minPanel

Author

Tingting Zhan

Published

September 25, 2025

1 Introduction

This vignette of package minPanel (Github) presents …

1.1 Prerequisite

Package groupedHyperframe requires R version 4.5.0 (released 2025-04-11) or higher (macOS, Windows, Linux).

Environment on author’s computer
Sys.info()[c('sysname', 'release', 'machine')]
#  sysname  release  machine 
# "Darwin" "25.1.0"  "arm64"
R.version
#                _                           
# platform       aarch64-apple-darwin20      
# arch           aarch64                     
# os             darwin20                    
# system         aarch64, darwin20           
# status                                     
# major          4                           
# minor          5.1                         
# year           2025                        
# month          06                          
# day            13                          
# svn rev        88306                       
# language       R                           
# version.string R version 4.5.1 (2025-06-13)
# nickname       Great Square Root

Experimental (and maybe unstable) features are released extremely frequently to Github.

remotes::install_github('tingtingzhan/minPanel')

1.2 Getting Started

Examples in this vignette require that the search path has

library(minPanel)
library(ggplot2)
library(flextable)

2 Data Set

Study data should be described in a peer-reviewed manuscript in the following language.

<Biology> samples from n_1 <positive.subjects> were obtained from our collaborators <institutionA-1>, <institutionA-2> under approved IRB protocols. <Biology> samples from n_0 <negative.subjects> from <institutionB-1>, <institutionB-2> were used as controls. Demographic information of human subjects is shown in <table> and <supplementary materials>.

Data from Zezulinski et al. (2025) is included in package minPanel.

Data object m1 is a logical matrix of 12877 variants in 50 early & late stage, i.e., positive, patients.

m1 |> 
  dim()
# [1] 12877    50
m1 |> 
  head(n = c(3L, 3L))
#                     UPH-106P UPH-004P UPH-083P
# chr17:7176997 C>T      FALSE    FALSE     TRUE
# chr11:118583356 G>A    FALSE    FALSE    FALSE
# chr12:49269877 C>T     FALSE    FALSE     TRUE

Data object m0 is a logical matrix of the same 12877 variants in 31 UPC, i.e., negative, patients.

m0 |> 
  dim()
# [1] 12877    31
m0 |> 
  head(n = c(3L, 3L))
#                     UPC-022P UPC-021P UPC-044P
# chr17:7176997 C>T      FALSE    FALSE    FALSE
# chr11:118583356 G>A    FALSE    FALSE    FALSE
# chr12:49269877 C>T     FALSE    FALSE    FALSE

3 Panel of Variant-Collections

Function panel() identifies the variants that identifies the same set of positive subjects in m1, and the same set of negative subjects in m0. These variants are considered identical in terms of m1 and m0. Therefore they are put in one variant-collection. We use “collection” for short in this vignette.

m = panel(m1 = m1, m0 = m0)
m
# Panel of 1253 Variant-Collections from
# 50 positive subjects
# 31 negative subjects

In other words, the 12877 variants in both m1 and m0 are consolidated into 1253 collections. For example, the variants below identify the same set of positive and negative subjects, thus they are consolidated as one collection.

e.g., variants consolidated in one collection
m@id[[8L]] |>
  cat(sep = '\n')
# chr1:29053290 C>A
# chr1:29053291 A>G
# chr1:29053294 G>C
# chr1:29053295 C>T

4 Selected Ordered Panel

Methodology should be described in a peer-reviewed manuscript in the following language.

A minimal panel of variants-collections is determined using the following steps: (1) we exclude the collections that identify none of the <positive.subjects> per collection; (2) we exclude the collections that identify at least 1 of the <negative.subjects> per collection; (3) we sort the remaining collections by the number of <positive.subjects> identified per collection, from most to least; (4) we exclude the collections that identify no more <positive.subjects> than all the preceding collections. Such panel of collections is ordered, i.e., a researcher may reduce the size of the panel by keeping the collections in the top of the panel and dropping those in the bottom of the panel. <Figure> is the Consolidated Standards of Reporting Trials (CONSORT) diagram of this selection procedure. This methodology is implemented in R (R Core Team (2025)) package minPanel (citation coming soon).

x0 = m |>
  subset(subset = true_positive > 0L) |>
  subset(subset = false_positive <= 0L, append.label = TRUE) |>
  sort_by(y = ~ true_positive, decreasing = TRUE) |>
  subset(subset = diff(cum_true_positive) > 0L) |>
  append_label(info = 'cum_false_positive')

The pipeline above consists of five steps.

