## iter  40 value 0.368511
## iter  50 value 0.342218
## iter  60 value 0.331822
## iter  70 value 0.317132
## iter  80 value 0.306914
## iter  90 value 0.296449
## iter 100 value 0.281767
## final  value 0.281767 
## stopped after 100 iterations
## # weights:  43
## initial  value 140.529472 
## iter  10 value 19.875220
## iter  20 value 2.954415
## iter  30 value 1.161097
## iter  40 value 1.019260
## iter  50 value 0.890732
## iter  60 value 0.728691
## iter  70 value 0.663176
## iter  80 value 0.613073
## iter  90 value 0.578710
## iter 100 value 0.540378
## final  value 0.540378 
## stopped after 100 iterations
## # weights:  11
## initial  value 127.631173 
## iter  10 value 21.873628
## iter  20 value 4.440109
## iter  30 value 0.177788
## iter  40 value 0.094798
## iter  50 value 0.024690
## iter  60 value 0.024059
## iter  70 value 0.023937
## iter  80 value 0.020992
## iter  90 value 0.020810
## iter 100 value 0.020705
## final  value 0.020705 
## stopped after 100 iterations
## # weights:  27
## initial  value 127.012445 
## iter  10 value 33.312366
## iter  20 value 1.204810
## iter  30 value 0.003554
## final  value 0.000078 
## converged
## # weights:  43
## initial  value 121.024455 
## iter  10 value 1.700603
## iter  20 value 0.003619
## final  value 0.000088 
## converged
## # weights:  11
## initial  value 121.802701 
## iter  10 value 67.660888
## iter  20 value 55.525621
## iter  30 value 42.687102
## final  value 42.579623 
## converged
## # weights:  27
## initial  value 116.162681 
## iter  10 value 27.378517
## iter  20 value 19.998507
## iter  30 value 19.985737
## iter  40 value 19.985715
## iter  40 value 19.985715
## iter  40 value 19.985715
## final  value 19.985715 
## converged
## # weights:  43
## initial  value 118.143759 
## iter  10 value 22.054136
## iter  20 value 17.989103
## iter  30 value 17.619595
## iter  40 value 17.317946
## iter  50 value 17.225372
## iter  60 value 17.222953
## iter  70 value 17.222487
## iter  80 value 17.222437
## iter  80 value 17.222437
## iter  80 value 17.222437
## final  value 17.222437 
## converged
## # weights:  11
## initial  value 118.355062 
## iter  10 value 49.818324
## iter  20 value 38.647325
## iter  30 value 15.844677
## iter  40 value 2.582960
## iter  50 value 2.136811
## iter  60 value 2.035498
## iter  70 value 2.033350
## iter  80 value 2.021573
## iter  90 value 1.995371
## iter 100 value 1.994256
## final  value 1.994256 
## stopped after 100 iterations
## # weights:  27
## initial  value 130.821997 
## iter  10 value 19.933529
## iter  20 value 0.975068
## iter  30 value 0.473534
## iter  40 value 0.432481
## iter  50 value 0.372884
## iter  60 value 0.295422
## iter  70 value 0.276597
## iter  80 value 0.263857
## iter  90 value 0.216302
## iter 100 value 0.209542
## final  value 0.209542 
## stopped after 100 iterations
## # weights:  43
## initial  value 144.732840 
## iter  10 value 10.040236
## iter  20 value 0.345443
## iter  30 value 0.298449
## iter  40 value 0.270041
## iter  50 value 0.225858
## iter  60 value 0.195855
## iter  70 value 0.176125
## iter  80 value 0.164022
## iter  90 value 0.152679
## iter 100 value 0.150088
## final  value 0.150088 
## stopped after 100 iterations
## # weights:  11
## initial  value 129.869113 
## iter  10 value 50.042465
## iter  20 value 49.908565
## iter  30 value 49.906746
## final  value 49.906672 
## converged
## # weights:  27
## initial  value 136.216049 
## iter  10 value 10.058478
## iter  20 value 0.927014
## iter  30 value 0.000386
## final  value 0.000089 
## converged
## # weights:  43
## initial  value 116.240399 
## iter  10 value 2.687573
## iter  20 value 0.910154
## iter  30 value 0.001158
## final  value 0.000058 
## converged
## # weights:  11
## initial  value 122.548705 
## iter  10 value 48.475518
## iter  20 value 43.263734
## final  value 43.262103 
## converged
## # weights:  27
## initial  value 151.969882 
## iter  10 value 29.866683
## iter  20 value 20.041938
## iter  30 value 19.181326
## iter  40 value 18.658426
## iter  50 value 18.646346
## iter  60 value 18.646228
## final  value 18.646221 
## converged
## # weights:  43
## initial  value 123.857709 
## iter  10 value 21.867276
## iter  20 value 18.327082
## iter  30 value 18.061485
## iter  40 value 18.034598
## iter  50 value 18.032834
## final  value 18.032819 
## converged
## # weights:  11
## initial  value 133.691360 
## iter  10 value 27.686299
## iter  20 value 3.688826
## iter  30 value 2.998116
## iter  40 value 2.982774
## iter  50 value 2.975593
## iter  60 value 2.973846
## iter  70 value 2.972998
## iter  80 value 2.972919
## final  value 2.972915 
## converged
## # weights:  27
## initial  value 121.910769 
## iter  10 value 4.186175
## iter  20 value 1.397080
## iter  30 value 0.429392
## iter  40 value 0.403901
## iter  50 value 0.371671
## iter  60 value 0.353374
## iter  70 value 0.346994
## iter  80 value 0.340640
## iter  90 value 0.326373
## iter 100 value 0.320888
## final  value 0.320888 
## stopped after 100 iterations
## # weights:  43
## initial  value 150.467908 
## iter  10 value 2.516940
## iter  20 value 0.515624
## iter  30 value 0.419086
## iter  40 value 0.400951
## iter  