Diketahui:
Fungsi Densitas Peluang Bersama: \(f_{X,Y}(x, y) = \begin{cases} x e^y &
\text{untuk } x \in (0,2), y \in (0, \infty) \\ 0 & \text{untuk } x
\text{lainnya} \end{cases}\)
Transformasi: \(U = X + Y\),
\(V = 2Y\)
Ditanyakan: Fungsi densitas bersama \(f_{U,V}(u, v)\).
Langkah 1: Nyatakan \((X,
Y)\) dalam bentuk \((U, V)\)
Dari \(V = 2Y\), kita peroleh \(Y = \frac{V}{2}\).
Dari \(U = X + Y\), kita peroleh
\(X = U - Y = U - \frac{V}{2}\).
Jadi, transformasi inversnya adalah:
\[
x = u - \frac{v}{2}, \quad y = \frac{v}{2}
\]
Langkah 2: Cari Jacobian dari transformasi
Matriks Jacobian adalah:
\[
J = \begin{bmatrix}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{bmatrix}
= \begin{bmatrix}
1 & -\frac{1}{2} \\
0 & \frac{1}{2}
\end{bmatrix}
\]
Determinannya adalah:
\[
|J| = (1)\left(\frac{1}{2}\right) - \left(-\frac{1}{2}\right)(0) =
\frac{1}{2}
\]
Langkah 3: Tentukan support (daerah definisi) dari
\((U, V)\)
Support asli: \(x \in (0,2)\), \(y \in (0, \infty)\).
Dalam bentuk \(u\) dan \(v\):
- \(y = \frac{v}{2} > 0 \implies v >
0\)
- \(x = u - \frac{v}{2} \in (0,2) \implies 0
< u - \frac{v}{2} < 2\)
Jadi: - \(u - \frac{v}{2} > 0 \implies u
> \frac{v}{2}\) - \(u - \frac{v}{2}
< 2 \implies u < 2 + \frac{v}{2}\)
Karena \(x > 0\) dan \(y > 0\), kita punya \(u > \frac{v}{2} > 0\).
Oleh karena itu, support untuk \((U,V)\) adalah:
\[
v > 0, \quad \frac{v}{2} < u < 2 + \frac{v}{2}
\]
Langkah 4: Tulis fungsi densitas bersama \(f_{U,V}(u,v)\)
Menggunakan rumus transformasi:
\[
f_{U,V}(u,v) = f_{X,Y}(x(u,v), y(u,v)) \cdot |J|
\]
Substitusikan:
- \(x = u - \frac{v}{2}\)
- \(y = \frac{v}{2}\)
- \(f_{X,Y}(x,y) = x e^y = \left(u -
\frac{v}{2}\right) e^{v/2}\)
- \(|J| = \frac{1}{2}\)
Sehingga diperoleh
\[
f_{U,V}(u,v) = \left[ \left(u - \frac{v}{2}\right) e^{v/2} \right] \cdot
\frac{1}{2}
= \frac{1}{2} \left(u - \frac{v}{2}\right) e^{v/2}
\]
Namun, kita juga harus menyertakan support: \[
f_{U,V}(u,v) = \begin{cases}
\frac{1}{2} \left(u - \frac{v}{2}\right) e^{v/2} & \text{untuk } v
> 0 \text{ dan } \frac{v}{2} < u < 2 + \frac{v}{2} \\
0 & x \text{lainnya}
\end{cases}
\]
Langkah 5: Lakukan penyederhanaan sebagai
berikut
\[
u - \frac{v}{2} = \frac{2u - v}{2}
\]
Jadi,
\[
f_{U,V}(u,v) = \frac{1}{2} \cdot \frac{2u - v}{2} e^{v/2} = \frac{2u -
v}{4} e^{v/2}
\]
Dengan demikian, jawaban akhirnya adalah:
\[
\boxed{f_{U,V}(u,v) = \begin{cases}
\dfrac{2u - v}{4} e^{v/2} & \text{untuk } v > 0 \text{ dan }
\dfrac{v}{2} < u < 2 + \dfrac{v}{2} \\
0 & \text{selainnya}
\end{cases}}
\]
Ini adalah fungsi densitas bersama dari \(U\) dan \(V\).