  1. The first call to subset() (Appendix Section 6.2.2) selects the collections that identify at least one positive subjects per collection (Appendix Section 6.2.1).
  2. The second call to subset() selects the collections that identify none of the negative subjects per collection (Appendix Section 6.2.1). The per-collection criterion 'False(+) ≤0/31' is appended to the @label of the output.
  3. The call to sort_by() (Appendix Section 6.2.3) sorts the collections by their number of positive subjects identified per collection (Appendix Section 6.2.1), in decreasing order.
  4. The last call to subset() identifies the collections, so that each one collection identifies at least one more positive subjects than all the preceding collections (Appendix Section 6.2.1).
  5. The call to append_label() (Appendix Section 6.2.4) summarizes the number of negative subjects identified as a panel of collections (Appendix Section 6.2.1). The panel-wise criterion 'panelFalse(+) ≤0/31' is appended to the @label of the output.
x0
# False(+) ≤0/31
# panelFalse(+) ≤0/31
# Panel of 23 Variant-Collections from
# 50 positive subjects
# 31 negative subjects

Function consort.panel() (Appendix Section 6.2.5) presents a Consolidated Standards of Reporting Trials (CONSORT) diagram of the creation of a selected panel. Figure 1 shows the creation of x0.

x0 |>
  consort.panel()
Figure 1: CONSORT Diagram of x0

Similarly, we relax the constraint on false_positive-per-collection and create

A panel x1: controlled at false_positive <= 1L per collection
x1 = m |>
  subset(subset = true_positive > 0L) |>
  subset(subset = false_positive <= 1L, append.label = TRUE) |>
  sort_by(y = ~ true_positive, decreasing = TRUE) |>
  subset(subset = diff(cum_true_positive) > 0L) |>
  append_label(info = 'cum_false_positive')
x1
# False(+) ≤1/31
# panelFalse(+) ≤7/31
# Panel of 18 Variant-Collections from
# 50 positive subjects
# 31 negative subjects
A panel x2: controlled at false_positive <= 2L per collection
x2 = m |>
  subset(subset = true_positive > 0L) |>
  subset(subset = false_positive <= 2L, append.label = TRUE) |>
  sort_by(y = ~ true_positive, decreasing = TRUE) |>
  subset(subset = diff(cum_true_positive) > 0L) |>
  append_label(info = 'cum_false_positive')
x2
# False(+) ≤2/31
# panelFalse(+) ≤13/31
# Panel of 17 Variant-Collections from
# 50 positive subjects
# 31 negative subjects
x2
# False(+) ≤2/31
# panelFalse(+) ≤13/31
# Panel of 17 Variant-Collections from
# 50 positive subjects
# 31 negative subjects
A panel x3: controlled at false_positive <= 3L per collection
x3 = m |>
  subset(subset = true_positive > 0L) |>
  subset(subset = false_positive <= 3L, append.label = TRUE) |>
  sort_by(y = ~ true_positive, decreasing = TRUE) |>
  subset(subset = diff(cum_true_positive) > 0L) |>
  append_label(info = 'cum_false_positive')
x3
# False(+) ≤3/31
# panelFalse(+) ≤12/31
# Panel of 16 Variant-Collections from
# 50 positive subjects
# 31 negative subjects
x3
# False(+) ≤3/31
# panelFalse(+) ≤12/31
# Panel of 16 Variant-Collections from
# 50 positive subjects
# 31 negative subjects

5 Operating Characteristics

Function panellist() collects multiple panels.

z = panellist(x0, x1, x2, x3)

The S3 method dispatch base::print.listof() displays a panellist.

A panellist z
z
# Component 1 :
# False(+) ≤0/31
# panelFalse(+) ≤0/31
# Panel of 23 Variant-Collections from
# 50 positive subjects
# 31 negative subjects
# 
# Component 2 :
# False(+) ≤1/31
# panelFalse(+) ≤7/31
# Panel of 18 Variant-Collections from
# 50 positive subjects
# 31 negative subjects
# 
# Component 3 :
# False(+) ≤2/31
# panelFalse(+) ≤13/31
# Panel of 17 Variant-Collections from
# 50 positive subjects
# 31 negative subjects
# 
# Component 4 :
# False(+) ≤3/31
# panelFalse(+) ≤12/31
# Panel of 16 Variant-Collections from
# 50 positive subjects
# 31 negative subjects

5.1 Visualization

The operating characteristics should be described in a peer-reviewed manuscript in the following language.