50 value 0.356741
## iter  60 value 0.321748
## iter  70 value 0.269242
## iter  80 value 0.257949
## iter  90 value 0.244026
## iter 100 value 0.230916
## final  value 0.230916 
## stopped after 100 iterations
## # weights:  11
## initial  value 130.397834 
## iter  10 value 50.573102
## iter  20 value 49.909353
## final  value 49.906794 
## converged
## # weights:  27
## initial  value 142.795978 
## iter  10 value 8.325156
## iter  20 value 1.733508
## iter  30 value 0.008474
## final  value 0.000056 
## converged
## # weights:  43
## initial  value 147.890271 
## iter  10 value 14.812090
## iter  20 value 0.484823
## iter  30 value 0.000580
## final  value 0.000074 
## converged
## # weights:  11
## initial  value 122.928070 
## iter  10 value 67.652212
## iter  20 value 46.324443
## iter  30 value 44.176746
## final  value 44.154954 
## converged
## # weights:  27
## initial  value 118.635144 
## iter  10 value 27.365477
## iter  20 value 20.236166
## iter  30 value 19.919856
## final  value 19.919323 
## converged
## # weights:  43
## initial  value 123.713602 
## iter  10 value 23.115917
## iter  20 value 19.181439
## iter  30 value 19.146092
## iter  40 value 19.135538
## iter  50 value 19.135363
## iter  60 value 19.135305
## final  value 19.135297 
## converged
## # weights:  11
## initial  value 124.268451 
## iter  10 value 50.415686
## iter  20 value 50.122205
## iter  30 value 50.099925
## iter  40 value 50.039219
## iter  50 value 48.795443
## iter  60 value 45.810850
## iter  70 value 44.976509
## iter  80 value 44.652199
## iter  90 value 43.655722
## iter 100 value 21.549290
## final  value 21.549290 
## stopped after 100 iterations
## # weights:  27
## initial  value 121.168989 
## iter  10 value 12.887627
## iter  20 value 1.421530
## iter  30 value 0.596446
## iter  40 value 0.525751
## iter  50 value 0.482633
## iter  60 value 0.455870
## iter  70 value 0.441781
## iter  80 value 0.405097
## iter  90 value 0.379758
## iter 100 value 0.359516
## final  value 0.359516 
## stopped after 100 iterations
## # weights:  43
## initial  value 154.331260 
## iter  10 value 9.135896
## iter  20 value 1.287634
## iter  30 value 0.536307
## iter  40 value 0.516772
## iter  50 value 0.444990
## iter  60 value 0.422222
## iter  70 value 0.414269
## iter  80 value 0.388936
## iter  90 value 0.382924
## iter 100 value 0.374877
## final  value 0.374877 
## stopped after 100 iterations
## # weights:  11
## initial  value 119.161548 
## iter  10 value 49.944558
## iter  20 value 48.322924
## iter  30 value 46.428533
## iter  40 value 46.268965
## iter  50 value 46.227049
## iter  60 value 46.155518
## iter  70 value 45.699558
## iter  80 value 37.848275
## iter  90 value 7.852629
## iter 100 value 4.666912
## final  value 4.666912 
## stopped after 100 iterations
## # weights:  27
## initial  value 121.994742 
## iter  10 value 4.269484
## iter  20 value 0.323645
## iter  30 value 0.000228
## final  value 0.000073 
## converged
## # weights:  43
## initial  value 120.712721 
## iter  10 value 11.633228
## iter  20 value 1.928801
## iter  30 value 0.089821
## iter  40 value 0.000470
## final  value 0.000048 
## converged
## # weights:  11
## initial  value 125.023647 
## iter  10 value 52.033224
## iter  20 value 43.475534
## iter  30 value 43.428235
## final  value 43.428214 
## converged
## # weights:  27
## initial  value 150.243876 
## iter  10 value 32.636911
## iter  20 value 21.467254
## iter  30 value 19.692563
## iter  40 value 19.331538
## iter  50 value 19.321372
## iter  60 value 19.321093
## final  value 19.321088 
## converged
## # weights:  43
## initial  value 137.965234 
## iter  10 value 22.585768
## iter  20 value 18.845985
## iter  30 value 18.359487
## iter  40 value 18.060579
## iter  50 value 17.805017
## iter  60 value 17.768557
## iter  70 value 17.768156
## iter  80 value 17.768097
## final  value 17.768090 
## converged
## # weights:  11
## initial  value 127.936624 
## iter  10 value 64.892982
## iter  20 value 52.457973
## iter  30 value 51.893780
## iter  40 value 46.822596
## iter  50 value 20.931506
## iter  60 value 5.855746
## iter  70 value 4.449348
## iter  80 value 3.934110
## iter  90 value 3.778873
## iter 100 value 3.726881
## final  value 3.726881 
## stopped after 100 iterations
## # weights:  27
## initial  value 124.538161 
## iter  10 value 19.935878
## iter  20 value 1.179326
## iter  30 value 0.515886
## iter  40 value 0.495212
## iter  50 value 0.459550
## iter  60 value 0.425014
## iter  70 value 0.408161
## iter  80 value 0.387730
## iter  90 value 0.360044
## iter 100 value 0.337881
## final  value 0.337881 
## stopped after 100 iterations
## # weights:  43
## initial  value 133.979878 
## iter  10 value 12.011468
## iter  20 value 0.941094
## iter  30 value 0.495870
## iter  40 value 0.477345
## iter  50 value 0.464609
## iter  60 value 0.425356
## iter  70 value 0.381548
## iter  80 value 0.333472
## iter  90 value 0.319381
## iter 100 value 0.304457
## final  value 0.304457 
## stopped after 100 iterations
## # weights:  11
## initial  value 129.556405 
## iter  10 value 49.342383
## iter  20 value 35.419965
## iter  30 value 5.074745
## iter  40 value 2.940088
## iter  50 