LS0tDQp0aXRsZTogIkphd2FiYW4gU29hbCBObyAxIg0KYXV0aG9yOiAiQnVkaGkgSGFuZG9rbywgUGguRCINCmRhdGU6ICIyOSBBZ3VzdHVzIDIwMjUiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCg0KLS0tDQoNCg0KKipEaWtldGFodWk6KioNCg0KLSBGdW5nc2kgRGVuc2l0YXMgUGVsdWFuZyBCZXJzYW1hOiBcKCBmX3tYLFl9KHgsIHkpID0gXGJlZ2lue2Nhc2VzfSB4IGVeeSAmIFx0ZXh0e3VudHVrIH0geCBcaW4gKDAsMiksICB5IFxpbiAoMCwgXGluZnR5KSBcXCAwICYgXHRleHR7dW50dWsgfSB4ICBcdGV4dHtsYWlubnlhfSBcZW5ke2Nhc2VzfSBcKQ0KDQotIFRyYW5zZm9ybWFzaTogXCggVSA9IFggKyBZIFwpLCBcKCBWID0gMlkgXCkNCg0KKipEaXRhbnlha2FuOioqIEZ1bmdzaSBkZW5zaXRhcyBiZXJzYW1hIFwoIGZfe1UsVn0odSwgdikgXCkuDQoNCg0KKipMYW5na2FoIDE6KiogTnlhdGFrYW4gXCggKFgsIFkpIFwpIGRhbGFtIGJlbnR1ayBcKCAoVSwgVikgXCkNCg0KRGFyaSBcKCBWID0gMlkgXCksIGtpdGEgcGVyb2xlaCBcKCBZID0gXGZyYWN7Vn17Mn0gXCkuDQoNCkRhcmkgXCggVSA9IFggKyBZIFwpLCBraXRhIHBlcm9sZWggXCggWCA9IFUgLSBZID0gVSAtIFxmcmFje1Z9ezJ9IFwpLg0KDQpKYWRpLCB0cmFuc2Zvcm1hc2kgaW52ZXJzbnlhIGFkYWxhaDoNCg0KXFsNCnggPSB1IC0gXGZyYWN7dn17Mn0sIFxxdWFkIHkgPSBcZnJhY3t2fXsyfQ0KXF0NCg0KKipMYW5na2FoIDI6KiogQ2FyaSBKYWNvYmlhbiBkYXJpIHRyYW5zZm9ybWFzaQ0KDQpNYXRyaWtzIEphY29iaWFuIGFkYWxhaDoNCg0KXFsNCkogPSBcYmVnaW57Ym1hdHJpeH0NClxmcmFje1xwYXJ0aWFsIHh9e1xwYXJ0aWFsIHV9ICYgXGZyYWN7XHBhcnRpYWwgeH17XHBhcnRpYWwgdn0gXFwNClxmcmFje1xwYXJ0aWFsIHl9e1xwYXJ0aWFsIHV9ICYgXGZyYWN7XHBhcnRpYWwgeX17XHBhcnRpYWwgdn0NClxlbmR7Ym1hdHJpeH0NCj0gXGJlZ2lue2JtYXRyaXh9DQoxICYgLVxmcmFjezF9ezJ9IFxcDQowICYgXGZyYWN7MX17Mn0NClxlbmR7Ym1hdHJpeH0NClxdDQoNCkRldGVybWluYW5ueWEgYWRhbGFoOg0KDQpcWw0KfEp8ID0gKDEpXGxlZnQoXGZyYWN7MX17Mn1ccmlnaHQpIC0gXGxlZnQoLVxmcmFjezF9ezJ9XHJpZ2h0KSgwKSA9IFxmcmFjezF9ezJ9DQpcXQ0KDQoqKkxhbmdrYWggMzoqKiBUZW50dWthbiBzdXBwb3J0IChkYWVyYWggZGVmaW5pc2kpIGRhcmkgXCggKFUsIFYpIFwpDQoNClN1cHBvcnQgYXNsaTogXCggeCBcaW4gKDAsMikgXCksIFwoIHkgXGluICgwLCBcaW5mdHkpIFwpLg0KDQpEYWxhbSBiZW50dWsgXCggdSBcKSBkYW4gXCggdiBcKToNCg0KLSBcKCB5ID0gXGZyYWN7dn17Mn0gPiAwIFxpbXBsaWVzIHYgPiAwIFwpDQotIFwoIHggPSB1IC0gXGZyYWN7dn17Mn0gXGluICgwLDIpIFxpbXBsaWVzIDAgPCB1IC0gXGZyYWN7dn17Mn0gPCAyIFwpDQoNCkphZGk6DQotIFwoIHUgLSBcZnJhY3t2fXsyfSA+IDAgXGltcGxpZXMgdSA