<Figure> presents the operating characteristics of multiple ordered-panels of variants-collections. The x-axis is the number of collections from the top of each ordered-panel. The y-axis is the percentage of <positive.subjects> identified. An operating characteristics curve moves towards the upper-left corner to indicate a better performance, i.e., higer percentage of <positive.subjects> identified with lower number of collections in the ordered-panel. Investigators should evaluate multiple operating characteristics curves by their control on number of <false.subjects> identified.

The S3 method dispatches autoplot.panellist() and autolayer.panellist() visualize the operating characteristics of panels x0, x1, x2 and x3 in Figure 2.

Figure 2 concludes that the panel x1, controlled at per-collection false positive of <=1/31 (colored green), is the optimal among the four panels, as

  • Panel x0, controlled at a more stringent criterion of per-collection false positive of <=0/31, detects substantially less true-positives. In other words, compared to panel x1, panel x0 loses substantial power to detect true-positive due to a more stringent control of false-positive.
  • Panels x2 and x3, controlled at less stringent criteria of per-collection false positive of <=2/31 and <=3/31, respectively, have almost identical operating characteristics as panel x1. In other words, compared to panel x1, panels x2 and x3 have no improvement on detection of true-positive, at the cost of higher false-positive.
z |> 
  autoplot()
Figure 2: Operating characteristics of panellist z

5.2 Selected Collections

The S3 method dispatch as_flextable.panellist() displays the collections selected in each panel. The collections that contain more than one variants are highlighted using the light-yellow color.

z |> 
  as_flextable()

Variant-Collection

Individual

Variants in Collection

Panel

True(+)

False(+)