value 2.543858
## iter  60 value 2.312929
## iter  70 value 2.281995
## iter  80 value 2.059116
## iter  90 value 2.012601
## iter 100 value 1.857343
## final  value 1.857343 
## stopped after 100 iterations
## # weights:  27
## initial  value 155.931952 
## iter  10 value 9.651371
## iter  20 value 1.510703
## iter  30 value 0.025766
## iter  40 value 0.003870
## iter  50 value 0.000229
## final  value 0.000085 
## converged
## # weights:  43
## initial  value 139.919182 
## iter  10 value 7.001515
## iter  20 value 2.265308
## iter  30 value 0.480211
## iter  40 value 0.046809
## iter  50 value 0.001016
## iter  60 value 0.000148
## final  value 0.000085 
## converged
## # weights:  11
## initial  value 137.379619 
## iter  10 value 58.587747
## iter  20 value 45.493964
## final  value 43.369230 
## converged
## # weights:  27
## initial  value 122.183968 
## iter  10 value 34.103176
## iter  20 value 19.778653
## iter  30 value 19.482816
## iter  40 value 19.412523
## iter  50 value 19.406639
## final  value 19.406612 
## converged
## # weights:  43
## initial  value 127.464513 
## iter  10 value 20.014903
## iter  20 value 18.283826
## iter  30 value 17.864550
## iter  40 value 17.854806
## iter  50 value 17.852930
## final  value 17.852879 
## converged
## # weights:  11
## initial  value 126.686154 
## iter  10 value 47.126881
## iter  20 value 13.760512
## iter  30 value 5.663815
## iter  40 value 4.107040
## iter  50 value 3.970174
## iter  60 value 3.913599
## iter  70 value 3.760966
## iter  80 value 3.757224
## iter  90 value 3.753338
## iter 100 value 3.748772
## final  value 3.748772 
## stopped after 100 iterations
## # weights:  27
## initial  value 144.486253 
## iter  10 value 4.284520
## iter  20 value 0.488472
## iter  30 value 0.440576
## iter  40 value 0.431107
## iter  50 value 0.424352
## iter  60 value 0.415746
## iter  70 value 0.413581
## iter  80 value 0.410783
## iter  90 value 0.409591
## iter 100 value 0.408124
## final  value 0.408124 
## stopped after 100 iterations
## # weights:  43
## initial  value 127.608663 
## iter  10 value 4.647335
## iter  20 value 1.221540
## iter  30 value 0.611939
## iter  40 value 0.560234
## iter  50 value 0.535709
## iter  60 value 0.477525
## iter  70 value 0.419169
## iter  80 value 0.399554
## iter  90 value 0.391996
## iter 100 value 0.375996
## final  value 0.375996 
## stopped after 100 iterations
## # weights:  11
## initial  value 138.169000 
## iter  10 value 58.741341
## iter  20 value 46.635586
## final  value 46.598157 
## converged
resultado_entrenamiento5 <- predict(modelo5, entrenamiento)
resultado_prueba5 <- predict(modelo5, prueba)

# Matriz de Confusion 
# Es una tabal de evaluación que desglosa el rendimiento del modelo de clasificación. 


# Matriz de Confusión del Resultado del Entrenamiento
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$Species)
mcre5
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         36         0
##   virginica       0          4        40
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9667          
##                  95% CI : (0.9169, 0.9908)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.95            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9000           1.0000
## Specificity                 1.0000            1.0000           0.9500
## Pos Pred Value              1.0000            1.0000           0.9091
## Neg Pred Value              1.0000            0.9524           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3000           0.3333
## Detection Prevalence        0.3333            0.3000           0.3667
## Balanced Accuracy           1.0000            0.9500           0.9750
# Matriz de Confusión del Resultado del Prueba
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$Species)
mcrp5
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0          9         0
##   virginica       0          1        10
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9667          
##                  95% CI : (0.8278, 0.9992)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 2.963e-13       
##                                           
##                   Kappa : 0.95            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9000           1.0000
## Specificity                 1.0000            1.0000           0.9500
## Pos Pred Value              1.0000            1.0000           0.9091
## Neg Pred Value              1.0000            0.9524           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3000           0.3333
## Detection Prevalence        0.3333            0.3000           0.3667
## Balanced Accuracy           1.0000            0.9500           0.9750

Modelo 6. Bosques Aleatorios

modelo6 <- train(Species ~ ., data = entrenamiento, #Species es la y 
                 method = "rf", # Cambiar
                 preProcess= c("scale", "center"),
                 trControl = trainControl(method = "cv", number =10),
                 tuneGrid = expand.grid(mtry = c(2,4,6))
                 )
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
resultado_entrenamiento6 <- predict(modelo6, entrenamiento)
resultado_prueba6 <- predict(modelo6, prueba)

