Diketahui:

Ditanyakan: Fungsi densitas bersama \(f_{U,V}(u, v)\).

Langkah 1: Nyatakan \((X, Y)\) dalam bentuk \((U, V)\)

Dari \(V = 2Y\), kita peroleh \(Y = \frac{V}{2}\).

Dari \(U = X + Y\), kita peroleh \(X = U - Y = U - \frac{V}{2}\).

Jadi, transformasi inversnya adalah:

\[ x = u - \frac{v}{2}, \quad y = \frac{v}{2} \]

Langkah 2: Cari Jacobian dari transformasi

Matriks Jacobian adalah:

\[ J = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix} \]

Determinannya adalah:

\[ |J| = (1)\left(\frac{1}{2}\right) - \left(-\frac{1}{2}\right)(0) = \frac{1}{2} \]

Langkah 3: Tentukan support (daerah definisi) dari \((U, V)\)

Support asli: \(x \in (0,2)\), \(y \in (0, \infty)\).

Dalam bentuk \(u\) dan \(v\):

Jadi: - \(u - \frac{v}{2} > 0 \implies u > \frac{v}{2}\) - \(u - \frac{v}{2} < 2 \implies u < 2 + \frac{v}{2}\)

Karena \(x > 0\) dan \(y > 0\), kita punya \(u > \frac{v}{2} > 0\).

Oleh karena itu, support untuk \((U,V)\) adalah:

\[ v > 0, \quad \frac{v}{2} < u < 2 + \frac{v}{2} \]

Langkah 4: Tulis fungsi densitas bersama \(f_{U,V}(u,v)\)

Menggunakan rumus transformasi:

\[ f_{U,V}(u,v) = f_{X,Y}(x(u,v), y(u,v)) \cdot |J| \]

Substitusikan:

Sehingga diperoleh

\[ f_{U,V}(u,v) = \left[ \left(u - \frac{v}{2}\right) e^{v/2} \right] \cdot \frac{1}{2} = \frac{1}{2} \left(u - \frac{v}{2}\right) e^{v/2} \]

Namun, kita juga harus menyertakan support: \[ f_{U,V}(u,v) = \begin{cases} \frac{1}{2} \left(u - \frac{v}{2}\right) e^{v/2} & \text{untuk } v > 0 \text{ dan } \frac{v}{2} < u < 2 + \frac{v}{2} \\ 0 & x \text{lainnya} \end{cases} \]

Langkah 5: Lakukan penyederhanaan sebagai berikut

\[ u - \frac{v}{2} = \frac{2u - v}{2} \]

Jadi,

\[ f_{U,V}(u,v) = \frac{1}{2} \cdot \frac{2u - v}{2} e^{v/2} = \frac{2u - v}{4} e^{v/2} \]

Dengan demikian, jawaban akhirnya adalah:

\[ \boxed{f_{U,V}(u,v) = \begin{cases} \dfrac{2u - v}{4} e^{v/2} & \text{untuk } v > 0 \text{ dan } \dfrac{v}{2} < u < 2 + \dfrac{v}{2} \\ 0 & \text{selainnya} \end{cases}} \]

Ini adalah fungsi densitas bersama dari \(U\) dan \(V\).