False(+) ≤0/31
panelFalse(+) ≤0/31
size=23

False(+) ≤1/31
panelFalse(+) ≤7/31
size=18

False(+) ≤2/31
panelFalse(+) ≤13/31
size=17

False(+) ≤3/31
panelFalse(+) ≤12/31
size=16

Collection 1

12/50

0/31

chr17:7176997 C>T

False(+) ≤0/31
panelFalse(+) ≤0/31

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 2

10/50

0/31

chr11:118583356 G>A

False(+) ≤0/31
panelFalse(+) ≤0/31

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 3

6/50

0/31

chr12:49269877 C>T

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 4

5/50

0/31

chr11:102350873 T>A
chr11:102350877 A>C

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 5

5/50

0/31

chr3:9789723 C>T

False(+) ≤0/31
panelFalse(+) ≤0/31

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 6

5/50

0/31

chrX:47199344 G>A

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 7

4/50

0/31

chr1:29053204 TA>T

False(+) ≤0/31
panelFalse(+) ≤0/31

False(+) ≤1/31
panelFalse(+) ≤7/31

Collection 8

4/50

0/31

chr1:29053290 C>A
chr1:29053291 A>G
chr1:29053294 G>C
chr1:29053295 C>T

False(+) ≤0/31
panelFalse(+) ≤0/31

False(+) ≤1/31
panelFalse(+) ≤7/31

Collection 11

4/50

0/31

chr17:7313221 G>A

False(+) ≤0/31
panelFalse(+) ≤0/31

False(+) ≤1/31
panelFalse(+) ≤7/31

Collection 12

4/50

0/31

chr19:10115113 C>T

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 13

4/50

0/31

chr19:10252243 G>T
chr19:10252246 G>T

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 14

4/50

0/31

chr19:10252358 G>C

False(+) ≤0/31
panelFalse(+) ≤0/31

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

Collection 17

4/50

0/31

chr19:55092500 C>T

False(+) ≤0/31
panelFalse(+) ≤0/31

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 19

4/50

0/31

chr5:141583561 T>A

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 20

4/50

0/31

chr8:144098748 A>T
chr8:144098750 G>C

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 22

3/50

0/31

chr1:11054996 C>A

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 23

3/50

0/31

chr1:160999732 C>T

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 31

3/50

0/31

chr11:64800903 A>C

False(+) ≤0/31
panelFalse(+) ≤0/31

False(+) ≤1/31
panelFalse(+) ≤7/31

Collection 32

3/50

0/31

chr12:8946388 C>G

False(+) ≤0/31
panelFalse(+) ≤0/31

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

Collection 33

3/50

0/31

chr14:105249697 C>T

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 37

3/50

0/31

chr16:71921451 A>C

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 50

3/50

0/31

chr19:12747525 C>A

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 57

3/50

0/31

chr19:58551755 G>A
chr19:58551758 C>A

False(+) ≤0/31
panelFalse(+) ≤0/31

Collection 340

12/50

1/31

chr18:51196776 G>C

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 341

8/50

1/31

chr5:141582348 C>G

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 342

7/50

1/31

chr17:43015806 C>T

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 343

7/50

1/31

chr19:1080497 C>A

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 346

5/50

1/31

chr19:38840293 C>T

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

Collection 348

4/50

1/31

chr1:12001541 C>T

False(+) ≤1/31
panelFalse(+) ≤7/31

Collection 349

4/50

1/31

chr10:17693290 A>AA

False(+) ≤1/31
panelFalse(+) ≤7/31

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 350

4/50

1/31

chr11:118583892 C>A

False(+) ≤1/31
panelFalse(+) ≤7/31

Collection 815

11/50

2/31

chr17:50094891 GAGGAT>G

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 816

8/50

2/31

chrX:154442587 T>A

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 817

7/50

2/31

chr17:1651476 A>G

False(+) ≤2/31
panelFalse(+) ≤13/31

Collection 819

7/50

2/31

chr21:44856223 C>T

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 827

5/50

2/31

chr7:64978289 G>A

False(+) ≤2/31
panelFalse(+) ≤13/31

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 1042

11/50

3/31

chr13:45516236 A>G

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 1043

8/50

3/31

chr16:71922614 C>A

False(+) ≤3/31
panelFalse(+) ≤12/31

Collection 1045

7/50

3/31

chr16:2037561 G>A

False(+) ≤3/31
panelFalse(+) ≤12/31

6 Appendix

6.1 About

R terminology may differ from that commonly used in mathematics and statistics. For explanations and references to the terms and abbreviations used in this vignette, please refer to Section 8.

6.1.1 Environment

This vignette is created under R version 4.5.1 (2025-06-13) with the aid of packages knitr (Xie 2025, v1.50), quarto (Allaire and Dervieux 2025, v1.5.1 with Quarto v1.8.24) and rmarkdown (Allaire et al. 2024, v2.29). Documentation is supported by package roxygen2 (Wickham et al. 2025, v7.3.3).

An Integrated Development Environment (IDE), e.g., RStudio (Posit team 2025) or Positron, is not required, but highly recommended.

6.1.2 Dependency

Package minPanel Imports packages

6.2 panel

Function panel() (Section 3) returns an object of S4 class 'panel', with slots

  • @m1, a logical matrix, collections on rows and positive subjects on columns
  • @m0, a logical matrix, collections on rows and negative subjects on columns
  • @id, a list of character vectors. Each character vector contains the variants in a collection.
  • @label, an optional character scalar

The S4 method dispatch of show to signature = 'panel' prints the vital information, e.g., the number of collections, and the number of positive and negative subjects.

6.2.1 (Cumulative) True & False Positives

Function true_positive() finds the number of true positives per collection, i.e., the rowSums of the slot @m1.

Function false_positive() finds the number of false positives per collection, i.e., the rowSums of the slot @m0.

Functions true_positive() and false_positive() return an integer vector.

# example

Function cum_true_positive() finds the number of true positives, by a sub-panel of the first i collections.

Function cum_false_positive() finds the number of false positives, by a sub-panel of the first i collections.

Function cum_true_positive() and cum_false_positive() return a not-strictly increasing integer vector.

# example

6.2.2 Subset

The S3 method dispatch subset.panel() 🚧

6.2.2.1 by Panel-Wise False Positives

Panel x1 in Section 4, controlled at false_positive <= 1L per collection, has a substantial panel-wise false positive rate

x1
# False(+) ≤1/31
# panelFalse(+) ≤7/31
# Panel of 18 Variant-Collections from
# 50 positive subjects
# 31 negative subjects

User may impose an additional criterion of panel-wise false positive of 5 or less out of 31 negative subjects.

