Praktikum Pertama
Analisis regresi adalah metode statistik yang digunakan untuk mempelajari hubungan satu variabel dependen (respon) dengan satu atau lebih variabel independen (prediktor). Tujuan utamanya adalah membangun model matematis yang bisa digunakan untuk:
Model regresi linear sederhana dituliskan sebagai:
\[ Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, \ldots, n \] dengan
• 𝑌𝑖 : variabel dependen (respon)
• 𝑋𝑖 : variabel independen (prediktor)
• 𝛽0, 𝛽1 : parameter regresi
• 𝜀𝑖 : error (residu)
Korelasi mengukur derajat keeratan hubungan linier antara dua variabel, tanpa membedakan mana yang dependen dan independen.
Koefisien korelasi Pearson:
\[ r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})} {\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2 \; \sum_{i=1}^n (y_i - \bar{y})^2}} \]
• Nilai 𝑟 ∈ [−1, 1].
• 𝑟 > 0: hubungan positif, 𝑟 < 0: hubungan negatif.
• |𝑟| makin mendekati 1 artinya hubungan makin kuat
Berikut tabel perbedaan utama antara korelasi dan regresi:
Tabel Perbandingan
Aspek | Korelasi | Regresi |
---|---|---|
Tujuan | Mengukur keeratan hubungan | Membangun model prediksi/penjelasan |
Arah hubungan | Simetris (X dan Y setara) | Asimetris (Y sebagai respon, X sebagai prediktor) |
Output utama | Koefisien korelasi \(r\) | Persamaan regresi \(\hat{Y} = \beta_0 + \beta_1 X\) |
Contoh Aplkasi di R
Data
Gunakan dataset mtcars untuk melihat hubungan mpg (miles per gallon) dengan wt (berat mobil).
data(mtcars)
head(mtcars[, c("mpg", "wt")])
## mpg wt
## Mazda RX4 21.0 2.620
## Mazda RX4 Wag 21.0 2.875
## Datsun 710 22.8 2.320
## Hornet 4 Drive 21.4 3.215
## Hornet Sportabout 18.7 3.440
## Valiant 18.1 3.460
Korelasi
cor.test(mtcars$wt, mtcars$mpg)
##
## Pearson's product-moment correlation
##
## data: mtcars$wt and mtcars$mpg
## t = -9.559, df = 30, p-value = 1.294e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9338264 -0.7440872
## sample estimates:
## cor
## -0.8676594
Regresi
model <- lm(mpg~ wt, data = mtcars)
summary(model)
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
Visualisasi
library(ggplot2)
ggplot(mtcars, aes(x = wt, y = mpg)) +
geom_point() +
geom_smooth(method = "lm", se = TRUE, color = "blue") +
labs(title = "Hubungan antara Berat Mobil (wt) dan Efisiensi Bahan Bakar (mpg)",
x = "Berat Mobil (1000 lbs)",
y = "Miles per Gallon (mpg)")
Kita memodelkan hubungan antara respons \(y \in \mathbb{R}^n\) dan kovariat \(X \in \mathbb{R}^{n \times p}\):
\[ y = X\beta + \varepsilon,\ \mathbb{E}(\varepsilon)=0,\ \operatorname{Var}(\varepsilon)=\sigma^2 I_n. \]
Dengan \(X = [\mathbf{1},\, x_1,\, \ldots,\, x_{p-1}]\) (termasuk intersep), \(\beta\) adalah vektor koefisien, dan \(\varepsilon\) adalah galat.
Estimator ordinary least squares (OLS) meminimalkan jumlah kuadrat residu:
\[ \widehat{\beta}_{\text{OLS}} = \operatorname*{arg\,min}_{\beta}\,\lVert y - X\beta\rVert^{2} = (X^{\top}X)^{-1} X^{\top} y . \]
Prediksi \(\hat y = X\widehat{\beta}\) adalah proyeksi ortogonal dari \(y\) ke ruang kolom \(X\). Matriks hat dan residu: \[ H = X (X^{\top} X)^{-1} X^{\top}, \qquad \hat y = H y, \qquad e = (I - H) y . \]
Leverage pengamatan ke-\(i\) adalah \(h_{ii}\) (elemen diagonal \(H\)).
Di bawah asumsi Gauss–Markov (linearitas, eksogenitas, homoskedastisitas, dan tidak ada multikolinearitas sempurna), \(\widehat{\beta}_{\text{OLS}}\) adalah BLUE.
Varians koefisien dan estimator ragam:
\[ \operatorname{Var}(\widehat{\beta}_{\text{OLS}})=\sigma^2 (X^{\top}X)^{-1}, \qquad \widehat{\sigma}^2=\frac{\lVert e\rVert^2}{n-p}. \]
Asimtotik: \[ \sqrt{n}\,\big(\widehat{\beta}-\beta\big)\xrightarrow{d}\mathcal{N}(0,\,V), \] sehingga inferensi berbasis normal/\(t\) berlaku untuk \(n\) besar.
Jika galat tidak homoskedastik/berkorelasi, maka \(\operatorname{Var}(\varepsilon) = \sigma^2 \Omega \neq \sigma^2 I_n.\)
Weighted least squares (WLS) untuk varians berbeda-beda (\(\Omega\) diagonal): \[ \widehat{\beta}_{\mathrm{WLS}} = (X^{\top} W X)^{-1}\, X^{\top} W y, \qquad W = \Omega^{-1}. \]
Generalized least squares (GLS) untuk \(\Omega\) umum: \[ \widehat{\beta}_{\mathrm{GLS}} = (X^{\top} \Omega^{-1} X)^{-1}\, X^{\top} \Omega^{-1} y. \]
Tanpa menspesifikasi bentuk \(\Omega\), kovarians heteroskedasticity–consistent (HC) ala White (HC0) adalah \[ \widehat{\operatorname{Var}}(\widehat{\beta}) = (X^{\top}X)^{-1} \Bigg(\sum_{i=1}^n x_i x_i^{\top}\,\hat e_i^2\Bigg) (X^{\top}X)^{-1}. \]
Ini memberi robust SE yang valid terhadap heteroskedastisitas (HC0–HC3).
Variance Inflation Factor (VIF) untuk koefisien ke-\(j\): \[ \mathrm{VIF}_j \;=\; \frac{1}{1 - R_j^{2}}, \] dengan \(R_j^{2}\) adalah koefisien determinasi dari regresi \(x_j\) pada semua kovariat lain. Nilai besar (\(\gtrsim 10\)) mengindikasikan multikolinearitas kuat
Ukuran pengaruh Cook’s distance: \[ D_i \;=\; \frac{e_i^2}{p\,\widehat{\sigma}^2}\;\frac{h_{ii}}{(1-h_{ii})^2}, \]
Gunakan plot residu, plot leverage vs residu, QQ-plot, serta inspeksi \(𝐷𝑖\) untuk memeriksa asumsi dan outlier.
Model makin kompleks (banyak parameter/basis) cenderung bias rendah namun varians tinggi. Ridge dan Lasso menambahkan penalti:
\[ \text{Ridge:}\quad \widehat{\beta} = \operatorname*{arg\,min}_{\beta}\;\Big\{\;\|y - X\beta\|_2^2 + \lambda\,\|\beta\|_2^2\;\Big\}. \]
\[ \text{Lasso:}\quad \widehat{\beta} = \operatorname*{arg\,min}_{\beta}\;\Big\{\;\|y - X\beta\|_2^2 + \lambda\,\|\beta\|_1\;\Big\}. \]
Kita dapat menambah term polinomial atau basis spline sehingga tetap linear dalam parameter:
\[ y = \beta_0 + \sum_{k=1}^{K} \beta_k\, b_k(x) + \varepsilon. \]
dat1 <- mtcars %>%
as_tibble(rownames = "car") %>%
mutate(across(c(mpg, disp, hp, wt, qsec), as.double))
# Plot hubungan awal
GG1 <- ggplot(dat1, aes(wt, mpg)) +
geom_point(alpha = 0.7) +
geom_smooth(method = "lm", se = FALSE) +
labs(x = "Weight (1000 lbs)", y = "Miles per Gallon (mpg)",
title = "Hubungan mpg vs wt pada mtcars")
GG1
fit1 <- lm(mpg~ wt + hp + disp, data = dat1)
summary(fit1)
##
## Call:
## lm(formula = mpg ~ wt + hp + disp, data = dat1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.891 -1.640 -0.172 1.061 5.861
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.105505 2.110815 17.579 < 2e-16 ***
## wt -3.800891 1.066191 -3.565 0.00133 **
## hp -0.031157 0.011436 -2.724 0.01097 *
## disp -0.000937 0.010350 -0.091 0.92851
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.639 on 28 degrees of freedom
## Multiple R-squared: 0.8268, Adjusted R-squared: 0.8083
## F-statistic: 44.57 on 3 and 28 DF, p-value: 8.65e-11
# Koefisien dengan CI 95%
tidy(fit1, conf.int = TRUE)
## # A tibble: 4 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 37.1 2.11 17.6 1.16e-16 32.8 41.4
## 2 wt -3.80 1.07 -3.56 1.33e- 3 -5.98 -1.62
## 3 hp -0.0312 0.0114 -2.72 1.10e- 2 -0.0546 -0.00773
## 4 disp -0.000937 0.0103 -0.0905 9.29e- 1 -0.0221 0.0203
diag_df <- tibble(
fitted = fitted(fit1), resid = resid(fit1),
stdres = rstandard(fit1), hat = hatvalues(fit1), cook = cooks.distance(fit1)
)
p1 <- ggplot(diag_df, aes(fitted, resid)) +
geom_point(alpha = 0.7) +
geom_hline(yintercept = 0, linetype = 2) +
labs(x = "Fitted", y = "Residuals")
p2 <- ggplot(diag_df, aes(sample = stdres)) +
stat_qq() + stat_qq_line() + labs(x = "Theoretical", y = "Standardized Residuals")
p1; p2
Figure 1.2: Diagnostik OLS untuk mtcars: residu vs fitted (kiri) dan QQ-plot (kanan).
car::vif(fit1)
## wt hp disp
## 4.844618 2.736633 7.324517
coeftest(fit1) # SE OLS
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.10550527 2.11081525 17.5788 < 2.2e-16 ***
## wt -3.80089058 1.06619064 -3.5649 0.001331 **
## hp -0.03115655 0.01143579 -2.7245 0.010971 *
## disp -0.00093701 0.01034974 -0.0905 0.928507
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
qplot(seq_along(diag_df$cook), diag_df$cook, geom = c("line","point"),
xlab = "Index", ylab = "Cook's D")
Figure 1.3: Cook’s distance per observasi.