# Matriz de Confusion 
# Es una tabal de evaluación que desglosa el rendimiento del modelo de clasificación. 


# Matriz de Confusión del Resultado del Entrenamiento
mcre6 <- confusionMatrix(resultado_entrenamiento6, entrenamiento$Species)
mcre6
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         40         0
##   virginica       0          0        40
## 
## Overall Statistics
##                                      
##                Accuracy : 1          
##                  95% CI : (0.9697, 1)
##     No Information Rate : 0.3333     
##     P-Value [Acc > NIR] : < 2.2e-16  
##                                      
##                   Kappa : 1          
##                                      
##  Mcnemar's Test P-Value : NA         
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           1.0000
## Specificity                 1.0000            1.0000           1.0000
## Pos Pred Value              1.0000            1.0000           1.0000
## Neg Pred Value              1.0000            1.0000           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.3333
## Detection Prevalence        0.3333            0.3333           0.3333
## Balanced Accuracy           1.0000            1.0000           1.0000
# Matriz de Confusión del Resultado del Prueba
mcrp6 <- confusionMatrix(resultado_prueba6, prueba$Species)
mcrp6
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0         10         2
##   virginica       0          0         8
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9333          
##                  95% CI : (0.7793, 0.9918)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 8.747e-12       
##                                           
##                   Kappa : 0.9             
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.8000
## Specificity                 1.0000            0.9000           1.0000
## Pos Pred Value              1.0000            0.8333           1.0000
## Neg Pred Value              1.0000            1.0000           0.9091
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.2667
## Detection Prevalence        0.3333            0.4000           0.2667
## Balanced Accuracy           1.0000            0.9500           0.9000

Tabla de Resultados

resultados <- data.frame(
  "svmLinear" = c(mcre1$overall["Accuracy"], mcrp1$overall["Accuracy"]),
  "svmRadial" = c(mcre2$overall["Accuracy"], mcrp2$overall["Accuracy"]),
  "svmPoly" = c(mcre3$overall["Accuracy"], mcrp3$overall["Accuracy"]),
  "rpart" = c(mcre4$overall["Accuracy"], mcrp4$overall["Accuracy"]),
  "nnet" = c(mcre5$overall["Accuracy"], mcrp5$overall["Accuracy"]),
  "rf" = c(mcre6$overall["Accuracy"], mcrp6$overall["Accuracy"])
)

rownames(resultados) <- c("Precisión de entrenamiento", "Precisión de prueba")
resultados