Example: additional criteria of panel-wise false positive <=5
x1a = m |>
  subset(subset = true_positive > 0L) |>
  subset(subset = false_positive <= 1L, append.label = TRUE) |>
  sort_by(y = ~ true_positive, decreasing = TRUE) |>
  subset(subset = diff(cum_true_positive) > 0L) |>
  subset(subset = cum_false_positive <= 5L, append.label = TRUE)
x1a
# False(+) ≤1/31
# panelFalse(+) ≤5/31
# Panel of 14 Variant-Collections from
# 50 positive subjects
# 31 negative subjects

Figure 3 shows ..

Figure: operating characteristics of x0, x1 and x1a
panellist(x0, x1, x1a) |>
  autoplot()
Figure 3: Operating characteristics of x0, x1 and x1a

6.2.3 Sort-By

The S3 method dispatch sort_by.panel() 🚧

6.2.4 Append Label

Function append_label() 🚧

6.2.5 CONSORT Diagram

Function consort.panel() creates a CONSORT diagram of the creation of a panel, using package consort (Dayim 2024).

Function consort.panel() is a wrapper of the function consort::consort_plot(), which returns an object of class 'consort'.

Examples using function consort.panel() are provided in Section 4.

6.3 panellist

6.3.1 CONSORT Diagram

Function consort.panellist() organizes the CONSORT diagrams of each panel member in a panellist in a collage, using packages consort (Dayim 2024) and patchwork (Pedersen 2025).

Figure 4 presents side-by-side the selection of collections in x0, x1, and x2.

Figure: CONSORT diagrams of x0, x1, and x2
z[1:3] |> 
  consort.panellist(nrow = 1L)
Figure 4: CONSORT Diagram of panellist

7 What We Don’t Do

7.1 subset.panel()

7.1.1 by Multiple Criteria

too difficult to parse..

m |> 
  subset.panel(subset = (true_positive > 0L) & (false_positive <= 3L))

8 Terms & Abbreviations

Table 1 presents a comprehensive glossary of R terms and abbreviations used in this vignette, which is folded to avoid overwhelming the reader with its excessive length.

R terminology and nomenclature could be drastically different from that of mathematics and statistics. Readers are strongly advised to read closely from the reference links in Table 1, most of which point to webpages on search.r-project.org, cran.r-project.org, adv-r.hadley.nz and en.wikipedia.org.