coeftest(fit1, vcov = vcovHC(fit1, type = "HC3")) # SE robust (HC3)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.10550527 2.71026981 13.6907 6.257e-14 ***
## wt -3.80089058 1.08086207 -3.5165 0.00151 **
## hp -0.03115655 0.01437457 -2.1675 0.03886 *
## disp -0.00093701 0.01012138 -0.0926 0.92690
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit_poly <- lm(mpg~ poly(wt, 2, raw = TRUE) + hp + disp, data = dat1)
fit_spl <- lm(mpg~ bs(wt, df = 5) + hp + disp, data = dat1)
AIC(fit1, fit_poly, fit_spl) %>% arrange(AIC)
## df AIC
## fit_poly 6 150.7305
## fit_spl 9 154.3323
## fit1 5 158.6430
BIC(fit1, fit_poly, fit_spl) %>% arrange(BIC)
## df BIC
## fit_poly 6 159.5250
## fit1 5 165.9717
## fit_spl 9 167.5239
# Kurva prediksi
grid_wt <- tibble(wt = seq(min(dat1$wt), max(dat1$wt), length.out = 200),
hp = mean(dat1$hp), disp = mean(dat1$disp))
pred <- grid_wt %>%
mutate(OLS = predict(fit1, newdata = grid_wt),
Poly = predict(fit_poly, newdata = grid_wt),
Spline = predict(fit_spl, newdata = grid_wt)) %>%
pivot_longer(OLS:Spline, names_to = "model", values_to = "yhat")
GG2 <- ggplot() +
geom_point(data = dat1, aes(wt, mpg), alpha = 0.3) +
geom_line(data = pred, aes(wt, yhat, linetype = model), linewidth = 0.9) +
labs(x = "wt", y = "mpg", title = "Perbandingan OLS vs Polinomial vs Spline")
GG2
Tanyakan bagian ini belum lengkap
n <- 400
x1 <- runif(n, 0, 10)
x2 <- rnorm(n, 5, 2)
sigma_i <- 0.6 + 0.2 * x1 # var naik dengan x1
err <- rnorm(n, 0, sigma_i)
y <- 2 + 1.5*x1- 1.2*x2 + err
sim <- tibble(y, x1, x2, w = 1/sigma_i^2)
fit_ols <- lm(y~ x1 + x2, data = sim)
fit_wls <- lm(y~ x1 + x2, data = sim, weights = w)
# Tabel perbandingan SE
comp_se <- tibble(
term = names(coef(fit_ols)),
OLS_SE = coef(summary(fit_ols))[, "Std. Error"],
Robust_SE = sqrt(diag(vcovHC(fit_ols, type = "HC3"))),
WLS_SE = coef(summary(fit_wls))[, "Std. Error"]
)
comp_se
## # A tibble: 3 × 4
## term OLS_SE Robust_SE WLS_SE
## <chr> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.281 0.267 0.191
## 2 x1 0.0300 0.0313 0.0267
## 3 x2 0.0435 0.0466 0.0333
# Uji Breusch-Pagan untuk heteroskedastisitas
lmtest::bptest(fit_ols)
##
## studentized Breusch-Pagan test
##
## data: fit_ols
## BP = 48.294, df = 2, p-value = 3.259e-11
ggplot(data.frame(fitted=fitted(fit_ols), resid=resid(fit_ols)), aes(fitted, resid)) +
geom_point(alpha=.6) + geom_smooth(se=FALSE, method="loess") +
geom_hline(yintercept = 0, linetype=2) + labs(x="Fitted", y="Residuals")
Model galat mengikuti proses AR(1):\(\varepsilon_t = \rho\,\varepsilon_{t-1} + u_t\) dengan \(u_t \sim \mathcal{N}(0,\ \sigma_u^2)\). Kovarians residual memiliki bentuk Toeplitz:\(\Omega_{ts} = \frac{\sigma_u^2}{1-\rho^2}\,\rho^{|t-s|}\) GLS menimbang data dengan \(\Omega^{-1}\) (atau transformasi ekuivalen) agar estimasi efisien.
set.seed(42)
T <- 400
x <- runif(T,-2, 2)
rho <- 0.6
u <- rnorm(T, 0, 1)
err <- numeric(T)
for (t in 2:T) err[t] <- rho*err[t-1] + u[t]
y <- 1 + 2*x + err
dar1 <- tibble::tibble(t = 1:T, x, y)
head(dar1)
## # A tibble: 6 × 3
## t x y
## <int> <dbl> <dbl>
## 1 1 1.66 4.32
## 2 2 1.75 4.83
## 3 3 -0.855 0.661
## 4 4 1.32 6.53
## 5 5 0.567 2.49
## 6 6 0.0764 0.213
library(nlme)
# OLS biasa
fit_ols_ar1 <- lm(y~ x, data = dar1)
# GLS dengan korelasi AR(1) di residual
fit_gls_ar1 <- gls(y~ x, data = dar1,
correlation = corAR1(form =~ t))
summary(fit_ols_ar1)
##
## Call:
## lm(formula = y ~ x, data = dar1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3360 -0.8231 0.0026 0.8211 3.9013
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.95441 0.06043 15.79 <2e-16 ***
## x 2.06045 0.05162 39.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.209 on 398 degrees of freedom
## Multiple R-squared: 0.8002, Adjusted R-squared: 0.7997
## F-statistic: 1594 on 1 and 398 DF, p-value: < 2.2e-16
summary(fit_gls_ar1)
## Generalized least squares fit by REML
## Model: y ~ x
## Data: dar1
## AIC BIC logLik
## 1139.541 1155.487 -565.7706
##
## Correlation Structure: AR(1)
## Formula: ~t
## Parameter estimate(s):
## Phi
## 0.5772332
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.9552097 0.11651869 8.19791 0
## x 2.0449090 0.03743358 54.62766 0
##
## Correlation:
## (Intr)
## x 0.004
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.752477543 -0.674750151 -0.007333444 0.679546648 3.225627947
##
## Residual standard error: 1.210605
## Degrees of freedom: 400 total; 398 residual
par(mfrow = c(1,1))
lmtest::dwtest(fit_ols_ar1) # indikasi korelasi serial pada OLS
##
## Durbin-Watson test
##
## data: fit_ols_ar1
## DW = 0.84993, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0
par(mfrow = c(1,2))
acf(resid(fit_ols_ar1), main = "ACF Residuals (OLS)")
acf(resid(fit_gls_ar1, type = "normalized"), main = "ACF Residuals (GLS)")
Figure 1.5: ACF residu dari OLS vs GLS
# Estimasi rho dari regresi resid_t ~ resid_{t-1}
res <- resid(fit_ols_ar1)
rho_hat <- coef(lm(res[-1]~ 0 + res[-length(res)]))[1]
# Quasi-differencing (transformasi data)
y_star <- dar1$y[-1]- rho_hat*dar1$y[-T]
x_star <- dar1$x[-1]- rho_hat*dar1$x[-T]
fit_qd <- lm(y_star~ x_star)
summary(fit_qd)
##
## Call:
## lm(formula = y_star ~ x_star)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6691 -0.6723 -0.0232 0.6970 3.2363
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.40603 0.04955 8.194 3.52e-15 ***
## x_star 2.04499 0.03757 54.439 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9898 on 397 degrees of freedom
## Multiple R-squared: 0.8819, Adjusted R-squared: 0.8816
## F-statistic: 2964 on 1 and 397 DF, p-value: < 2.2e-16
Catatan: gls() memperkirakan 𝜌 dan ragam secara simultan dalam kerangka likelihood sehingga sering lebih stabil dibanding pendekatan dua tahap.
set.seed(123)
# Paket yang diperlukan
pkgs <- c("dplyr","ggplot2","car","lmtest","sandwich","MASS","boot","broom")
new <- pkgs[!(pkgs %in% installed.packages()[,"Package"])]
if(length(new)) install.packages(new, dependencies = TRUE)
lapply(pkgs, library, character.only = TRUE)
## [[1]]
## [1] "nlme" "splines" "modelr" "car" "carData" "lmtest"
## [7] "zoo" "sandwich" "broom" "lubridate" "forcats" "stringr"
## [13] "dplyr" "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [19] "tidyverse" "stats" "graphics" "grDevices" "utils" "datasets"
## [25] "methods" "base"
##
## [[2]]
## [1] "nlme" "splines" "modelr" "car" "carData" "lmtest"
## [7] "zoo" "sandwich" "broom" "lubridate" "forcats" "stringr"
## [13] "dplyr" "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [19] "tidyverse" "stats" "graphics" "grDevices" "utils" "datasets"
## [25] "methods" "base"
##
## [[3]]
## [1] "nlme" "splines" "modelr" "car" "carData" "lmtest"
## [7] "zoo" "sandwich" "broom" "lubridate" "forcats" "stringr"
## [13] "dplyr" "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [19] "tidyverse" "stats" "graphics" "grDevices" "utils" "datasets"
## [25] "methods" "base"
##
## [[4]]
## [1] "nlme" "splines" "modelr" "car" "carData" "lmtest"
## [7] "zoo" "sandwich" "broom" "lubridate" "forcats" "stringr"
## [13] "dplyr" "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [19] "tidyverse" "stats" "graphics" "grDevices" "utils" "datasets"
## [25] "methods" "base"
##
## [[5]]
## [1] "nlme" "splines" "modelr" "car" "carData" "lmtest"
## [7] "zoo" "sandwich" "broom" "lubridate" "forcats" "stringr"
## [13] "dplyr" "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [19] "tidyverse" "stats" "graphics" "grDevices" "utils" "datasets"
## [25] "methods" "base"
##
## [[6]]
## [1] "MASS" "nlme" "splines" "modelr" "car" "carData"
## [7] "lmtest" "zoo" "sandwich" "broom" "lubridate" "forcats"
## [13] "stringr" "dplyr" "purrr" "readr" "tidyr" "tibble"
## [19] "ggplot2" "tidyverse" "stats" "graphics" "grDevices" "utils"
## [25] "datasets" "methods" "base"
##
## [[7]]
## [1] "boot" "MASS" "nlme" "splines" "modelr" "car"
## [7] "carData" "lmtest" "zoo" "sandwich" "broom" "lubridate"
## [13] "forcats" "stringr" "dplyr" "purrr" "readr" "tidyr"
## [19] "tibble" "ggplot2" "tidyverse" "stats" "graphics" "grDevices"
## [25] "utils" "datasets" "methods" "base"
##
## [[8]]
## [1] "boot" "MASS" "nlme" "splines" "modelr" "car"
## [7] "carData" "lmtest" "zoo" "sandwich" "broom" "lubridate"
## [13] "forcats" "stringr" "dplyr" "purrr" "readr" "tidyr"
## [19] "tibble" "ggplot2" "tidyverse" "stats" "graphics" "grDevices"
## [25] "utils" "datasets" "methods" "base"
1. Simulasi Data
Tujuan: membuat data dengan 3 prediktor (X1, X2, X3), disuntik multikolinearitas ringan (X1 & X2 berkorelasi) dan heteroskedastisitas (ragam error meningkat saat |X1| besar), serta sedikit outlier.
n <- 200
X1 <- rnorm(n, 0, 1)
# X2 berkorelasi ~0.7 dengan X1
rho <- 0.7
X2 <- rho*X1 + sqrt(1-rho^2)*rnorm(n)
X3 <- rnorm(n)
# Heteroskedastisitas: sd error tergantung |X1|
eps <- rnorm(n, sd = 0.5 + 0.5*abs(X1))
# Model benar (ground truth): y = 2 + 1.5*X1 - 0.8*X2 + 0.5*X3 + eps
y <- 2 + 1.5*X1- 0.8*X2 + 0.5*X3 + eps
# Tambah beberapa outlier pada respon
idx_out <- sample(1:n, 3)
y[idx_out] <- y[idx_out] + rnorm(3, mean = 6, sd = 1)
dat <- data.frame(y, X1, X2, X3)
summary(dat)
## y X1 X2 X3
## Min. :-3.194 Min. :-2.30917 Min. :-2.36565 Min. :-2.80977
## 1st Qu.: 1.157 1st Qu.:-0.62576 1st Qu.:-0.68926 1st Qu.:-0.55753
## Median : 2.040 Median :-0.05874 Median : 0.03268 Median : 0.07583
## Mean : 2.066 Mean :-0.00857 Mean : 0.02408 Mean : 0.03178
## 3rd Qu.: 2.895 3rd Qu.: 0.56840 3rd Qu.: 0.69036 3rd Qu.: 0.68098
## Max. : 9.427 Max. : 3.24104 Max. : 3.00049 Max. : 2.43023
2. Estimasi Parameter (OLS)
mod0 <- lm(y~ X1 + X2 + X3, data = dat)
summary(mod0)
##
## Call:
## lm(formula = y ~ X1 + X2 + X3, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3070 -0.6446 -0.0414 0.5284 7.1821
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.07742 0.08726 23.806 < 2e-16 ***
## X1 1.31536 0.12466 10.551 < 2e-16 ***
## X2 -0.75833 0.12303 -6.164 3.97e-09 ***
## X3 0.57737 0.09070 6.366 1.35e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.232 on 196 degrees of freedom
## Multiple R-squared: 0.4404, Adjusted R-squared: 0.4318
## F-statistic: 51.41 on 3 and 196 DF, p-value: < 2.2e-16
broom::glance(mod0) # ringkas: R^2, Adj R^2, AIC, dll.
