library(tseries)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(forecast)
url="https://raw.githubusercontent.com/vmoprojs/DataLectures/master/pib_ec_const.csv"
datos=read.delim(url,sep=";")
demanda_interna=datos$DI/1000000
dit=ts(demanda_interna,start = c(2000,1),frequency = 4)
plot(dit,main = "Demanda Interna",xlab = "año",ylab = "")
La gráfica muestra la evolución de la DEMANDA INTERNA a lo largo
deltiempo, desde el año 2000 hasta el finales del 2020, se observa una
tendencia creciente
ditl=log(dit)
plot(ditl)
adf.test(ditl)
## Warning in adf.test(ditl): p-value greater than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: ditl
## Dickey-Fuller = -0.17559, Lag order = 4, p-value = 0.99
## alternative hypothesis: stationary
p-valor es 0.99, mayor que alfa entonces se acepta la hipotesis
m=auto.arima(ditl,trace = T)
##
## ARIMA(2,2,2)(1,0,1)[4] : -357.3024
## ARIMA(0,2,0) : -321.8768
## ARIMA(1,2,0)(1,0,0)[4] : -341.9503
## ARIMA(0,2,1)(0,0,1)[4] : -362.7824
## ARIMA(0,2,1) : -363.1886
## ARIMA(0,2,1)(1,0,0)[4] : -363.3354
## ARIMA(0,2,1)(2,0,0)[4] : -362.0084
## ARIMA(0,2,1)(1,0,1)[4] : -362.3233
## ARIMA(0,2,1)(2,0,1)[4] : -360.0544
## ARIMA(0,2,0)(1,0,0)[4] : -328.0866
## ARIMA(1,2,1)(1,0,0)[4] : -362.6642
## ARIMA(0,2,2)(1,0,0)[4] : -362.5324
## ARIMA(1,2,2)(1,0,0)[4] : -360.3985
##
## Best model: ARIMA(0,2,1)(1,0,0)[4]
m
## Series: ditl
## ARIMA(0,2,1)(1,0,0)[4]
##
## Coefficients:
## ma1 sar1
## -0.9359 0.2145
## s.e. 0.0417 0.1409
##
## sigma^2 = 0.0006463: log likelihood = 184.82
## AIC=-363.64 AICc=-363.34 BIC=-356.42
\((y_t-y_{t-1})-(y_{t-12}-y_{t-13})=-0.9359\sigma_{t-1}+0.2145\sigma_{t-12}+E_t\)
dip=predict(m,19)
dip
## $pred
## Qtr1 Qtr2 Qtr3 Qtr4
## 2021 2.788893 2.756976 2.757648 2.759689
## 2022 2.755888 2.745745 2.742592 2.739733
## 2023 2.735620 2.730148 2.726175 2.722264
## 2024 2.718085 2.713614 2.709465 2.705329
## 2025 2.701136 2.696880 2.692693
##
## $se
## Qtr1 Qtr2 Qtr3 Qtr4
## 2021 0.02542271 0.03712318 0.04691225 0.05585256
## 2022 0.06721426 0.07789681 0.08819189 0.09826127
## 2023 0.10869913 0.11904141 0.12934367 0.13964497
## 2024 0.15006531 0.16053106 0.17105891 0.18166168
## 2025 0.19236692 0.20316444 0.21406036