##                            svmLinear svmRadial   svmPoly     rpart      nnet
## Precisión de entrenamiento 0.9916667 0.9916667 0.9666667 0.9666667 0.9666667
## Precisión de prueba        0.9666667 0.9333333 0.9333333 0.9333333 0.9666667
##                                   rf
## Precisión de entrenamiento 1.0000000
## Precisión de prueba        0.9333333

Conclusiones

Acorde a la tabla de resutlados, observamos que ningún método presenta sobreajuste. Podemos seleccionar el de redes neuronales pro su desempeño

LS0tDQp0aXRsZTogIkNhcmV0Ig0KYXV0aG9yOiAiQW5hIEdvbnphbGV6IEEwMDgzNTUxMiINCmRhdGU6ICIyMDI1LTA4LTIyIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRydWUgDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiB5ZXRpDQotLS0NCg0KPGNlbnRlcj4NCiFbXShodHRwczovL2szLXByb2R1Y3Rpb24tYnVja2V0LnMzLmFtYXpvbmF3cy5jb20vdXBsb2Fkcy9jRDZjY0tLTUpKVzhyRU5mZV81MTUxOGlyaXMlMjBpbWcxLnBuZykNCg0KPC9jZW50ZXI+DQoNCg0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IFRlb3LDrWEgPC9zcGFuPg0KRWwgcGFxdWV0ZSAqKkNhcmV0IChDbGFzc2lmaWNhdGlvbiBBbmQgUmVncmVzc2lvbiBUcmFpbmluZykqKiBlcyB1biBwYXF1ZXRlIGludGVncmFsIGNvbiB1bmEgYW1wbGlhIHZhcmllZGFkIGRlIGFsZ29yaXRtb3MgcGFyYSBlbCBhcHJlbmRpemFqZSBhdXRvbcOhdGljby4gDQoNCiMgPHNwYW4gc3R5bGUgPSAiY29sb3I6Ymx1ZTsiPiBJbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQojaW5zdGFsbC5wYWNrYWdlcygiY2FyZXQiKQ0KI2luc3RhbGwucGFja2FnZXMoImRhdGFzZXRzIikNCiNpbnN0YWxsLnBhY2thZ2VzKCJEYXRhRXhwbG9yZXIiKQ0KDQoNCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShsYXR0aWNlKQ0KbGlicmFyeShjYXJldCkNCmxpYnJhcnkoZGF0YXNldHMpDQpsaWJyYXJ5KGtlcm5sYWIpDQpsaWJyYXJ5KERhdGFFeHBsb3JlcikNCmBgYA0KDQoNCg0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IENhcmdhciBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0KZGYgPC0gZGF0YS5mcmFtZShpcmlzKQ0KYGBgDQoNCg0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpzdW1tYXJ5KGRmKQ0Kc3RyKGRmKQ0KIyBjcmVhdGVfcmVwb3J0KGRmKQ0KcGxvdF9taXNzaW5nKGRmKQ0KcGxvdF9oaXN0b2dyYW0oZGYpDQpwbG90X2NvcnJlbGF0aW9uKGRmKQ0KI0xhIHZhcmlhYmxlIHF1ZSBxdWVyZW1vcyBwcmVkZWNpciBkZWJlIHRlbmVyIGZvcm1hdG8gZGUgRkFDVE9SDQpgYGANCg0KDQojIDxzcGFuIHN0eWxlID0gImNvbG9yOmJsdWU7Ij4gUGFydGlyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQojTm9ybWFsbWVudGUgODAtMjANCnNldC5zZWVkKDEyMykNCnJlbmdsb25lc19lbnRyZW5hbWllbnRvIDwtIGNyZWF0ZURhdGFQYXJ0aXRpb24oZGYkU3BlY2llcywgcCA9IDAuOCwgbGlzdCA9IEZBTFNFKSANCiMgZWwgYXJndW1lbnRvIGxpc3QgYXNlZ3VyYSBsYSBhbGVhdG9yaWRhZCBlbiBsYXMgcGFydGljaW9uZXMNCmVudHJlbmFtaWVudG8gPC0gZGZbcmVuZ2xvbmVzX2VudHJlbmFtaWVudG8sXQ0KcHJ1ZWJhIDwtIGRmWy1yZW5nbG9uZXNfZW50cmVuYW1pZW50byxdDQoNCiMgTG9zIFtdIHNpcnZlbiBwYXJhIGluZGV4YXIgZmlsYXMgeSBjb2x1bW5hcywgZWwgc2VndW5kbyBhcmd1bWVudG8gc29uIGxhcyBjb2x1bW5hcyBwZXJvIGVsIHByaW1lcm8gcHVlZGUgc2VydmlyIHBhcmEgdG9tYXIgY2llcnRvIG51bWVybyBkZSByZW5nbG9uZXMuIA0KYGBgDQoNCg0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IERpc3RpbnRvcyB0aXBvcyBkZSBNw6l0b2RvcyBwYXJhIE1vZGVsYXIgPC9zcGFuPg0KTG8gbcOpdG9kb3MgbcOhcyB1dGlsaXphZG9zIHBhcmEgbW9kZWxhciBhcHJlbmRpemFqZSBhdXRvbcOhdGljbyBzb246IA0KDQotICoqU1ZNKio6ICpTdXBwb3J0IFZlY3RvciBNYWNoaW5lKiBvIE3DoXF1aW5hIGRlIFZlY3RvcmVzIGRlIFNvcG9ydGUuIEhheSB