## # A tibble: 1 × 12
## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.440 0.432 1.23 51.4 1.47e-24 3 -324. 657. 674.
## # ℹ 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
Catatan interpretasi cepat: Koefisien menunjukkan perubahan rata-rata y untuk kenaikan 1 unit pada prediktor (dengan prediktor lain konstan). Lihat Pr(>|t|) untuk signifikansi.
3. Uji Hipotesis
3.1 Uji serentak (overall F-test) Sudah tersedia pada output summary(mod0) (Signifikansi model secara keseluruhan).
3.2 Uji parsial (t-test per koefisien) Juga ada di summary(mod0).
3.3 Uji hipotesis gabungan (contoh:
car::linearHypothesis(mod0, c("X2 = 0", "X3 = 0"))
##
## Linear hypothesis test:
## X2 = 0
## X3 = 0
##
## Model 1: restricted model
## Model 2: y ~ X1 + X2 + X3
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 198 423.38
## 2 196 297.59 2 125.79 41.423 9.897e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
3.4 Uji dengan SE robust (menghadapi heteroskedastisitas)
# Koefisien + SE robust (HC3)
coeftest(mod0, vcov. = sandwich::vcovHC(mod0, type = "HC3"))
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.077419 0.087811 23.6578 < 2.2e-16 ***
## X1 1.315357 0.163042 8.0676 7.027e-14 ***
## X2 -0.758334 0.123626 -6.1341 4.644e-09 ***
## X3 0.577370 0.107728 5.3595 2.330e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
4. Uji Asumsi
4.1 Multikolinearitas
# Variance Inflation Factor (VIF)
car::vif(mod0)
## X1 X2 X3
## 1.811923 1.816606 1.003660
# Kondisi numerik (opsional): kappa > 30 indikasi masalah
kappa(model.matrix(mod0))
## [1] 2.263679
Rule of thumb: VIF > 10 (atau > 5) → indikasi kolinearitas meningkat.
4.2 Heteroskedastisitas
# Breusch-Pagan
lmtest::bptest(mod0)
##
## studentized Breusch-Pagan test
##
## data: mod0
## BP = 1.0283, df = 3, p-value = 0.7944
# White test (via bptest dengan kuadrat fitted)
lmtest::bptest(mod0,~ fitted(mod0) + I(fitted(mod0)^2))
##
## studentized Breusch-Pagan test
##
## data: mod0
## BP = 5.3586, df = 2, p-value = 0.06861
Jika signifikan, gunakan SE robust (lihat 3.4) untuk inferensi yang lebih andal.
4.3 Normalitas residual
res <- rstandard(mod0)
shapiro.test(res) # sensitif untuk n besar; gunakan juga QQ-plot
##
## Shapiro-Wilk normality test
##
## data: res
## W = 0.87436, p-value = 7.729e-12
qqnorm(res); qqline(res)
4.4 Autokorelasi residual (opsional)
(Biasanya untuk data runtun waktu)
lmtest::dwtest(mod0)
##
## Durbin-Watson test
##
## data: mod0
## DW = 2.0342, p-value = 0.5998
## alternative hypothesis: true autocorrelation is greater than 0
4.5 Uji spesifikasi (linearitas) – Ramsey RESET
lmtest::resettest(mod0)
##
## RESET test
##
## data: mod0
## RESET = 4.2735, df1 = 2, df2 = 194, p-value = 0.01527
4.6 Plot Diagnostik Standar
par(mfrow=c(2,2))
plot(mod0)
par(mfrow=c(1,1))
5. Seleksi Model
Strategi: mulai dari model kandidat (termasuk transformasi sederhana) lalu gunakan AIC (stepwise), bandingkan dengan model awal, dan validasi via CV.
dat2 <- dat %>%
mutate(X1_sq = X1^2, X2_sq = X2^2, X3_sq = X3^2,
X1X2 = X1*X2, X1X3 = X1*X3, X2X3 = X2*X3)
mod_full <- lm(y~ X1 + X2 + X3 + X1_sq + X2_sq + X3_sq + X1X2 + X1X3 + X2X3, data = dat2)
AIC(mod0); AIC(mod_full)
## [1] 657.0574
## [1] 660.7653
# Stepwise berbasis AIC (dua arah)
mod_step <- MASS::stepAIC(mod_full, direction = "both", trace = FALSE)
summary(mod_step)
##
## Call:
## lm(formula = y ~ X1 + X2 + X3 + X2_sq + X1X2, data = dat2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2286 -0.6853 -0.0298 0.4825 7.0242
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.19439 0.10487 20.925 < 2e-16 ***
## X1 1.31032 0.12513 10.472 < 2e-16 ***
## X2 -0.72799 0.12278 -5.929 1.37e-08 ***
## X3 0.57331 0.08996 6.373 1.32e-09 ***
## X2_sq -0.28501 0.11895 -2.396 0.0175 *
## X1X2 0.23671 0.13546 1.748 0.0821 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.22 on 194 degrees of freedom
## Multiple R-squared: 0.4571, Adjusted R-squared: 0.4431
## F-statistic: 32.67 on 5 and 194 DF, p-value: < 2.2e-16
broom::glance(mod_step)[,c("r.squared","adj.r.squared","AIC","BIC")]
## # A tibble: 1 × 4
## r.squared adj.r.squared AIC BIC
## <dbl> <dbl> <dbl> <dbl>
## 1 0.457 0.443 655. 678.
Validasi silang (10-fold CV) untuk membandingkan RMSE:
# Fungsi CV RMSE menggunakan boot::cv.glm
cv_rmse <- function(model, data, K=10){
# cv.glm mengembalikan delta: [1] raw CV, [2] adjusted CV
set.seed(123)
res <- boot::cv.glm(data = data, glmfit = model, K = K)
sqrt(res$delta[1])
}
rmse_mod0 <- cv_rmse(mod0, dat)
rmse_modstep<- cv_rmse(mod_step, dat2)
c(RMSE_mod0 = rmse_mod0, RMSE_modStep = rmse_modstep)
## RMSE_mod0 RMSE_modStep
## NaN NaN
Pilih model dengan trade-off terbaik antara kesederhanaan dan kinerja (RMSE, AIC/BIC, Adj, R- squared.
6. Evaluasi Outlier & Titik Berpengaruh
Gunakan studentized residuals, leverage (hat), dan Cook’s distance. Tambahkan Bonferroni outlier test.
infl <- influence.measures(mod0)
# Ringkasan pengaruh
summary(infl)
## Potentially influential observations of
## lm(formula = y ~ X1 + X2 + X3, data = dat) :
##
## dfb.1_ dfb.X1 dfb.X2 dfb.X3 dffit cov.r cook.d hat
## 16 -0.21 -0.06 -0.32 0.54 -0.78_* 0.94 0.15 0.07_*
## 18 0.30 -0.30 -0.24 0.09 0.74_* 0.75_* 0.13 0.03
## 27 0.00 0.00 0.00 0.01 0.01 1.07_* 0.00 0.04
## 56 -0.05 -0.05 0.01 0.11 -0.14 1.07_* 0.00 0.06
## 65 -0.14 0.36 -0.34 0.17 -0.45_* 0.97 0.05 0.04
## 90 0.31 0.25 0.04 -0.12 0.50_* 0.72_* 0.06 0.01
## 97 0.00 0.00 -0.01 0.00 -0.01 1.08_* 0.00 0.05
## 135 -0.03 0.07 -0.01 -0.08 -0.12 1.07_* 0.00 0.05
## 147 0.19 -0.21 -0.01 -0.25 0.42 0.92_* 0.04 0.03
## 149 0.23 0.54 -0.20 0.60 0.86_* 0.89_* 0.18 0.07_*
## 160 -0.02 0.04 -0.04 0.01 -0.05 1.06_* 0.00 0.04
## 162 0.43 -0.56 0.28 0.26 0.78_* 0.48_* 0.13 0.01
## 164 -0.20 -0.38 -0.25 -0.35 -0.87_* 0.95 0.18 0.08_*
## 191 0.03 0.02 -0.02 -0.08 0.08 1.07_* 0.00 0.05
# Statistik diagnostik
studres <- rstudent(mod0)
lev <- hatvalues(mod0)
cookd <- cooks.distance(mod0)
# Ambang sederhana
thr_res <- 3 # |studentized residual| > 3
thr_lev <- 2*length(coef(mod0))/nrow(dat) # leverage tinggi
thr_cook <- 4/nrow(dat) # Cook's distance besar
flag <- data.frame(
id = 1:nrow(dat),
studres = studres,
leverage = lev,
cookd = cookd
) %>%
mutate(
flag_res = abs(studres) > thr_res,
flag_lev = leverage > thr_lev,
flag_cook = cookd > thr_cook,
any_flag = flag_res | flag_lev | flag_cook
) %>%
arrange(desc(any_flag), desc(abs(studres)))
head(flag, 10)
## id studres leverage cookd flag_res flag_lev flag_cook any_flag
## 162 162 6.450812 0.01441863 0.12607179 TRUE FALSE TRUE TRUE
## 90 90 4.302679 0.01343365 0.05785187 TRUE FALSE TRUE TRUE
## 18 18 4.188058 0.03056365 0.12748735 TRUE FALSE TRUE TRUE
## 149 149 3.243249 0.06634585 0.17821039 TRUE TRUE TRUE TRUE
## 164 164 -2.855691 0.08454000 0.18164105 FALSE TRUE TRUE TRUE
## 16 16 -2.803489 0.07241620 0.14821120 FALSE TRUE TRUE TRUE
## 147 147 2.584024 0.02573283 0.04284913 FALSE FALSE TRUE TRUE
## 143 143 2.200166 0.03420638 0.04203837 FALSE FALSE TRUE TRUE
## 30 30 2.172800 0.03120105 0.03730329 FALSE FALSE TRUE TRUE
## 65 65 -2.140175 0.04228760 0.04965406 FALSE TRUE TRUE TRUE
car::outlierTest(mod0) # menguji outlier pada residual studentized dengan koreksi Bonferroni
## rstudent unadjusted p-value Bonferroni p
## 162 6.450812 8.5823e-10 1.7165e-07
## 90 4.302679 2.6674e-05 5.3348e-03
## 18 4.188058 4.2583e-05 8.5167e-03
Plot cepat untuk Cook’s distance:
plot(cookd, type="h", main="Cook's Distance", ylab="D", xlab="Observasi")
abline(h = thr_cook, lty=2)
Tindak lanjut (opsional):
Coba refit tanpa observasi berpengaruh ekstrem dan bandingkan koefisien/fit.