LS0tDQp0aXRsZTogIkphd2FiYW4gU29hbCBObyAxIg0KYXV0aG9yOiAiQnVkaGkgSGFuZG9rbywgUGguRCINCmRhdGU6ICIyOSBBZ3VzdHVzIDIwMjUiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCg0KLS0tDQoNCg0KKipEaWtldGFodWk6KioNCg0KLSBGdW5nc2kgRGVuc2l0YXMgUGVsdWFuZyBCZXJzYW1hOiBcKCBmX3tYLFl9KHgsIHkpID0gXGJlZ2lue2Nhc2VzfSB4IGVeeSAmIFx0ZXh0e3VudHVrIH0geCBcaW4gKDAsMiksICB5IFxpbiAoMCwgXGluZnR5KSBcXCAwICYgXHRleHR7dW50dWsgfSB4ICBcdGV4dHtsYWlubnlhfSBcZW5ke2Nhc2VzfSBcKQ0KDQotIFRyYW5zZm9ybWFzaTogXCggVSA9IFggKyBZIFwpLCBcKCBWID0gMlkgXCkNCg0KKipEaXRhbnlha2FuOioqIEZ1bmdzaSBkZW5zaXRhcyBiZXJzYW1hIFwoIGZfe1UsVn0odSwgdikgXCkuDQoNCg0KKipMYW5na2FoIDE6KiogTnlhdGFrYW4gXCggKFgsIFkpIFwpIGRhbGFtIGJlbnR1ayBcKCAoVSwgVikgXCkNCg0KRGFyaSBcKCBWID0gMlkgXCksIGtpdGEgcGVyb2xlaCBcKCBZID0gXGZyYWN7Vn17Mn0gXCkuDQoNCkRhcmkgXCggVSA9IFggKyBZIFwpLCBraXRhIHBlcm9sZWggXCggWCA9IFUgLSBZID0gVSAtIFxmcmFje1Z9ezJ9IFwpLg0KDQpKYWRpLCB0cmFuc2Zvcm1hc2kgaW52ZXJzbnlhIGFkYWxhaDoNCg0KXFsNCnggPSB1IC0gXGZyYWN7dn17Mn0sIFxxdWFkIHkgPSBcZnJhY3t2fXsyfQ0KXF0NCg0KKipMYW5na2FoIDI6KiogQ2FyaSBKYWNvYmlhbiBkYXJpIHRyYW5zZm9ybWFzaQ0KDQpNYXRyaWtzIEphY29iaWFuIGFkYWxhaDoNCg0KXFsNCkogPSBcYmVnaW57Ym1hdHJpeH0NClxmcmFje1xwYXJ0aWFsIHh9e1xwYXJ0aWFsIHV9ICYgXGZyYWN7XHBhcnRpYWwgeH17XHBhcnRpYWwgdn0gXFwNClxmcmFje1xwYXJ0aWFsIHl9e1xwYXJ0aWFsIHV9ICYgXGZyYWN7XHBhcnRpYWwgeX17XHBhcnRpYWwgdn0NClxlbmR7Ym1hdHJpeH0NCj0gXGJlZ2lue2JtYXRyaXh9DQoxICYgLVxmcmFjezF9ezJ9IFxcDQowICYgXGZyYWN7MX17Mn0NClxlbmR7Ym1hdHJpeH0NClxdDQoNCkRldGVybWluYW5ueWEgYWRhbGFoOg0KDQpcWw0KfEp8ID0gKDEpXGxlZnQoXGZyYWN7MX17Mn1ccmlnaHQpIC0gXGxlZnQoLVxmcmFjezF9ezJ9XHJpZ2h0KSgwKSA9IFxmcmFjezF9ezJ9DQpcXQ0KDQoqKkxhbmdrYWggMzoqKiBUZW50dWthbiBzdXBwb3J0IChkYWVyYWggZGVmaW5pc2kpIGRhcmkgXCggKFUsIFYpIFwpDQoNClN1cHBvcnQgYXNsaTogXCggeCBcaW4gKDAsMikgXCksIFwoIHkgXGluICgwLCBcaW5mdHkpIFwpLg0KDQpEYWxhbSBiZW50dWsgXCggdSBcKSBkYW4gXCggdiBcKToNCg0KLSBcKCB5ID0gXGZyYWN7dn17Mn0gPiAwIFxpbXBsaWVzIHYgPiAwIFwpDQotIFwoIHggPSB1IC0gXGZyYWN7dn17Mn0gXGluICgwLDIpIFxpbXBsaWVzIDAgPCB1IC0gXGZyYWN7dn17Mn0gPCAyIFwpDQoNCkphZGk6DQotIFwoIHUgLSBcZnJhY3t2fXsyfSA+IDAgXGltcGxpZXMgdSA