+IFxmcmFje3Z9ezJ9IFwpDQotIFwoIHUgLSBcZnJhY3t2fXsyfSA8IDIgXGltcGxpZXMgdSA8IDIgKyBcZnJhY3t2fXsyfSBcKQ0KDQpLYXJlbmEgXCggeCA+IDAgXCkgZGFuIFwoIHkgPiAwIFwpLCBraXRhIHB1bnlhIFwoIHUgPiBcZnJhY3t2fXsyfSA+IDAgXCkuDQoNCk9sZWgga2FyZW5hIGl0dSwgc3VwcG9ydCB1bnR1ayBcKCAoVSxWKSBcKSBhZGFsYWg6DQoNClxbDQp2ID4gMCwgXHF1YWQgXGZyYWN7dn17Mn0gPCB1IDwgMiArIFxmcmFje3Z9ezJ9DQpcXQ0KDQoqKkxhbmdrYWggNDoqKiBUdWxpcyBmdW5nc2kgZGVuc2l0YXMgYmVyc2FtYSBcKCBmX3tVLFZ9KHUsdikgXCkNCg0KTWVuZ2d1bmFrYW4gcnVtdXMgdHJhbnNmb3JtYXNpOg0KDQpcWw0KZl97VSxWfSh1LHYpID0gZl97WCxZfSh4KHUsdiksIHkodSx2KSkgXGNkb3QgfEp8DQpcXQ0KDQpTdWJzdGl0dXNpa2FuOg0KDQotIFwoIHggPSB1IC0gXGZyYWN7dn17Mn0gXCkNCi0gXCggeSA9IFxmcmFje3Z9ezJ9IFwpDQotIFwoIGZfe1gsWX0oeCx5KSA9IHggZV55ID0gXGxlZnQodSAtIFxmcmFje3Z9ezJ9XHJpZ2h0KSBlXnt2LzJ9IFwpDQotIFwoIHxKfCA9IFxmcmFjezF9ezJ9IFwpDQoNClNlaGluZ2dhIGRpcGVyb2xlaA0KDQpcWw0KZl97VSxWfSh1LHYpID0gXGxlZnRbIFxsZWZ0KHUgLSBcZnJhY3t2fXsyfVxyaWdodCkgZV57di8yfSBccmlnaHRdIFxjZG90IFxmcmFjezF9ezJ9DQo9IFxmcmFjezF9ezJ9IFxsZWZ0KHUgLSBcZnJhY3t2fXsyfVxyaWdodCkgZV57di8yfQ0KXF0NCg0KTmFtdW4sIGtpdGEganVnYSBoYXJ1cyBtZW55ZXJ0YWthbiBzdXBwb3J0Og0KXFsNCmZfe1UsVn0odSx2KSA9IFxiZWdpbntjYXNlc30NClxmcmFjezF9ezJ9IFxsZWZ0KHUgLSBcZnJhY3t2fXsyfVxyaWdodCkgZV57di8yfSAmIFx0ZXh0e3VudHVrIH0gdiA+IDAgXHRleHR7IGRhbiB9IFxmcmFje3Z9ezJ9IDwgdSA8IDIgKyBcZnJhY3t2fXsyfSBcXA0KMCAmIHggIFx0ZXh0e2xhaW5ueWF9DQpcZW5ke2Nhc2VzfQ0KXF0NCg0KKipMYW5na2FoIDUqKjogTGFrdWthbiBwZW55ZWRlcmhhbmFhbiBzZWJhZ2FpIGJlcmlrdXQNCg0KXFsNCnUgLSBcZnJhY3t2fXsyfSA9IFxmcmFjezJ1IC0gdn17Mn0NClxdDQoNCkphZGksDQoNClxbDQpmX3tVLFZ9KHUsdikgPSBcZnJhY3sxfXsyfSBcY2RvdCBcZnJhY3sydSAtIHZ9ezJ9IGVee3YvMn0gPSBcZnJhY3sydSAtIHZ9ezR9IGVee3YvMn0NClxdDQoNCkRlbmdhbiBkZW1pa2lhbiwgamF3YWJhbiBha2hpcm55YSBhZGFsYWg6DQoNClxbDQpcYm94ZWR7Zl97VSxWfSh1LHYpID0gXGJlZ2lue2Nhc2VzfQ0KXGRmcmFjezJ1IC0gdn17NH0gZV57di8yfSAmIFx0ZXh0e3VudHVrIH0gdiA+IDAgXHRleHR7IGRhbiB9IFxkZnJhY3t2fXsyfSA8IHUgPCAyICsgXGRmcmFje3Z9ezJ9IFxcDQowICYgXHRleHR7c2VsYWlubnlhfQ0KXGVuZHtjYXNlc319DQpcXQ0KDQpJbmkgYWRhbGFoIGZ1bmdzaSBkZW5zaXRhcyBiZXJzYW1hIGRhcmkgXCggVSBcKSBkYW4gXCggViBcKS4NCg0K