Pertimbangkan robust regression (M-estimator) jika banyak outlier: MASS::rlm.
# Refit tanpa titik yang sangat berpengaruh (contoh)
to_drop <- which(cookd > thr_cook | abs(studres) > thr_res)
mod_refit <- lm(y~ X1 + X2 + X3, data = dat[-to_drop, ])
broom::tidy(mod0)
## # A tibble: 4 × 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 2.08 0.0873 23.8 9.73e-60
## 2 X1 1.32 0.125 10.6 6.73e-21
## 3 X2 -0.758 0.123 -6.16 3.97e- 9
## 4 X3 0.577 0.0907 6.37 1.35e- 9
broom::tidy(mod_refit)
## # A tibble: 4 × 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 1.99 0.0566 35.1 2.69e-83
## 2 X1 1.44 0.0861 16.7 1.11e-38
## 3 X2 -0.676 0.0819 -8.26 2.87e-14
## 4 X3 0.501 0.0606 8.27 2.75e-14
7. Ringkasan & Rekomendasi
• Cek signifikansi koefisien (t-test) dan kecocokan model (F-test, R²).
• Perhatikan multikolinearitas (VIF); bila tinggi, pertimbangkan transformasi, pengurangan variabel, atau ridge/lasso. • Jika heteroskedastisitas terdeteksi, gunakan SE robust untuk inferensi atau model varian (mis.WLS).
• Lakukan seleksi model (AIC/BIC, CV) untuk keseimbangan bias–varian.
• Evaluasi outlier/pengaruh; pertimbangkan robust regression bila perlu.
• Validasi hasil secara substantif (masuk akal secara domain) dan replikasi (seed, pipeline).
1. Diagnostik lengkap OLS pada data mtcars: heteroskedastisitas (Breusch–Pagan), multikolin- earitas (VIF), pengaruh (Cook’s D), normalitas (QQ-plot). Laporkan temuan & rekomendasi.
jawaban :
1. Heteroskedastisitas — Uji Breusch–Pagan
Inti Konsep
Ide Singkat Cara Kerja
# Model regresi
data(mtcars)
model <- lm(mpg ~ wt + hp + disp, data = mtcars)
# Uji Breusch–Pagan
library(lmtest)
bptest(model)
##
## studentized Breusch-Pagan test
##
## data: model
## BP = 0.9459, df = 3, p-value = 0.8143
2. Multikolinearitas — VIF (Variance Inflation Factor)
Inti Konsep
Yang diuji: apakah prediktor saling berkorelasi kuat sehingga membuat estimasi koefisien tidak stabil.
Rumus VIF untuk prediktor \(X_j\):
\[ _j = \]
dengan \(R_j^2\) adalah koefisien determinasi saat \(X_j\) diregresikan pada prediktor lain.
Patokan
Implementasi di R
# Model regresi
data(mtcars)
model <- lm(mpg ~ wt + hp + disp, data = mtcars)
# Hitung VIF
library(car)
vif(model)
## wt hp disp
## 4.844618 2.736633 7.324517
3. Observasi Berpengaruh — Cook’s Distance
Inti Konsep
Patokan Umum
Implementasi di R
data(mtcars)
model <- lm(mpg ~ wt + hp + disp, data = mtcars)
# Hitung Cook's Distance
cooksD <- cooks.distance(model)
# Plot
plot(cooksD, type = "h", main="Cook's Distance", ylab="Cook's D")
abline(h = 4/length(cooksD), col="red", lty=2)
# Tampilkan observasi dengan Cook's D terbesar
sort(cooksD, decreasing = TRUE)[1:10]
## Maserati Bora Chrysler Imperial Toyota Corolla Fiat 128
## 0.34029114 0.31997067 0.15297714 0.11960192
## Pontiac Firebird Lotus Europa AMC Javelin Dodge Challenger
## 0.06980693 0.05959750 0.04909944 0.04218196
## Merc 280C Toyota Corona
## 0.02606104 0.02215865
4. Normalitas Residual — QQ-plot
Inti Konsep
Tujuan: mengecek apakah residual mendekati
distribusi normal.
Hal ini penting untuk inferensi (uji t, uji F, confidence interval).
QQ-plot:
Implementasi di R
data(mtcars)
model <- lm(mpg ~ wt + hp + disp, data = mtcars)
# QQ-plot residual
qqnorm(rstudent(model), main="QQ-Plot Residuals")
qqline(rstudent(model), col="red")
Ringkasan Temuan
Model yang dianalisis:
\[ mpg wt + hp + disp \]
1.Heteroskedastisitas
2.Multikolinearitas
disp
(VIF ≈ 7.3).wt
juga relatif tinggi (≈ 4.8), namun masih di bawah
ambang serius.3.Observasi Berpengaruh
4.Normalitas Residual
5. Rekomendasi Praktis
disp
atau
wt
(pilih variabel yang paling informatif).Catatan Akhir
Secara keseluruhan, model masih layak
digunakan.
Namun, kolinearitas moderat dan beberapa observasi berpengaruh
menunjukkan perlunya eksplorasi model alternatif agar hasil analisis
lebih stabil dan dapat dipercaya.
2. Robust SE (HC3) vs WLS pada data simulasi heteroskedastik; bandingkan standar error dan p-value.
Jawaban :
1) Setting Masalah (Ringkas)
Kita ingin mengestimasi model linier sederhana:
\[ y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \]
dengan asumsi:
Heteroskedastisitas
\[ \mathrm{Var}(\varepsilon_i \mid x_i) \propto x_i^2 \]
Implikasi
2) OLS (Estimasi) dan Standard Error Klasik
Estimator OLS
Estimator OLS untuk model linier:
\[ \hat{\beta} = (X'X)^{-1}X'y \]
di mana: - \(X\) = matriks desain (n × p), - \(y\) = vektor respon, - \(\hat{\beta}\) = vektor koefisien hasil estimasi.
Varians & Standard Error Klasik
Dengan asumsi homoskedastisitas:
\[ \widehat{\mathrm{Var}}(\hat{\beta}) = \hat{\sigma}^2 (X'X)^{-1} \]
dengan:
\[ \hat{\sigma}^2 = \frac{\sum \hat{e}_i^2}{n - p} \]
dan \(\hat{e}_i = y_i - \hat{y}_i\) adalah residual.
Catatan Penting
3) Robust SE (HC3)
Ide Utama
Rumus HC3
\[ \widehat{\mathrm{Var}}_{\text{HC3}}(\hat{\beta}) = (X'X)^{-1} \Big( X' \, \mathrm{diag}\!\left(\frac{\hat{e}_i^2}{(1-h_{ii})^2}\right) X \Big) (X'X)^{-1} \]
dengan: - \(\hat{e}_i\) = residual OLS, - \(h_{ii}\) = leverage (elemen diagonal matriks hat \(H = X(X'X)^{-1}X'\)).
Intuisi
Implikasi Praktis
4) Weighted Least Squares (WLS)
Ide Utama
Rumus WLS
\[ \hat{\beta}_{\text{WLS}} = (X'WX)^{-1} X'Wy \]
dengan: - \(W = \mathrm{diag}(w_i)\) matriks bobot, - biasanya \(w_i = \tfrac{1}{\hat{\sigma}_i^2}\), yaitu kebalikan dari varians error.
Contoh Kasus
Implikasi Praktis
5) Perbandingan pada Data Simulasi (Heteroskedastik)
Kita simulasikan data dengan varians error meningkat terhadap \(x\) sehingga terjadi heteroskedastisitas. Model kebenaran: \(y = \beta_0 + \beta_1 x + \varepsilon\) dengan \(\beta_0 = 2\), \(\beta_1 = 1.5\). Kita set \(\mathrm{sd}(\varepsilon_i) \propto x_i\) agar varians error membesar saat \(x\) besar.
set.seed(123)
n <- 40
x <- seq(0.5, 4, length.out = n)
sd <- 0.6 * x # sd error proporsional dengan x
eps <- rnorm(n, mean = 0, sd = sd)
y <- 2 + 1.5 * x + eps
dat <- data.frame(x, y, sd)
m_ols <- lm(y ~ x, data = dat)
m_wls <- lm(y ~ x, data = dat, weights = 1 / (x^2))
# SE klasik (default) untuk OLS
se_ols <- sqrt(diag(vcov(m_ols)))
# SE robust HC3
library(sandwich)
library(lmtest)
vc_hc3 <- vcovHC(m_ols, type = "HC3")
se_hc3 <- sqrt(diag(vc_hc3))
# SE WLS (default vcov dari lm dengan weights)
se_wls <- sqrt(diag(vcov(m_wls)))
# Ringkas koefisien, SE, p-value
tab <- data.frame(
Metode = c("OLS (klasik)", "OLS + HC3", "WLS"),
beta0 = c(coef(m_ols)[1], coef(m_ols)[1], coef(m_wls)[1]),
se_b0 = c(se_ols[1], se_hc3[1], se_wls[1]),
p_b0 = c(coeftest(m_ols)[1,4], coeftest(m_ols, vcov.=vc_hc3)[1,4], coeftest(m_wls)[1,4]),
beta1 = c(coef(m_ols)[2], coef(m_ols)[2], coef(m_wls)[2]),
se_b1 = c(se_ols[2], se_hc3[2], se_wls[2]),
p_b1 = c(coeftest(m_ols)[2,4], coeftest(m_ols, vcov.=vc_hc3)[2,4], coeftest(m_wls)[2,4])
)
knitr::kable(tab, digits = 5, caption = "Perbandingan koefisien, standar error, dan p-value")
Metode | beta0 | se_b0 | p_b0 | beta1 | se_b1 | p_b1 |
---|---|---|---|---|---|---|
OLS (klasik) | 1.82910 | 0.46313 | 0.00033 | 1.59916 | 0.18697 | 0 |
OLS + HC3 | 1.82910 | 0.30483 | 0.00000 | 1.59916 | 0.15889 | 0 |
WLS | 2.07486 | 0.20805 | 0.00000 | 1.48159 | 0.15306 | 0 |
plot(fitted(m_ols), resid(m_ols),
xlab = "Fitted (OLS)", ylab = "Residual (OLS)",
main = "Residual vs Fitted (OLS)")
abline(h = 0, lty = 2)
uji Breusch–Pagan untuk menegaskan heteroskedastisitas.
library(lmtest)
bptest(m_ols)
##
## studentized Breusch-Pagan test
##
## data: m_ols
## BP = 4.3684, df = 1, p-value = 0.03661
3. Spline vs polinomial: modelkan mpg ~ wt dan bandingkan AIC/BIC + 5-fold CV.
jawaban :
mtcars
(n = 32).mpg
, prediktor =
wt
.wt
dan
mpg
.Implementasi r
data(mtcars)
mtcars_small <- mtcars[, c("mpg","wt")]
str(mtcars_small)
## 'data.frame': 32 obs. of 2 variables:
## $ mpg: num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
summary(mtcars_small)
## mpg wt
## Min. :10.40 Min. :1.513
## 1st Qu.:15.43 1st Qu.:2.581
## Median :19.20 Median :3.325
## Mean :20.09 Mean :3.217
## 3rd Qu.:22.80 3rd Qu.:3.610
## Max. :33.90 Max. :5.424
Linear
\[
mpg = \beta_0 + \beta_1\, wt + \varepsilon
\]
Polinomial
- Derajat 2: \[
mpg = \beta_0 + \beta_1\,wt + \beta_2\,wt^2 + \varepsilon
\] - Derajat 3: \[
mpg = \beta_0 + \beta_1\,wt + \beta_2\,wt^2 + \beta_3\,wt^3 +
\varepsilon
\]
Natural spline
- df = 3
- df = 4
Catatan: spline memberi fleksibilitas lokal; polinomial memberi fleksibilitas global yang bisa berosilasi di tepi rentang data.