2YXJpb3Mgc3VidGlwb3M6IExpbmVhciAoc3ZtTGluZWFyKSwgUmFkaWFsIChzdm1SYWRpYWwpLCBQb2xpbsOzbWljbyAoc3ZtUG9seSksIGV0Yy4NCg0KLSAqKsOBcmJvbCBkZSBEZWNpc2nDs24qKjogcnBhcnQgDQotICoqUmVkZXMgTmV1cm9uYWxlcyoqOiBubmV0DQotICoqUmFuZG9tIEZvcmVzdCoqIG8gQm9zcXVlcyBBbGVhdG9yaW9zOiByZg0KDQojIDxzcGFuIHN0eWxlID0gImNvbG9yOmJsdWU7Ij4gTW9kZWxvIDEuIFNWTSBMaW5lYWwgPC9zcGFuPg0KYGBge3J9DQptb2RlbG8xIDwtIHRyYWluKFNwZWNpZXMgfiAuLCBkYXRhID0gZW50cmVuYW1pZW50bywgI1NwZWNpZXMgZXMgbGEgeSANCiAgICAgICAgICAgICAgICAgbWV0aG9kID0gInN2bUxpbmVhciIsICMgQ2FtYmlhcg0KICAgICAgICAgICAgICAgICBwcmVQcm9jZXNzPSBjKCJzY2FsZSIsICJjZW50ZXIiKSwNCiAgICAgICAgICAgICAgICAgdHJDb250cm9sID0gdHJhaW5Db250cm9sKG1ldGhvZCA9ICJjdiIsIG51bWJlciA9MTApLCANCiAgICAgICAgICAgICAgICAgdHVuZUdyaWRlID0gZGF0YS5mcmFtZShjPTEpICMgQ2FtYmlhcg0KICAgICAgICAgICAgICAgICApDQoNCnJlc3VsdGFkb19lbnRyZW5hbWllbnRvMSA8LSBwcmVkaWN0KG1vZGVsbzEsIGVudHJlbmFtaWVudG8pDQpyZXN1bHRhZG9fcHJ1ZWJhMSA8LSBwcmVkaWN0KG1vZGVsbzEsIHBydWViYSkNCg0KIyBNYXRyaXogZGUgQ29uZnVzaW9uIA0KIyBFcyB1bmEgdGFiYWwgZGUgZXZhbHVhY2nDs24gcXVlIGRlc2dsb3NhIGVsIHJlbmRpbWllbnRvIGRlbCBtb2RlbG8gZGUgY2xhc2lmaWNhY2nDs24uIA0KDQoNCiMgTWF0cml6IGRlIENvbmZ1c2nDs24gZGVsIFJlc3VsdGFkbyBkZWwgRW50cmVuYW1pZW50bw0KbWNyZTEgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19lbnRyZW5hbWllbnRvMSwgZW50cmVuYW1pZW50byRTcGVjaWVzKQ0KbWNyZTENCg0KIyBNYXRyaXogZGUgQ29uZnVzacOzbiBkZWwgUmVzdWx0YWRvIGRlbCBQcnVlYmENCm1jcnAxIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fcHJ1ZWJhMSwgcHJ1ZWJhJFNwZWNpZXMpDQptY3JwMQ0KYGBgDQoNClNvYnJlYWp1c3RlIHNlIG5vdGEgY3VhbmRvIGNvbXBhcmFzIGxhIHByZWNpc2nDs24gZGVsIGVuZXRyZW5hbWllbnRvIGNvbiBlbCBkZSBwcnVlYmEgeSBzaSBlbCBkZSBwcnVlYmEgZXMgbXV5IGJham8gZW50b25jZXMgaGF5IHNvYnJlYWp1c3RlLg0KDQoNCiMgPHNwYW4gc3R5bGUgPSAiY29sb3I6Ymx1ZTsiPiBNb2RlbG8gMi4gU1ZNIFJhZGlhbCA8L3NwYW4+DQpgYGB7cn0NCm1vZGVsbzIgPC0gdHJhaW4oU3BlY2llcyB+IC4sIGRhdGEgPSBlbnRyZW5hbWllbnRvLCAjU3BlY2llcyBlcyBsYSB5IA0KICAgICAgICAgICAgICAgICBtZXRob2QgPSAic3ZtUmFkaWFsIiwgIyBDYW1iaWFyDQogICAgICAgICAgICAgICAgIHByZVByb2Nlc3M9IGMoInNjYWxlIiwgImNlbnRlciIpLA0KICAgICAgICAgICAgICAgICB0ckNvbnRyb2wgPSB0cmFpbkNvbnRyb2wobWV0aG9kID0gImN2IiwgbnVtYmVyID0xMCksIA0KICAgICAgICAgICAgICAgICB0dW5lR3JpZGUgPSBkYXRhLmZyYW1lKHNpZ21hID0gMSwgYz0xKSAjIENhbWJpYXINCiAgICAgICAgICAgICAgICAgKQ0KDQpyZXN1bHRhZG9fZW50cmVuYW1pZW50bzIgPC0gcHJlZGljdChtb2RlbG8yLCBlbnRyZW5hbWllbnRvKQ0KcmVzdWx0YWRvX3BydWViYTIgPC0gcHJlZGljdChtb2RlbG8yLCBwcnVlYmEpDQoNCiMgTWF0cml6IGRlIENvbmZ1c2lvbiANCiMgRXMgdW5hIHRhYmFsIGRlIGV2YWx1YWNpw7NuIHF1ZSBkZXNnbG9zYSBlbCByZW5kaW1pZW50byBkZWwgbW9kZWxvIGRlIGNsYXNpZmljYWNpw7NuLiANCg0KDQojIE1hdHJpeiBkZSBDb25mdXNpw7NuIGRlbCBSZXN1bHRhZG8gZGVsIEVudHJlbmFtaWVudG8NCm1jcmUyIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bzIsIGVudHJlbmFtaWVudG8kU3BlY2llcykNCm1jcmUyDQoNCiMgTWF0cml6IGRlIENvbmZ1c2nDs24gZGVsIFJlc3VsdGFkbyBkZWwgUHJ1ZWJhDQptY3JwMiA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYTIsIHBydWViYSRTcGVjaWVzKQ0KbWNycDINCmBgYA0KDQoNCiMgPHNwYW4gc3R5bGUgPSAiY29sb3I6Ymx1ZTsiPiBNb2RlbG8gMy4gU1ZNIFBvbGluw7NtaWNvIDwvc3Bhbj4NCmBgYHtyfQ0KbW9kZWxvMyA8LSB0cmFpbihTcGVjaWVzIH4gLiwgZGF0YSA9IGVudHJlbmFtaWVudG8sICNTcGVjaWVzIGVzIGxhIHkgDQogICAgICAgICAgICAgICAgIG1ldGhvZCA9ICJzdm1Qb2x5IiwgIyBDYW1iaWFyDQogICAgICAgICAgICAgICAgIHByZVByb2Nlc3M9IGMoInNjYWxlIiwgImNlbnRlciIpLA0KICAgICAgICAgICAgICAgICB0ckNvbnRyb2wgPSB0cmFpbkNvbnRyb2wobWV0aG9kID0gImN2IiwgbnVtYmVyID0xMCksIA0KICAgICAgICAgICAgICAgICB0dW5lR3JpZGUgPSBkYXRhLmZyYW1lKGRlZ3JlZSA9IDEsIHNpZ21hID0gMSwgYz0xKSAjIENhbWJpYXINCiAgICAgICAgICAgICAgICAgKQ0KDQpyZXN1bHRhZG9fZW50cmVuYW1pZW50bzMgPC0gcHJlZGljdChtb2RlbG8zLCBlbnRyZW5hbWllbnRvKQ0KcmVzdWx0YWRvX3BydWViYTMgPC0gcHJlZGljdChtb2RlbG8zLCBwcnVlYmEpDQoNCiMgTWF0cml6IGRlIENvbmZ1c2lvbiANCiMgRXMgdW5hIHRhYmFsIGRlIGV2YWx1YWNpw7NuIHF1ZSBkZXNnbG9zYSBlbCByZW5kaW1pZW50byBkZWwgbW9kZWxvIGRlIGNsYXNpZmljYWNpw7NuLiANCg0KDQojIE1hdHJpeiBkZSBDb25mdXNpw7NuIGRlbCBSZXN1bHRhZG8gZGVsIEVudHJlbmFtaWVudG8NCm1jcmUzIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bzMsIGVudHJlbmFtaWVudG8kU3BlY2llcykNCm1jcmUzDQoNCiMgTWF0cml6IGRlIENvbmZ1c2nDs24gZGVsIFJlc3VsdGFkbyBkZWwgUHJ1ZWJhDQptY3JwMyA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYTMsIHBydWViYSRTcGVjaWVzKQ0KbWNycDMNCmBgYA0KDQoNCiMgPHNwYW4gc3R5bGUgPSAiY29sb3I6Ymx1ZTsiPiBNb2RlbG8gNC4gw4FyYm9sIGRlIERlY2lzacOzbiA8L3NwYW4+DQpgYGB7cn0NCm1vZGVsbzQgPC0gdHJhaW4oU3BlY2llcyB+IC4sIGRhdGEgPSBlbnRyZW5hbWllbnRvLCAjU3BlY2llcyBlcyBsYSB5IA0KICAgICAgICAgICAgICAgICBtZXRob2QgPSAicnBhcnQiLCAjIENhbWJpYXINCiAgICAgICAgICAgICAgICAgcHJlUHJvY2Vzcz0gYygic2NhbGUiLCAiY2VudGVyIiksDQogICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2QgPSAiY3YiLCBudW1iZXIgPTEwKSwgDQogICAgICAgICAgICAgICAgIHR1bmVMZW5ndGggPSAxMCAjIENhbWJpYXINCiAgICAgICAgICAgICAgICAgKQ0KDQpyZXN1bHRhZG9fZW50cmVuYW1pZW50bzQgPC0gcHJlZGljdChtb2RlbG80LCBlbnRyZW5hbWllbnRvKQ0KcmVzdWx0YWRvX3BydWViYTQgPC0gcHJlZGljdChtb2RlbG80LCBwcnVlYmEpDQoNCiMgTWF0cml6IGRlIENvbmZ1c2lvbiANCiMgRXMgdW5hIHRhYmFsIGRlIGV2YWx1YWNpw7NuIHF1ZSBkZXNnbG9zYSBlbCByZW5kaW1pZW50byBkZWwgbW9kZWxvIGRlIGNsYXNpZmljYWNpw7NuLiANCg0KDQojIE1hdHJpeiBkZSBDb25mdXNpw7NuIGRlbCBSZXN1bHRhZG8gZGVsIEVudHJlbmFtaWVudG8NCm1jcmU0IDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bzQsIGVudHJlbmFtaWVudG8kU3BlY2llcykNCm1jcmU0DQoNCiMgTWF0cml6IGRlIENvbmZ1c2nDs24gZGVsIFJlc3VsdGFkbyBkZWwgUHJ1ZWJhDQptY3JwNCA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYTQsIHBydWViYSRTcGVjaWVzKQ0KbWNycDQNCmBgYA0KDQoNCg0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IE1vZGVsbyA1LiBSZWRlcyBOZXVyb25hbGVzIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0V9DQptb2RlbG81IDwtIHRyYWluKFNwZWNpZXMgfiAuLCBkYXRhID0gZW50cmVuYW1pZW50bywgI1NwZWNpZXMgZXMgbGEgeSANCiAgICAgICAgICAgICAgICAgbWV0aG9kID0gIm5uZXQiLCAjIENhbWJpYXINCiAgICAgICAgICAgICAgICAgcHJlUHJvY2Vzcz0gYygic2NhbGUiLCAiY2VudGVyIiksDQogICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2QgPSAiY3YiLCBudW1iZXIgPTEwKSAgICAgICAgICAgICAgICAgDQogICAgICAgICAgICAgICAgICkNCg0KcmVzdWx0YWRvX2VudHJlbmFtaWVudG81IDwtIHByZWRpY3QobW9kZWxvNSwgZW50cmVuYW1pZW50bykNCnJlc3VsdGFkb19wcnVlYmE1IDwtIHByZWRpY3QobW9kZWxvNSwgcHJ1ZWJhKQ0KDQojIE1hdHJpeiBkZSBDb25mdXNpb24gDQojIEVzIHVuYSB0YWJhbCBkZSBldmFsdWFjacOzbiBxdWUgZGVzZ2xvc2EgZWwgcmVuZGltaWVudG8gZGVsIG1vZGVsbyBkZSBjbGFzaWZpY2FjacOzbi4gDQoNCg0KIyBNYXRyaXogZGUgQ29uZnVzacOzbiBkZWwgUmVzdWx0YWRvIGRlbCBFbnRyZW5hbWllbnRvDQptY3JlNSA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX2VudHJlbmFtaWVudG81LCBlbnRyZW5hbWllbnRvJFNwZWNpZXMpDQptY3JlNQ0KDQojIE1hdHJpeiBkZSBDb25mdXNpw7NuIGRlbCBSZXN1bHRhZG8gZGVsIFBydWViYQ0KbWNycDUgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19wcnVlYmE1LCBwcnVlYmEkU3BlY2llcykNCm1jcnA1DQpgYGANCg0KDQojIDxzcGFuIHN0eWxlID0gImNvbG9yOmJsdWU7Ij4gTW9kZWxvIDYuIEJvc3F1ZXMgQWxlYXRvcmlvcyA8L3NwYW4+DQpgYGB7cn0NCm1vZGVsbzYgPC0gdHJhaW4oU3BlY2llcyB+IC4sIGRhdGEgPSBlbnRyZW5hbWllbnRvLCAjU3BlY2llcyBlcyBsYSB5IA0KICAgICAgICAgICAgICAgICBtZXRob2QgPSAicmYiLCAjIENhbWJpYXINCiAgICAgICAgICAgICAgICAgcHJlUHJvY2Vzcz0gYygic2NhbGUiLCAiY2VudGVyIiksDQogICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2QgPSAiY3YiLCBudW1iZXIgPTEwKSwNCiAgICAgICAgICAgICAgICAgdHVuZUdyaWQgPSBleHBhbmQuZ3JpZChtdHJ5ID0gYygyLDQsNikpDQogICAgICAgICAgICAgICAgICkNCg0KcmVzdWx0YWRvX2VudHJlbmFtaWVudG82IDwtIHByZWRpY3QobW9kZWxvNiwgZW50cmVuYW1pZW50bykNCnJlc3VsdGFkb19wcnVlYmE2IDwtIHByZWRpY3QobW9kZWxvNiwgcHJ1ZWJhKQ0KDQojIE1hdHJpeiBkZSBDb25mdXNpb24gDQojIEVzIHVuYSB0YWJhbCBkZSBldmFsdWFjacOzbiBxdWUgZGVzZ2xvc2EgZWwgcmVuZGltaWVudG8gZGVsIG1vZGVsbyBkZSBjbGFzaWZpY2FjacOzbi4gDQoNCg0KIyBNYXRyaXogZGUgQ29uZnVzacOzbiBkZWwgUmVzdWx0YWRvIGRlbCBFbnRyZW5hbWllbnRvDQptY3JlNiA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX2VudHJlbmFtaWVudG82LCBlbnRyZW5hbWllbnRvJFNwZWNpZXMpDQptY3JlNg0KDQojIE1hdHJpeiBkZSBDb25mdXNpw7NuIGRlbCBSZXN1bHRhZG8gZGVsIFBydWViYQ0KbWNycDYgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19wcnVlYmE2LCBwcnVlYmEkU3BlY2llcykNCm1jcnA2DQpgYGANCg0KDQojIDxzcGFuIHN0eWxlID0gImNvbG9yOmJsdWU7Ij4gVGFibGEgZGUgUmVzdWx0YWRvcyA8L3NwYW4+DQpgYGB7cn0NCnJlc3VsdGFkb3MgPC0gZGF0YS5mcmFtZSgNCiAgInN2bUxpbmVhciIgPSBjKG1jcmUxJG92ZXJhbGxbIkFjY3VyYWN5Il0sIG1jcnAxJG92ZXJhbGxbIkFjY3VyYWN5Il0pLA0KICAic3ZtUmFkaWFsIiA9IGMobWNyZTIkb3ZlcmFsbFsiQWNjdXJhY3kiXSwgbWNycDIkb3ZlcmFsbFsiQWNjdXJhY3kiXSksDQogICJzdm1Qb2x5IiA9IGMobWNyZTMkb3ZlcmFsbFsiQWNjdXJhY3kiXSwgbWNycDMkb3ZlcmFsbFsiQWNjdXJhY3kiXSksDQogICJycGFydCIgPSBjKG1jcmU0JG92ZXJhbGxbIkFjY3VyYWN5Il0sIG1jcnA0JG92ZXJhbGxbIkFjY3VyYWN5Il0pLA0KICAibm5ldCIgPSBjKG1jcmU1JG92ZXJhbGxbIkFjY3VyYWN5Il0sIG1jcnA1JG92ZXJhbGxbIkFjY3VyYWN5Il0pLA0KICAicmYiID0gYyhtY3JlNiRvdmVyYWxsWyJBY2N1cmFjeSJdLCBtY3JwNiRvdmVyYWxsWyJBY2N1cmFjeSJdKQ0KKQ0KDQpyb3duYW1lcyhyZXN1bHRhZG9zKSA8LSBjKCJQcmVjaXNpw7NuIGRlIGVudHJlbmFtaWVudG8iLCAiUHJlY2lzacOzbiBkZSBwcnVlYmEiKQ0KcmVzdWx0YWRvcw0KDQpgYGANCg0KDQojIDxzcGFuIHN0eWxlID0gImNvbG9yOmJsdWU7Ij4gQ29uY2x1c2lvbmVzIDwvc3Bhbj4NCkFjb3JkZSBhIGxhIHRhYmxhIGRlIHJlc3V0bGFkb3MsIG9ic2VydmFtb3MgcXVlIG5pbmfDum4gbcOpdG9kbyBwcmVzZW50YSBzb2JyZWFqdXN0ZS4gUG9kZW1vcyBzZWxlY2Npb25hciBlbCBkZSAqKnJlZGVzIG5ldXJvbmFsZXMqKiBwcm8gc3UgZGVzZW1wZcOxbw0KDQoNCg0KDQo=