##IMPORTACION DE DATOS
library(tseries)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(forecast)
library(writexl)
uf=AirPassengers
plot(uf)
url=
"https://raw.githubusercontent.com/vmoprojs/DataLectures/master/pib_ec_const.csv"
datos=read.delim(url,sep = ",")
uf_s=AirPassengers
plot(uf)
uf_s=log(uf)
plot(uf_s)
adf.test(uf_s)
## Warning in adf.test(uf_s): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: uf_s
## Dickey-Fuller = -6.4215, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
uf_sl=diff(uf_s)
uf_sld=diff(uf_sl,4)
adf.test(uf_sld)
## Warning in adf.test(uf_sld): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: uf_sld
## Dickey-Fuller = -5.5915, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
acf(uf_sld,lag.max = 12,main= "serie uf en diferencias")
## funcion de autocorrelacion parcial
pacf(uf_sld,lag.max = 12,main="serie uf en diferencias")
mod1=arima(uf_sl,order = c(1,1,1),seasonal = c(0,1,1))
mod1
##
## Call:
## arima(x = uf_sl, order = c(1, 1, 1), seasonal = c(0, 1, 1))
##
## Coefficients:
## ar1 ma1 sma1
## -0.3356 -1.0000 -0.5530
## s.e. 0.0826 0.0271 0.0762
##
## sigma^2 estimated as 0.00138: log likelihood = 237.97, aic = -467.93
mod=auto.arima(uf_sl,trace = T)
##
## ARIMA(2,0,2)(1,1,1)[12] with drift : Inf
## ARIMA(0,0,0)(0,1,0)[12] with drift : -432.7415
## ARIMA(1,0,0)(1,1,0)[12] with drift : -472.4967
## ARIMA(0,0,1)(0,1,1)[12] with drift : -481.1033
## ARIMA(0,0,0)(0,1,0)[12] : -434.799
## ARIMA(0,0,1)(0,1,0)[12] with drift : -447.8018
## ARIMA(0,0,1)(1,1,1)[12] with drift : -479.454
## ARIMA(0,0,1)(0,1,2)[12] with drift : -479.5049
## ARIMA(0,0,1)(1,1,0)[12] with drift : -475.0825
## ARIMA(0,0,1)(1,1,2)[12] with drift : Inf
## ARIMA(0,0,0)(0,1,1)[12] with drift : -465.3811
## ARIMA(1,0,1)(0,1,1)[12] with drift : -479.4557
## ARIMA(0,0,2)(0,1,1)[12] with drift : -479.1627
## ARIMA(1,0,0)(0,1,1)[12] with drift : -479.1871
## ARIMA(1,0,2)(0,1,1)[12] with drift : Inf
## ARIMA(0,0,1)(0,1,1)[12] : -483.204
## ARIMA(0,0,1)(0,1,0)[12] : -449.8846
## ARIMA(0,0,1)(1,1,1)[12] : -481.5888
## ARIMA(0,0,1)(0,1,2)[12] : -481.6381
## ARIMA(0,0,1)(1,1,0)[12] : -477.2096
## ARIMA(0,0,1)(1,1,2)[12] : Inf
## ARIMA(0,0,0)(0,1,1)[12] : -467.459
## ARIMA(1,0,1)(0,1,1)[12] : -481.5755
## ARIMA(0,0,2)(0,1,1)[12] : -481.2929
## ARIMA(1,0,0)(0,1,1)[12] : -481.2948
## ARIMA(1,0,2)(0,1,1)[12] : -481.5558
##
## Best model: ARIMA(0,0,1)(0,1,1)[12]
mod
## Series: uf_sl
## ARIMA(0,0,1)(0,1,1)[12]
##
## Coefficients:
## ma1 sma1
## -0.4018 -0.5569
## s.e. 0.0896 0.0731
##
## sigma^2 = 0.001369: log likelihood = 244.7
## AIC=-483.39 AICc=-483.2 BIC=-474.77
\((y_t-y_{t-1})-(y_{t-12}-y_{t-13})=-0.4018 E_{t-1}-0.5569/epsilon_{t-12}\) ##EVALUACION DEL MODELO 1
Box.test(mod1$residuals)
##
## Box-Pierce test
##
## data: mod1$residuals
## X-squared = 0.12585, df = 1, p-value = 0.7228
uf_sld=predict(mod1,4)
uf_sl=exp(uf_sld$pred)
uf_sl
## Jan Feb Mar Apr
## 1961 1.0372908 0.9442893 1.1245567 1.0280120
ts.plot(uf,uf_sl,col=c("blue","red"))