Implementasi r
library(splines)
# Pakai GLM gaussian agar mudah dipakai cv.glm
m_lin <- glm(mpg ~ wt, data = mtcars, family = gaussian())
m_p2 <- glm(mpg ~ poly(wt, 2, raw = TRUE), data = mtcars, family = gaussian())
m_p3 <- glm(mpg ~ poly(wt, 3, raw = TRUE), data = mtcars, family = gaussian())
m_ns3 <- glm(mpg ~ ns(wt, df = 3), data = mtcars, family = gaussian())
m_ns4 <- glm(mpg ~ ns(wt, df = 4), data = mtcars, family = gaussian())
mods <- list(
Linear = m_lin,
Poly2 = m_p2,
Poly3 = m_p3,
NS3 = m_ns3,
NS4 = m_ns4
)
lapply(mods, summary)
## $Linear
##
## Call:
## glm(formula = mpg ~ wt, family = gaussian(), data = mtcars)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 9.277398)
##
## Null deviance: 1126.05 on 31 degrees of freedom
## Residual deviance: 278.32 on 30 degrees of freedom
## AIC: 166.03
##
## Number of Fisher Scoring iterations: 2
##
##
## $Poly2
##
## Call:
## glm(formula = mpg ~ poly(wt, 2, raw = TRUE), family = gaussian(),
## data = mtcars)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 49.9308 4.2113 11.856 1.21e-12 ***
## poly(wt, 2, raw = TRUE)1 -13.3803 2.5140 -5.322 1.04e-05 ***
## poly(wt, 2, raw = TRUE)2 1.1711 0.3594 3.258 0.00286 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 7.025705)
##
## Null deviance: 1126.05 on 31 degrees of freedom
## Residual deviance: 203.75 on 29 degrees of freedom
## AIC: 158.05
##
## Number of Fisher Scoring iterations: 2
##
##
## $Poly3
##
## Call:
## glm(formula = mpg ~ poly(wt, 3, raw = TRUE), family = gaussian(),
## data = mtcars)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 48.40370 15.58379 3.106 0.00431 **
## poly(wt, 3, raw = TRUE)1 -11.82598 15.46346 -0.765 0.45081
## poly(wt, 3, raw = TRUE)2 0.68938 4.74034 0.145 0.88541
## poly(wt, 3, raw = TRUE)3 0.04594 0.45070 0.102 0.91954
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 7.273924)
##
## Null deviance: 1126.05 on 31 degrees of freedom
## Residual deviance: 203.67 on 28 degrees of freedom
## AIC: 160.04
##
## Number of Fisher Scoring iterations: 2
##
##
## $NS3
##
## Call:
## glm(formula = mpg ~ ns(wt, df = 3), family = gaussian(), data = mtcars)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.286 1.664 19.406 < 2e-16 ***
## ns(wt, df = 3)1 -13.903 1.938 -7.173 8.32e-08 ***
## ns(wt, df = 3)2 -27.887 3.846 -7.251 6.80e-08 ***
## ns(wt, df = 3)3 -15.627 1.815 -8.612 2.34e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 7.231457)
##
## Null deviance: 1126.05 on 31 degrees of freedom
## Residual deviance: 202.48 on 28 degrees of freedom
## AIC: 159.85
##
## Number of Fisher Scoring iterations: 2
##
##
## $NS4
##
## Call:
## glm(formula = mpg ~ ns(wt, df = 4), family = gaussian(), data = mtcars)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.543 1.834 17.745 < 2e-16 ***
## ns(wt, df = 4)1 -12.942 2.172 -5.960 2.35e-06 ***
## ns(wt, df = 4)2 -15.236 2.565 -5.941 2.47e-06 ***
## ns(wt, df = 4)3 -28.229 5.081 -5.556 6.87e-06 ***
## ns(wt, df = 4)4 -16.272 1.999 -8.139 9.65e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 7.457091)
##
## Null deviance: 1126.05 on 31 degrees of freedom
## Residual deviance: 201.34 on 27 degrees of freedom
## AIC: 161.67
##
## Number of Fisher Scoring iterations: 2
dengan: - \(\ell\) = log-likelihood model, - \(k\) = jumlah parameter efektif, - \(n\) = jumlah observasi.
Semakin kecil AIC/BIC → semakin baik trade-off
fit vs kompleksitas.
Model lebih kompleks biasanya menurunkan \(-2\ell\) (fit membaik) tetapi meningkatkan
penalti (2k atau \(k\log n\)).
Implementasi r
library(dplyr)
metrics_ic <- tibble::tibble(
Model = names(mods),
AIC = sapply(mods, AIC) |> as.numeric(),
BIC = sapply(mods, BIC) |> as.numeric()
) %>% arrange(AIC)
knitr::kable(metrics_ic, digits = 3, caption = "Perbandingan AIC/BIC")
Model | AIC | BIC |
---|---|---|
Poly2 | 158.048 | 163.911 |
NS3 | 159.849 | 167.178 |
Poly3 | 160.037 | 167.365 |
NS4 | 161.669 | 170.463 |
Linear | 166.029 | 170.427 |
cv_mse <- function(data, fit, K = 5) {
# cv.glm: delta[1] = CV estimate (MSE untuk gaussian)
boot::cv.glm(data = data, glmfit = fit, K = K)$delta[1]
}
metrics_cv <- tibble::tibble(
Model = names(mods),
CV_MSE = sapply(mods, function(fit) cv_mse(mtcars, fit, K = 5))
) %>% arrange(CV_MSE)
knitr::kable(metrics_cv, digits = 4, caption = "5-fold CV (MSE)")
Model | CV_MSE |
---|---|
Poly3 | 7.8588 |
Poly2 | 7.9531 |
NS4 | 8.9777 |
Linear | 9.7610 |
NS3 | 9.9831 |
Linear: kemungkinan underfit;
hubungan mpg
–wt
biasanya tidak murni linear
(penurunan mpg
makin tajam pada mobil lebih
berat).
Polinomial derajat 2: cukup fleksibel untuk lengkungan halus → AIC biasanya turun nyata dibanding linear.
Polinomial derajat 3: lebih fleksibel, tapi berisiko overfit; BIC sering lebih ketat dan bisa tidak mendukung kenaikan derajat.
Natural spline df=3/4: fleksibel dan stabil di tepi rentang; sering kompetitif atau lebih baik dari polinomial orde tinggi.
Prediksi manual urutan performa:
AIC: Linear > Poly-2 ≈ NS(df=3) < Poly-3 ≈ NS(df=4) \ (lebih kecil lebih baik; model lebih fleksibel cenderung menang, tetapi tergantung penalti)
BIC: cenderung memilih model lebih sederhana → Poly-2 atau NS(df=3) sering unggul.
5-fold CV: Poly-2 dan NS(df=3) biasanya memberi CV-MSE paling kecil; Linear underfit, sementara Poly-3/NS(df=4) tidak selalu memberi perbaikan stabil pada n kecil (32).
library(ggplot2)
wt_grid <- data.frame(wt = seq(min(mtcars$wt), max(mtcars$wt), length.out = 200))
pred_df <- dplyr::bind_rows(
data.frame(wt = wt_grid$wt,
mpg_hat = predict(m_lin, newdata = wt_grid),
Model = "Linear"),
data.frame(wt = wt_grid$wt,
mpg_hat = predict(m_p2, newdata = wt_grid),
Model = "Poly-2"),
data.frame(wt = wt_grid$wt,
mpg_hat = predict(m_p3, newdata = wt_grid),
Model = "Poly-3"),
data.frame(wt = wt_grid$wt,
mpg_hat = predict(m_ns3, newdata = wt_grid),
Model = "NS df=3"),
data.frame(wt = wt_grid$wt,
mpg_hat = predict(m_ns4, newdata = wt_grid),
Model = "NS df=4")
)
ggplot(mtcars, aes(wt, mpg)) +
geom_point() +
geom_line(data = pred_df, aes(wt, mpg_hat, color = Model), linewidth = 1) +
labs(title = "mpg ~ wt: Spline vs Polinomial",
x = "wt", y = "mpg")
6. Rekomendasi
Pilihan praktis:
4. AR(1) GLS: gunakan kode GLS di atas, ganti x dengan sinyal musiman (mis. sin(2xpixt/12)), interpretasikan ̂𝜌; bandingkan SE OLS vs GLS.
Jawaban :
1) Pemodelan & Tujuan
Model mean (data bulanan):
\[ y_t = \beta_0 + \beta_1\,x_t + \varepsilon_t,\quad x_t=\sin\!\Big(\tfrac{2\pi t}{12}\Big),\quad t=1,\dots,n. \]
Struktur error AR(1):
\[ \varepsilon_t = \rho\,\varepsilon_{t-1} + u_t,\quad u_t \sim \text{i.i.d. }(0,\sigma_u^2),\ |\rho|<1. \]
Tujuan
1) Estimasi efek musiman \(\beta_1\)
dengan GLS yang memperhitungkan autokorelasi.
2) Menafsirkan \(\hat\rho\) sebagai
ukuran persistensi gangguan antarbulan.
3) Membandingkan standar error OLS vs GLS untuk \(\beta_1\).
2) Baseline OLS (mengabaikan AR)
Estimator OLS:
\[ \hat\beta^{\text{OLS}} = (X'X)^{-1}X'y,\quad X=[\mathbf{1},\,x]. \]
Jika \(x_t\) eksogen, \(\hat\beta^{\text{OLS}}\) tak bias.
Masalahnya, autokorelasi AR(1) membuat kovarian OLS klasik tidak valid
untuk uji t/F.
Kovarian error “benar” di bawah AR(1):
\[ \Omega=\frac{\sigma_u^2}{1-\rho^2}\big[\rho^{|t-s|}\big]_{t,s=1}^n. \]
3) GLS untuk AR(1): Ide & Transformasi
Secara teoretis:
\[ \hat\beta^{\text{GLS}}=(X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y. \]
Praktik umum menggunakan FGLS via transformasi Prais–Winsten:
Untuk \(t\ge 2\): \[ y_t^*=y_t-\rho\,y_{t-1},\qquad x_t^*=x_t-\rho\,x_{t-1}. \]
Untuk \(t=1\): \[ y_1^*=\sqrt{1-\rho^2}\,y_1,\qquad x_1^*=\sqrt{1-\rho^2}\,x_1. \]
Kemudian OLS pada data bertanda bintang:
\[ \hat\beta^{\text{GLS}}=\big((X^*)'X^*\big)^{-1}(X^*)'y^*,\qquad \widehat{\mathrm{Var}}(\hat\beta^{\text{GLS}})=\hat\sigma_*^2\big((X^*)'X^*\big)^{-1}. \]
4) Estimasi \(\rho\) dan Interpretasi \(\hat\rho\)
Langkah ringkas:
Makna \(\hat\rho\):
Catatan musiman sinus:
Untuk \(x_t=\sin(2\pi t/12)\), korelasi
lag-1 dari sinyalnya \(\cos(2\pi/12)=\cos(\pi/6)\approx 0.866\).
Jika error juga persisten (\(\hat\rho>0\)), koreksi AR(1) penting
agar inferensi tidak terlalu optimistis.