+IFxmcmFje3Z9ezJ9IFwpDQotIFwoIHUgLSBcZnJhY3t2fXsyfSA8IDIgXGltcGxpZXMgdSA8IDIgKyBcZnJhY3t2fXsyfSBcKQ0KDQpLYXJlbmEgXCggeCA+IDAgXCkgZGFuIFwoIHkgPiAwIFwpLCBraXRhIHB1bnlhIFwoIHUgPiBcZnJhY3t2fXsyfSA+IDAgXCkuDQoNCk9sZWgga2FyZW5hIGl0dSwgc3VwcG9ydCB1bnR1ayBcKCAoVSxWKSBcKSBhZGFsYWg6DQoNClxbDQp2ID4gMCwgXHF1YWQgXGZyYWN7dn17Mn0gPCB1IDwgMiArIFxmcmFje3Z9ezJ9DQpcXQ0KDQoqKkxhbmdrYWggNDoqKiBUdWxpcyBmdW5nc2kgZGVuc2l0YXMgYmVyc2FtYSBcKCBmX3tVLFZ9KHUsdikgXCkNCg0KTWVuZ2d1bmFrYW4gcnVtdXMgdHJhbnNmb3JtYXNpOg0KDQpcWw0KZl97VSxWfSh1LHYpID0gZl97WCxZfSh4KHUsdiksIHkodSx2KSkgXGNkb3QgfEp8DQpcXQ0KDQpTdWJzdGl0dXNpa2FuOg0KDQotIFwoIHggPSB1IC0gXGZyYWN7dn17Mn0gXCkNCi0gXCggeSA9IFxmcmFje3Z9ezJ9IFwpDQotIFwoIGZfe1gsWX0oeCx5KSA9IHggZV55ID0gXGxlZnQodSAtIFxmcmFje3Z9ezJ9XHJpZ2h0KSBlXnt2LzJ9IFwpDQotIFwoIHxKfCA9IFxmcmFjezF9ezJ9IFwpDQoNClNlaGluZ2dhIGRpcGVyb2xlaA0KDQpcWw0KZl97VSxWfSh1LHYpID0gXGxlZnRbIFxsZWZ0KHUgLSBcZnJhY3t2fXsyfVxyaWdodCkgZV57di8yfSBccmlnaHRdIFxjZG90IFxmcmFjezF9ezJ9DQo9IFxmcmFjezF9ezJ9IFxsZWZ0KHUgLSBcZnJhY3t2fXsyfVxyaWdodCkgZV57di8yfQ0KXF0NCg0KTmFtdW4sIGtpdGEganVnYSBoYXJ1cyBtZW55ZXJ0YWthbiBzdXBwb3J0Og0KXFsNCmZfe1UsVn0odSx2KSA9IFxiZWdpbntjYXNlc30NClxmcmFjezF9ezJ9IFxsZWZ0KHUgLSBcZnJhY3t2fXsyfVxyaWdodCkgZV57di8yfSAmIFx0ZXh0e3VudHVrIH0gdiA+IDAgXHRleHR7IGRhbiB9IFxmcmFje3Z9ezJ9IDwgdSA8IDIgKyBcZnJhY3t2fXsyfSBcXA0KMCAmIHggIFx0ZXh0e2xhaW5ueWF9DQpcZW5ke2Nhc2VzfQ0KXF0NCg0KKipMYW5na2FoIDUqKjogTGFrdWthbiBwZW55ZWRlcmhhbmFhbiBzZWJhZ2FpIGJlcmlrdXQNCg0KXFsNCnUgLSBcZnJhY3t2fXsyfSA9IFxmcmFjezJ1IC0gdn17Mn0NClxdDQoNCkphZGksDQoNClxbDQpmX3tVLFZ9KHUsdikgPSBcZnJhY3sxfXsyfSBcY2RvdCBcZnJhY3sydSAtIHZ9ezJ9IGVee3YvMn0gPSBcZnJhY3sydSAtIHZ9ezR9IGVee3YvMn0NClxdDQoNCkRlbmdhbiBkZW1pa2lhbiwgamF3YWJhbiBha2hpcm55YSBhZGFsYWg6DQoNClxbDQpcYm94ZWR7Zl97VSxWfSh1LHYpID0gXGJlZ2lue2Nhc2VzfQ0KXGRmcmFjezJ1IC0gdn17NH0gZV57di8yfSAmIFx0ZXh0e3VudHVrIH0gdiA+IDAgXHRleHR7IGRhbiB9IFxkZnJhY3t2fXsyfSA8IHUgPCAyICsgXGRmcmFje3Z9ezJ9IFxcDQowICYgXHRleHR7c2VsYWlubnlhfQ0KXGVuZHtjYXNlc319DQpcXQ0KDQpJbmkgYWRhbGFoIGZ1bmdzaSBkZW5zaXRhcyBiZXJzYW1hIGRhcmkgXCggVSBcKSBkYW4gXCggViBcKS4NCg0K