Markdown Demo
Load some data
library(datasets)
data(airquality)
summary(airquality)
## Ozone Solar.R Wind Temp
## Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
## 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
## Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
## Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
## 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
## Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
## NA's :37 NA's :7
## Month Day
## Min. :5.000 Min. : 1.0
## 1st Qu.:6.000 1st Qu.: 8.0
## Median :7.000 Median :16.0
## Mean :6.993 Mean :15.8
## 3rd Qu.:8.000 3rd Qu.:23.0
## Max. :9.000 Max. :31.0
##
Generate a pairs plot of the data
pairs(airquality)
Generate a regression model of ozone on some predictors
fit <- lm(Ozone= Solar.R + Wind +Temp, data = airquality)
## Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## extra argument 'Ozone' will be disregarded
summary(fit)
##
## Call:
## lm(data = airquality, Ozone = Solar.R + Wind + Temp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.014 -12.284 -3.302 8.454 95.348
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -64.11632 23.48249 -2.730 0.00742 **
## Solar.R 0.05027 0.02342 2.147 0.03411 *
## Wind -3.31844 0.64451 -5.149 1.23e-06 ***
## Temp 1.89579 0.27389 6.922 3.66e-10 ***
## Month -3.03996 1.51346 -2.009 0.04714 *
## Day 0.27388 0.22967 1.192 0.23576
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.86 on 105 degrees of freedom
## (42 observations deleted due to missingness)
## Multiple R-squared: 0.6249, Adjusted R-squared: 0.6071
## F-statistic: 34.99 on 5 and 105 DF, p-value: < 2.2e-16
Unordered list
• Here’s Item 1
• Here’s Item 2
Ordered List
First item
Second Item