5) SE OLS vs SE GLS: Apa yang Diharapkan
6) Apa yang Perlu Dilaporkan
7) Checklist Langkah
• Esai: Mengapa OLS tetap unbiased di bawah heteroskedastisitas, namun tidak efisien? Bagaimana robust SE mengatasi masalah inferensi?
Jawaban
1. Mengapa OLS tetap unbiased?
Kita mulai dari model linier:
\[ y = X\beta + \varepsilon,\qquad \mathbb{E}[\varepsilon \mid X] = 0,\quad \mathrm{Var}(\varepsilon \mid X)=\Omega \]
dengan \(\Omega\) tidak harus \(\sigma^2 I\) (boleh heteroskedastik).
Estimator OLS adalah:
\[ \hat{\beta}_{\text{OLS}} = (X'X)^{-1}X'y. \]
Ambil harapan bersyarat pada \(X\):
\[ \begin{aligned} \mathbb{E}[\hat{\beta}_{\text{OLS}} \mid X] &= \mathbb{E}\!\left[(X'X)^{-1}X'(X\beta + \varepsilon)\,\middle|\,X\right] \\ &= (X'X)^{-1}X'X\,\beta \;+\; (X'X)^{-1}X'\,\mathbb{E}[\varepsilon \mid X] \\ &= \beta \;+\; (X'X)^{-1}X'\,0 \\ &= \beta. \end{aligned} \]
Kesimpulan: selama asumsi eksogenitas berlaku (\(\mathbb{E}[\varepsilon \mid X]=0\)), OLS tetap tak bias meski ada heteroskedastisitas. Heteroskedastisitas memengaruhi varians \(\hat{\beta}\), bukan rata-ratanya.
Catatan penting - Heteroskedastisitas tidak menggeser nilai tengah \(\hat{\beta}\), tetapi membuat \(\mathrm{Var}(\hat{\beta}_{\text{OLS}} \mid X) = (X'X)^{-1}X'\Omega X(X'X)^{-1}\) bukan \(\sigma^2(X'X)^{-1}\). - Akibatnya OLS tidak efisien (bukan lagi BLUE) dan SE klasik jadi tidak valid untuk inferensi.
Implementasi R
1.1) Simulasi: OLS tetap tak-bias (eksogenitas terpenuhi)
Model kebenaran:
\(y = \beta_0 + \beta_1 x +
\varepsilon\), dengan \(E[\varepsilon
\mid x] = 0\) dan \(sd(\varepsilon) =
0.3 + 0.7x\).
beta0 <- 1
beta1 <- 2
nsim <- 1000 # jumlah replikasi simulasi
n <- 300 # ukuran sampel per simulasi
beta1_hat <- numeric(nsim)
for (s in 1:nsim) {
x <- runif(n, 0, 3)
sd <- 0.3 + 0.7*x # heteroskedastisitas: sd naik saat x naik
eps <- rnorm(n, 0, sd)
y <- beta0 + beta1*x + eps
fit <- lm(y ~ x)
beta1_hat[s] <- coef(fit)["x"]
}
c(mean_beta1_hat = mean(beta1_hat),
true_beta1 = beta1,
bias = mean(beta1_hat) - beta1)
## mean_beta1_hat true_beta1 bias
## 2.001085494 2.000000000 0.001085494
1.2) Mengapa inferensi OLS klasik bisa salah? (coverage SE klasik vs robust)
Kita bandingkan cakupan 95% untuk \(\beta_1\) menggunakan:
Implementasi R
library(sandwich)
library(lmtest)
nsim <- 1000
n <- 300
cover_classic <- logical(nsim)
cover_hc3 <- logical(nsim)
sebar_classic <- numeric(nsim)
sebar_hc3 <- numeric(nsim)
for (s in 1:nsim) {
x <- runif(n, 0, 3)
sd <- 0.3 + 0.7*x
eps <- rnorm(n, 0, sd)
y <- beta0 + beta1*x + eps
fit <- lm(y ~ x)
# SE klasik
se_c <- sqrt(diag(vcov(fit)))["x"]
ci_c <- coef(fit)["x"] + c(-1,1) * 1.96 * se_c
cover_classic[s] <- (beta1 >= ci_c[1] && beta1 <= ci_c[2])
sebar_classic[s] <- se_c
# SE robust HC3
vc_hc3 <- vcovHC(fit, type = "HC3")
se_r <- sqrt(diag(vc_hc3))["x"]
ci_r <- coef(fit)["x"] + c(-1,1) * 1.96 * se_r
cover_hc3[s] <- (beta1 >= ci_r[1] && beta1 <= ci_r[2])
sebar_hc3[s] <- se_r
}
results <- data.frame(
Metrik = c("Rata-rata SE", "Coverage 95%"),
Klasik = c(mean(sebar_classic), mean(cover_classic)),
HC3 = c(mean(sebar_hc3), mean(cover_hc3))
)
knitr::kable(results, digits = 4, caption = "SE klasik vs SE robust (HC3): rata-rata SE dan coverage 95%")
Metrik | Klasik | HC3 |
---|---|---|
Rata-rata SE | 0.0986 | 0.1051 |
Coverage 95% | 0.9240 | 0.9440 |
Interpretasi yang diharapkan
Coverage klasik sering < 0.95 (terlalu optimistis) saat heteroskedastisitas ada.
Coverage HC3 mendekati 0.95 → inferensi valid.
Rata-rata SE HC3 biasanya lebih besar dari klasik (lebih “jujur”).
1.3) Visual satu realisasi (opsional)
# Satu contoh data untuk visual
x <- runif(n, 0, 3)
sd <- 0.3 + 0.7*x
eps <- rnorm(n, 0, sd)
y <- beta0 + beta1*x + eps
fit <- lm(y ~ x)
par(mfrow = c(1,2))
plot(x, y, pch = 19, cex = 0.6,
main = "Scatter y vs x (heteroskedastik)")
abline(fit, col = "red", lwd = 2)
plot(fitted(fit), resid(fit), pch = 19, cex = 0.6,
main = "Residual vs Fitted (OLS)",
xlab = "Fitted", ylab = "Residual")
abline(h = 0, lty = 2)
par(mfrow = c(1,1))
Ringkas:
Simulasi menunjukkan OLS tak-bias (rata-rata \(\hat{\beta}_1 \approx \beta_1\)).
SE klasik gagal menjaga coverage ketika ada heteroskedastisitas.
Robust SE (HC3) mengoreksi kovarians sehingga uji t/CI kembali valid tanpa mengubah koefisien OLS.
2) Mengapa tidak efisien?
Varians sebenarnya dari \(\hat{\beta}_{OLS}\) (bersyarat pada \(X\)) di bawah heteroskedastisitas:
\(Var(\hat{\beta}_{OLS} \mid X) = (X'X)^{-1} X' \, \Omega \, X \, (X'X)^{-1}.\)
Di bawah homoskedastisitas (\(\Omega =
\sigma^2 I\)) ini menjadi \(\sigma^2
(X'X)^{-1}\) dan OLS adalah BLUE (Gauss–Markov).
Di bawah heteroskedastisitas, bentuk di atas bukan \(\sigma^2 (X'X)^{-1}\) dan OLS bukan
lagi estimator linear tak-bias dengan varians minimum.
Intuisi: jika beberapa titik punya varians error besar, menyamakan bobot semua titik “mencampur” banyak noise. GLS/WLS memakai bobot \(w_i \propto 1/\sigma_i^2\) untuk menurunkan kontribusi observasi yang sangat berisik, sehingga varians koefisien lebih kecil (lebih efisien).
Implementasi R
Mendemonstrasikan bahwa:
OLS tetap tak-bias (eksogenitas terpenuhi), tetapi tidak efisien di bawah heteroskedastisitas.
WLS dengan bobot yang sesuai var(error) memiliki varians estimator koefisien lebih kecil (lebih efisien).
Desain simulasi
Model kebenaran:
\(y = \beta_0 + \beta_1 x + \varepsilon, \; E[\varepsilon \mid x] = 0, \; sd(\varepsilon) = 0.3 + 0.7x,\)
sehingga \(Var(\varepsilon) = (0.3 + 0.7x)^2\) (heteroskedastik meningkat saat \(x\) besar).
Estimator dibandingkan:
lm(y ~ x)
(bobot seragam).lm(y ~ x, weights = 1 / (0.3 + 0.7x)^2)
(bobot
“benar”).Metrik:
beta0 <- 1
beta1 <- 2
nsim <- 2000 # jumlah replikasi
n <- 300 # ukuran sampel per replikasi
b1_ols <- numeric(nsim)
b1_wls <- numeric(nsim)
se_ols <- numeric(nsim) # SE klasik OLS
se_wls <- numeric(nsim) # SE WLS (default vcov pada lm berbobot)
for (s in 1:nsim) {
x <- runif(n, 0, 3)
sd <- 0.3 + 0.7*x
eps <- rnorm(n, 0, sd)
y <- beta0 + beta1*x + eps
fit_ols <- lm(y ~ x)
fit_wls <- lm(y ~ x, weights = 1/(sd^2))
b1_ols[s] <- coef(fit_ols)["x"]
b1_wls[s] <- coef(fit_wls)["x"]
se_ols[s] <- coef(summary(fit_ols))["x","Std. Error"]
se_wls[s] <- coef(summary(fit_wls))["x","Std. Error"]
}
# Ringkasan kinerja
mean_ols <- mean(b1_ols); mean_wls <- mean(b1_wls)
bias_ols <- mean_ols - beta1; bias_wls <- mean_wls - beta1
sd_ols <- sd(b1_ols); sd_wls <- sd(b1_wls)
var_ratio <- (sd_ols^2)/(sd_wls^2)
tab <- data.frame(
Metrik = c("Rata-rata beta1_hat", "Bias", "SD empirik beta1_hat",
"Rata-rata SE (terlapor)", "Rasio Var(OLS)/Var(WLS)"),
OLS = c(mean_ols, bias_ols, sd_ols, mean(se_ols), var_ratio),
WLS = c(mean_wls, bias_wls, sd_wls, mean(se_wls), NA)
)
knitr::kable(tab, digits = 5, caption = "Perbandingan OLS vs WLS di bawah heteroskedastisitas")
Metrik | OLS | WLS |
---|---|---|
Rata-rata beta1_hat | 1.99904 | 1.99675 |
Bias | -0.00096 | -0.00325 |
SD empirik beta1_hat | 0.10923 | 0.07607 |
Rata-rata SE (terlapor) | 0.09870 | 0.07470 |
Rasio Var(OLS)/Var(WLS) | 2.06191 | NA |
Interpretasi yang diharapkan:
Visual distribusi estimator (opsional)
library(ggplot2)
df_plot <- rbind(
data.frame(beta1_hat = b1_ols, Metode = "OLS"),
data.frame(beta1_hat = b1_wls, Metode = "WLS")
)
ggplot(df_plot, aes(beta1_hat, after_stat(density), color = Metode)) +
geom_density(linewidth = 1) +
geom_vline(xintercept = beta1, linetype = 2) +
labs(title = "Distribusi Sampling \\u03B2\u2081 Hat: OLS vs WLS",
x = expression(hat(beta)[1]), y = "Kerapatan") +
theme_minimal()
Catatan penting
Hasil ini bergantung pada bobot yang benar. Jika bobot salah spesifikasi, WLS bisa tidak efisien atau bahkan bias (jika ada endogenitas bobot).
OLS + robust SE (HC3) memperbaiki inferensi (SE/p-value valid) tanpa membuat estimator lebih efisien. Jika tujuanmu efisiensi (varians kecil) dan kamu tahu bentuk var(error), gunakan WLS/GLS.