Table 1: Terms & Abbreviations in R
Table 1: Terms & Abbreviations in R
Term / Abbreviation Description
CRAN, R The Comprehensive R Archive Network, https://cran.r-project.org
Depends, Imports, Suggests, Enhances Writing R Extensions, Section 1.1.3 Package Dependencies
|> Forward pipe operator introduced since R version 4.1.0
~ Tilde operator, to separate the left- and right-hand sides in a formula
. Dot symbol, to denote the remaining variables contained in a data.frame. See formula and terms.formula for details.
: Colon operator for interaction of factors, see section Details of formula documentation
/ Forward slash operator for nested grouping structure, see section Details of formula documentation
::, ::: Double and triple colon operators, explicitly-namespaced function or object
args Argument list of a function
attr, attributes Attributes
body Body of a function
data.frame Data frame
.Deprecated, .Defunct R function retirement
deparse, deparse1 Expression deparsing, i.e., turn unevaluated expressions into character scalar or vector
diag Matrix diagonals
environment, as.environment (Coerce to an) environment
eval Evaluate an R expression
export Export tags in NAMESPACE
expression Unevaluated expressions
factor Categorical object, a.k.a., factor
file.size File size in bytes
(one-sided) formula Formula, or one-sided formula
foobar Placeholder; https://en.wikipedia.org/wiki/Foobar
formals Formal arguments of R function
function R function definition
ggplot Elegant data visualisations using the grammar-of-graphics, from package ggplot2 (Wickham 2016)
identical Exact equality in R
inherits Class inheritance
Inf, is.finite Positive infinity \infty
kable Tables in LaTeX, HTML, markdown and reStructuredText, from package knitr (Xie 2025)
language R language object
length Length of an object
lengths Lengths of list or vector elements
library Loading/attaching packages
list, listof Lists of objects
list2env Create an environment containing all list components as objects
log, log1p, log2, log10 \log(x) and \log(x+1) transformations
.Machine Numerical characteristics of the machine R is running on, e.g., 32-bit integers and IEC 60559 floating-point (double precision) arithmetic
match Value matching
matrix Matrices
merge, merge.data.frame Merge two data.frames
mc.cores Number of central processing unit (CPU) cores to use for parallel computing
message Diagnostic message printed in R console
missing R function not having a default value for a formals argument
storage mode, vector mode Storage mode; vector mode
NaN Not-a-Number
na.fail, na.omit, na.exclude, na.pass Handle missing values in R objects
names Names of an R object
ncol, nrow Number of rows/columns of an array
numeric numeric, i.e., double-precision object
object.size Memory allocation
pi Mathematical constant \pi
pmean, pmedian Point-wise mean and median, from package groupedHyperframe
pmax, pmin Point-wise maxima and minima
.Primitive Primitive, i.e., internally implemented, function
range Range of values
return R function return
S3, generic, UseMethod, methods, getS3method S3 object oriented system, https://adv-r.hadley.nz/s3.html
S4, isS4, setClass, setGeneric, setMethod, getMethod S4 object oriented system, https://adv-r.hadley.nz/s4.html, implemented in package methods shipped with R version 4.5.1 (2025-06-13)
save, saveRDS, xz Save with xz compression
search Search path
seq, seq.int Sequence generation
signature Tools for managing S4 generic functions
split Divide into groups
stopifnot To ensure the truth of R expressions
symbol, name R object name/symbol
t, t.default Transpose
tempfile Create names for temporary files
typeof R internal type or storage mode of any object
unclass Remove S3 'class' attribute
vector Vector
with, with.default, with.hyperframe To evaluate an expression in a local environment, or in each row of a hyperframe
within, within.data.frame To evaluate an expression in a local environment and makes modifications to the environment

9 References

Allaire, JJ, and Christophe Dervieux. 2025. quarto: R Interface to ’Quarto’ Markdown Publishing System. https://doi.org/10.32614/CRAN.package.quarto.
Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, et al. 2024. rmarkdown: Dynamic Documents for r. https://github.com/rstudio/rmarkdown.
Bengtsson, Henrik. 2025. matrixStats: Functions That Apply to Rows and Columns of Matrices (and to Vectors). https://doi.org/10.32614/CRAN.package.matrixStats.
Csárdi, Gábor. 2025. cli: Helpers for Developing Command Line Interfaces. https://doi.org/10.32614/CRAN.package.cli.
Dayim, Alim. 2024. consort: Create Consort Diagram. https://doi.org/10.32614/CRAN.package.consort.
Gohel, David, and Panagiotis Skintzos. 2025. flextable: Functions for Tabular Reporting. https://doi.org/10.32614/CRAN.package.flextable.
Pedersen, Thomas Lin. 2025. patchwork: The Composer of Plots. https://doi.org/10.32614/CRAN.package.patchwork.
Posit team. 2025. RStudio: Integrated Development Environment for R. Boston, MA: Posit Software, PBC. http://www.posit.co/.
R Core Team. 2025. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Wickham, Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org.
Wickham, Hadley, Peter Danenberg, Gábor Csárdi, and Manuel Eugster. 2025. roxygen2: In-Line Documentation for R. https://doi.org/10.32614/CRAN.package.roxygen2.
Wickham, Hadley, Thomas Lin Pedersen, and Dana Seidel. 2025. scales: Scale Functions for Visualization. https://doi.org/10.32614/CRAN.package.scales.
Xie, Yihui. 2025. knitr: A General-Purpose Package for Dynamic Report Generation in R. https://yihui.org/knitr/.
Zezulinski, Daniel, Maarouf A. Hoteit, David E. Kaplan, Angela Simeone, Tingting Zhan, Cataldo Doria, Fowsiyo Y. Ahmed, Lewis R. Roberts, Timothy M. Block, and Aejaz Sayeed. 2025. “Detection of Circulating mRNA Variants in Hepatocellular Carcinoma Patients Using Targeted RNAseq.” Liver Cancer. https://doi.org/10.1159/000545366.