3) Mengapa inferensi OLS klasik jadi salah?
Rumus SE “klasik” mengasumsikan \(\Omega = \sigma^2 I\):
\(\widehat{Var}_{klasik}(\hat{\beta}) = \hat{\sigma}^2 (X'X)^{-1}, \quad \hat{\sigma}^2 = \tfrac{1}{n-k} \sum \hat{e}_i^2.\)
Jika \(\Omega\) heteroskedastik,
estimator ini tidak konsisten: sering meng-underestimate
ketidakpastian.
Akibatnya, uji t/F dan p-value bisa terlalu optimistis (sering “terlihat
signifikan” padahal tidak).
Implementasi R
Tujuan
Desain simulasi (uji ukuran/Type I error)
Kita uji hipotesis \(H_0 : \beta_1 = 0\) saat benar \(\beta_1 = 0\) dengan error heteroskedastik:
\(y = \beta_0 + \beta_1 x + \varepsilon, \; \beta_0 = 1, \; \beta_1 = 0, \; sd(\varepsilon) = 0.3 + 0.7x.\)
Jika inferensi benar, tingkat penolakan pada \(\alpha = 0.05\) harus \(\approx 0.05\).
Kita bandingkan p-value klasik vs p-value robust HC3.
library(sandwich)
library(lmtest)
nsim <- 2000 # replikasi
n <- 300 # sampel per replikasi
alpha <- 0.05
beta0 <- 1
beta1 <- 0 # Null benar
rej_classic <- logical(nsim)
rej_hc3 <- logical(nsim)
avg_se_classic <- numeric(nsim)
avg_se_hc3 <- numeric(nsim)
for (s in 1:nsim) {
x <- runif(n, 0, 3)
sd <- 0.3 + 0.7*x # heteroskedastik (var naik saat x naik)
eps <- rnorm(n, 0, sd)
y <- beta0 + beta1*x + eps
fit <- lm(y ~ x)
# p-value OLS klasik
p_classic <- coef(summary(fit))["x", "Pr(>|t|)"]
rej_classic[s] <- (p_classic < alpha)
avg_se_classic[s] <- coef(summary(fit))["x", "Std. Error"]
# p-value robust (HC3)
vc_hc3 <- vcovHC(fit, type = "HC3")
test_hc3 <- coeftest(fit, vcov. = vc_hc3)
p_hc3 <- test_hc3["x", "Pr(>|t|)"]
rej_hc3[s] <- (p_hc3 < alpha)
avg_se_hc3[s] <- sqrt(diag(vc_hc3))["x"]
}
# Ringkasan ukuran uji (Type I error) dan rata-rata SE
hasil <- data.frame(
Metrik = c("Empirical size Pr(reject|H0)", "Rata-rata SE slope"),
OLS_klasik = c(mean(rej_classic), mean(avg_se_classic)),
Robust_HC3 = c(mean(rej_hc3), mean(avg_se_hc3))
)
knitr::kable(hasil, digits = 4, caption = "Uji ukuran & rata-rata SE: OLS klasik vs Robust HC3")
Metrik | OLS_klasik | Robust_HC3 |
---|---|---|
Empirical size Pr(reject|H0) | 0.0695 | 0.0570 |
Rata-rata SE slope | 0.0987 | 0.1054 |
Interpretasi yang diharapkan:
Visual distribusi p-value (opsional)
# Sampel p-value representatif dari loop terakhir (atau jalankan ulang khusus untuk plotting)
# Di sini kita simulasikan ulang sekali untuk mem-plot p-value-nya
B <- 2000
p_class <- p_hc3_vec <- numeric(B)
for (s in 1:B) {
x <- runif(n, 0, 3)
sd <- 0.3 + 0.7*x
eps <- rnorm(n, 0, sd)
y <- beta0 + beta1*x + eps
fit <- lm(y ~ x)
p_class[s] <- coef(summary(fit))["x","Pr(>|t|)"]
p_hc3_vec[s] <- coeftest(fit, vcov.=vcovHC(fit, type="HC3"))["x","Pr(>|t|)"]
}
par(mfrow=c(1,2))
hist(p_class, breaks=20, main="P-value OLS klasik", xlab="p", col="grey")
abline(v=alpha, col=2, lty=2)
hist(p_hc3_vec, breaks=20, main="P-value Robust HC3", xlab="p", col="grey")
abline(v=alpha, col=2, lty=2)
par(mfrow=c(1,1))
Contoh satu realisasi (perbandingan SE & p-value)
x <- runif(n, 0, 3)
sd <- 0.3 + 0.7*x
eps <- rnorm(n, 0, sd)
y <- beta0 + beta1*x + eps
fit <- lm(y ~ x)
# Klasik
se_c <- coef(summary(fit))["x","Std. Error"]
p_c <- coef(summary(fit))["x","Pr(>|t|)"]
# Robust HC3
vc_hc3 <- vcovHC(fit, type="HC3")
se_r <- sqrt(diag(vc_hc3))["x"]
p_r <- coeftest(fit, vcov.=vc_hc3)["x","Pr(>|t|)"]
data.frame(
Metode = c("OLS klasik", "Robust HC3"),
SE = c(se_c, se_r),
p_val = c(p_c, p_r)
)
## Metode SE p_val
## OLS klasik 0.1014053 0.6257025
## x Robust HC3 0.1164521 0.6709984
Kesimpulan singkat
Di bawah heteroskedastisitas, SE klasik cenderung underestimate, meningkatkan false positive (Type I error > 5%).
Robust SE (HC3) memperbaiki kovarians (tanpa mengubah koefisien OLS), sehingga uji t/CI menjadi valid (empirical size ≈ 5%).
4) Bagaimana robust SE memperbaiki inferensi?
Solusi praktis: pakai heteroskedasticity-consistent (HC) covariance (“sandwich” White/Huber). Versi dasar (HC0):
\(\widehat{Var}_{HC0}(\hat{\beta}) = (X'X)^{-1} (X' \, diag(\hat{e}_i^2) \, X)(X'X)^{-1}.\)
Variasi populer:
Yang berubah hanya SE/kovariansnya, bukan \(\hat{\beta}\). Dengan robust SE, statistik t, p-value, dan CI jadi konsisten terhadap heteroskedastisitas (untuk \(n\) cukup besar), sehingga keputusan inferensi kembali bisa dipercaya.
Ringkas:
Implementasi R
Contoh satu realisasi: SE/p-value klasik vs HC0–HC3
library(sandwich)
library(lmtest)
library(dplyr)
# Satu dataset heteroskedastik (true beta1 = 2)
n <- 300
beta0 <- 1
beta1 <- 2
x <- runif(n, 0, 3)
sd <- 0.3 + 0.7*x
eps <- rnorm(n, 0, sd)
y <- beta0 + beta1*x + eps
fit <- lm(y ~ x)
# Kovarians & SE
vc_classic <- vcov(fit) # klasik (homoskedastis)
vc_hc0 <- vcovHC(fit, type = "HC0")
vc_hc1 <- vcovHC(fit, type = "HC1")
vc_hc2 <- vcovHC(fit, type = "HC2")
vc_hc3 <- vcovHC(fit, type = "HC3")
get_row <- function(vcovM, label) {
se <- sqrt(diag(vcovM))["x"]
bhat <- coef(fit)["x"]
tval <- bhat / se
pval <- 2*pt(-abs(tval), df = n - 2)
ci <- bhat + c(-1,1) * 1.96 * se
data.frame(Metode = label, beta1_hat = bhat, SE = se, t = tval, p = pval,
CI_low = ci[1], CI_high = ci[2])
}
tab1 <- bind_rows(
get_row(vc_classic, "Klasik"),
get_row(vc_hc0, "HC0"),
get_row(vc_hc1, "HC1"),
get_row(vc_hc2, "HC2"),
get_row(vc_hc3, "HC3")
)
knitr::kable(tab1, digits = 5, caption = "Satu realisasi: koefisien sama, SE/p-value berbeda (Klasik vs HC0–HC3)")
Metode | beta1_hat | SE | t | p | CI_low | CI_high | |
---|---|---|---|---|---|---|---|
x…1 | Klasik | 1.96431 | 0.10080 | 19.48705 | 0 | 1.76674 | 2.16188 |
x…2 | HC0 | 1.96431 | 0.11010 | 17.84159 | 0 | 1.74852 | 2.18010 |
x…3 | HC1 | 1.96431 | 0.11047 | 17.78202 | 0 | 1.74780 | 2.18082 |
x…4 | HC2 | 1.96431 | 0.11065 | 17.75224 | 0 | 1.74743 | 2.18119 |
x…5 | HC3 | 1.96431 | 0.11121 | 17.66326 | 0 | 1.74634 | 2.18228 |
Catatan cepat
Simulasi cakupan 95% CI: Klasik vs HC0–HC3
Kita cek coverage 95% CI untuk \(\beta_1 = 2\) di bawah heteroskedastisitas. CI yang valid seharusnya mengandung nilai benar sekitar 95% dari replikasi.
nsim <- 1500
n <- 300
beta0 <- 1
beta1 <- 2
cover <- matrix(FALSE, nrow = nsim, ncol = 5)
colnames(cover) <- c("Klasik","HC0","HC1","HC2","HC3")
avg_se <- matrix(NA_real_, nrow = nsim, ncol = 5)
colnames(avg_se) <- c("Klasik","HC0","HC1","HC2","HC3")
for (s in 1:nsim) {
x <- runif(n, 0, 3)
sd <- 0.3 + 0.7*x
eps <- rnorm(n, 0, sd)
y <- beta0 + beta1*x + eps
fit <- lm(y ~ x)
# Semua kovarians
vcs <- list(
Klasik = vcov(fit),
HC0 = vcovHC(fit, type="HC0"),
HC1 = vcovHC(fit, type="HC1"),
HC2 = vcovHC(fit, type="HC2"),
HC3 = vcovHC(fit, type="HC3")
)
b1 <- coef(fit)["x"]
j <- 1
for (nm in names(vcs)) {
se <- sqrt(diag(vcs[[nm]]))["x"]
ci <- b1 + c(-1,1)*1.96*se
cover[s, j] <- (beta1 >= ci[1] && beta1 <= ci[2])
avg_se[s, j] <- se
j <- j + 1
}
}
res <- data.frame(
Metrik = c("Coverage 95%", "Rata-rata SE"),
Klasik = c(mean(cover[, "Klasik"]), mean(avg_se[, "Klasik"])),
HC0 = c(mean(cover[, "HC0"]), mean(avg_se[, "HC0"])),
HC1 = c(mean(cover[, "HC1"]), mean(avg_se[, "HC1"])),
HC2 = c(mean(cover[, "HC2"]), mean(avg_se[, "HC2"])),
HC3 = c(mean(cover[, "HC3"]), mean(avg_se[, "HC3"]))
)
knitr::kable(res, digits = 4, caption = "Empirical coverage 95% dan rata-rata SE: Klasik vs HC0–HC3")
Metrik | Klasik | HC0 | HC1 | HC2 | HC3 |
---|---|---|---|---|---|
Coverage 95% | 0.9233 | 0.9393 | 0.9407 | 0.9407 | 0.9420 |
Rata-rata SE | 0.0988 | 0.1044 | 0.1048 | 0.1049 | 0.1055 |
Interpretasi yang diharapkan
Ringkas
5) Kapan pakai yang mana?
Jawaban :
estimator WLS untuk regresi sederhana \[ y_i=\beta_0+\beta_1 x_i+\varepsilon_i,\qquad \mathbb{E}[\varepsilon_i|x_i]=0,\quad \mathrm{Var}(\varepsilon_i|x_i)=\sigma^2\,|x_i|. \]
1) Bobot WLS dari struktur varians
Jika \(\mathrm{Var}(\varepsilon_i|x_i)=\sigma^2\,|x_i|\), maka bobot optimum \[ w_i=\frac{1}{\mathrm{Var}(\varepsilon_i|x_i)}=\frac{1}{\sigma^2|x_i|}\ \ \propto\ \ \frac{1}{|x_i|}. \] Faktor \(\sigma^{-2}\) tidak berpengaruh pada solusi, jadi cukup ambil \(w_i=1/|x_i|\).
2) Estimator WLS (bentuk matriks)
Tuliskan \(X=[\mathbf{1},\,x]\) (kolom intercept dan \(x\)), \(y\) vektor respons, dan \(W=\mathrm{diag}(w_i)\). Estimator WLS meminimalkan \[ Q(\beta)=(y-X\beta)'W(y-X\beta), \] turunannya nol memberi normal equation berbobot: \[ X'WX\,\hat\beta=X'Wy\quad\Rightarrow\quad \boxed{\ \hat\beta_{\text{WLS}}=(X'WX)^{-1}X'Wy\ }. \]
Dengan bobot \(w_i=1/|x_i|\), ini langsung menjadi bentuk yang diinginkan.
3) Estimator eksplisit untuk \(\beta_0,\beta_1\) (kasus sederhana)
Definisikan jumlah berbobot: \[ S_w=\sum_i w_i,\quad S_x=\sum_i w_i x_i,\quad S_y=\sum_i w_i y_i,\quad S_{xx}=\sum_i w_i x_i^2,\quad S_{xy}=\sum_i w_i x_i y_i. \] Maka \[ \boxed{\ \hat\beta_1=\frac{S_w S_{xy}-S_x S_y}{S_w S_{xx}-S_x^2}\ },\qquad \boxed{\ \hat\beta_0=\frac{S_y-\hat\beta_1 S_x}{S_w}\ }. \] Ini identik dengan bentuk “mean berbobot”. Jika \(\bar x_w=S_x/S_w\) dan \(\bar y_w=S_y/S_w\), maka \[ \hat\beta_1=\frac{\sum_i w_i(x_i-\bar x_w)(y_i-\bar y_w)}{\sum_i w_i(x_i-\bar x_w)^2},\qquad \hat\beta_0=\bar y_w-\hat\beta_1\,\bar x_w. \]
Dengan \(w_i=1/|x_i|\) (proporsional dari varian), keduanya memberi solusi yang sama.
4) Cara transformasi setara (homoskedastisasi)
Karena \(w_i=1/|x_i|\), ambil \(z_i=\sqrt{w_i}=1/\sqrt{|x_i|}\). Bentuk variabel bertanda bintang: \[ y_i^*=z_i y_i,\quad x_i^*=z_i x_i,\quad \text{dan kolom intercept}~1^*=z_i. \] Lalu jalankan OLS pada model \[ y_i^*=\beta_0\,1_i^*+\beta_1\,x_i^*+u_i^*. \] Hasil \((\hat\beta_0,\hat\beta_1)\) sama dengan WLS di atas.
5) Catatan penting
Esai: Bandingkan Ridge dan Lasso dari sudut pandang bias–variance dan seleksi variabel.
Jawaban :
Gambaran besar
Ridge dan Lasso sama-sama mengecilkan koefisien untuk mengurangi overfitting. Pengecilan menambah bias tetapi menurunkan varians, sehingga galat uji bisa turun. Bedanya ada pada koefisiennya:
Bias dan varians
Seleksi variabel
Intuisi geometri: mengapa Lasso bisa nol
Panduan praktis
Perbandingan cepat
Aspek | Ridge (L2) | Lasso (L1) |
---|---|---|
Bias (naik saat λ naik) | Naik mulus | Bisa melonjak di titik seleksi |
Varians | Turun kuat, sangat stabil | Turun, tetapi seleksi bisa menambah ketidakstabilan |
Seleksi variabel | Tidak (jarang nol) | Ya (nol persis) |
Fitur berkorelasi | Berbagi bobot (grouping) | Cenderung pilih satu, buang lainnya |
Cocok saat… | Banyak efek kecil; multikolinearitas | Model sparse; butuh interpretasi |
Pilih λ dengan cross-validation. Jika stabilitas seleksi penting, kombinasikan Lasso dengan stability selection atau refit OLS/Ridge pada fitur terpilih untuk mengurangi bias.
Hitungan: Diberikan matriks 𝑋 dan vektor 𝑦, hitunĝ 𝛽 OLS serta 𝐻; identifikasi leverage mak- simum.
Jawaban :
Estimator OLS
Asumsikan \(X\) berukuran \(n \times p\) dengan rank penuh.
Estimator OLS:
\[ \hat{\beta} = (X'X)^{-1}X'y \]
Matriks Hat
Matriks hat (proyeksi ke ruang kolom \(X\)):
\[ H = X (X'X)^{-1} X' \]
Leverage
Leverage observasi ke-\(i\) adalah diagonal \(h_{ii}\) dari \(H\).
Leverage maksimum:
\[ \max_i h_{ii}, \quad \text{dan indeksnya } \arg\max_i h_{ii} \]
Implementasi R
## INPUT: X (n x p), y (n x 1)
## Jika butuh intercept, tambahkan kolom 1 di X: X <- cbind(1, X)
ols_with_hat <- function(X, y) {
stopifnot(nrow(X) == length(y))
XtX <- crossprod(X) # X'X
Xty <- crossprod(X, y) # X'y
beta <- solve(XtX, Xty) # (X'X)^(-1) X'y -- stabil: solve(XtX, Xty)
# Matriks hat H = X (X'X)^(-1) X'
# H full (n x n) bisa besar; untuk leverage cukup diagonalnya:
XtX_inv <- solve(XtX)
# leverage h = diag( X (X'X)^(-1) X' ) = rowSums( (X %*% XtX_inv) * X )
h <- rowSums( (X %*% XtX_inv) * X )
# Jika Anda tetap ingin H lengkap:
H <- X %*% XtX_inv %*% t(X)
# Leverage maksimum
h_max_val <- max(h)
h_max_idx <- which.max(h)
list(
beta = as.vector(beta),
H = H,
leverage = h,
h_max_value = h_max_val,
h_max_index = h_max_idx
)
}
## Contoh kecil (hapus atau ganti dengan data Anda):
# X <- cbind(1, c(1,2,3,4)) # intercept + satu prediktor
# y <- c(2, 3, 5, 4)
# out <- ols_with_hat(X, y)
# out$beta
# out$h_max_value; out$h_max_index
Regresi linear mengasumsikan hubungan antara variabel respon 𝑌 dan
prediktor 𝑋 berbentuk linear:
\[Y = \beta_0 + \beta_1 X + \varepsilon,\
\varepsilon \ \text{iid} \sim N(0,\ \sigma^2_{\varepsilon})\]
Namun, dalam banyak fenomena nyata (biologi, farmasi, pertumbuhan,
epidemiologi), hubungan tidak linear.
Contoh:
Model
Model pertumbuhan bakteri seringkali mengikuti bentuk kurva logistik. Model matematisnya dapat dituliskan sebagai:
\[Y (t) = \dfrac{K}{1 + \exp\{-(\alpha + \beta t)\}} + \varepsilon,\ \varepsilon \sim N(0,\ \sigma^2)\]
Keterangan:
set.seed(42)
library(ggplot2)
library(dplyr)
library(tidyr)
# Parameter
K <- 1.0 # kapasitas maksimum (misal proporsi)
alpha <--3.0 # intercept logit
beta <- 0.9 # laju pertumbuhan
sigma <- 0.03 # noise
# Data
t <- seq(0, 8, length.out = 120)
mu <- K/(1 + exp(-(alpha + beta*t)))
y <- mu + rnorm(length(t), sd = sigma)
logistic_df <- tibble(t = t, y = y, mu = mu)
# Plot
ggplot(logistic_df, aes(t, y)) +
geom_point(alpha = 0.6) +
geom_line(aes(y = mu), linewidth = 1) +
labs(title = "Pertumbuhan Bakteri (Kurva Logistik)",
x = "Waktu (t)", y = "Ukuran/Proporsi Populasi") +
theme_minimal()
Interpretasi:
Model
Model farmakokinetik Michaelis–Menten sering digunakan untuk menjelaskan
hubungan antara konsentrasi obat (𝑋) dan respon biologis (𝑌). Modelnya
adalah:
\[Y = \dfrac{V_{\text{max}} X}{K_m + X} + \varepsilon,\ \varepsilon \sim N(0,\ \sigma^2)\]
Keterangan:
# Parameter
Vmax <- 2.0
Km <- 1.2
sigma <- 0.06
# Data
X <- seq(0, 6, length.out = 80)
mu <- (Vmax * X) / (Km + X)
Y <- mu + rnorm(length(X), sd = sigma)
mm_df <- tibble(X = X, Y = Y, mu = mu)
ggplot(mm_df, aes(X, Y)) +
geom_point(alpha = 0.6) +
geom_line(aes(y = mu), linewidth = 1) +
labs(
title = "Respon Obat (Michaelis–Menten)",
x = "Konsentrasi Obat (X)",
y = "Respon (Y)"
) +
theme_minimal()
Interpretasi:
Model Contoh model sederhana dengan bentuk konkaf dapat dituliskan sebagai:
\[Y = A X^{\alpha} + \varepsilon,\ \ 0 < \alpha < 1,\ \ \varepsilon \sim N(0,\ \sigma^2)\]
Alternatif lain:
\[Y = a \log(1 + bX) + \varepsilon,\ \ \varepsilon \sim N(0,\ \sigma^2)\]
Keterangan:
# Parameter
A <- 5
alpha <- 0.5 # < 1 → diminishing marginal return
sigma <- 0.3
# Data
X <- seq(0, 100, length.out = 120)
mu <- A * X^alpha
Y <- mu + rnorm(length(X), sd = sigma)
dr_df <- tibble(X = X, Y = Y, mu = mu)
ggplot(dr_df, aes(X, Y)) +
geom_point(alpha = 0.6) +
geom_line(aes(y = mu), linewidth = 1) +
labs(title = "Diminishing Return: Y = A * X^{alpha}, 0<alpha<1",
x = "Input/Modal (X)", y = "Output (Y)") +
theme_minimal()
Interpretasi:
Merujuk pada contoh diatas maka dibutuhkan regresi nonlinear.
Secara umum, model regresi nonlinear ditulis sebagai:
\[Y_i = f(X_i, \theta) + \varepsilon_i,\ \ \varepsilon_i \sim N(0,\ \sigma^2)\]
Contoh model eksponensial:
\[Y = \beta_0 e^{\beta_1 X} + \varepsilon\]
Catatan: Model Eksponensial
Model eksponensial dapat dituliskan sebagai: \[Y = \beta_0 e^{\beta_1 X} + \varepsilon\]
Model ini pada dasarnya nonlinear dalam parameter jika ditulis langsung. Namun, jika asumsi error diubah (misalnya error bersifat multiplikatif, bukan aditif), maka model dapat dipandang sebagai linear setelah transformasi logaritma.
Dua Pendekatan Umum
1. Error Aditif
\[Y = \beta_0 e^{\beta_1 X} + \varepsilon,\ \varepsilon \sim N(0,\ \sigma^2)\]
2. Error Multiplikatif
\[Y = \beta_0 e^{\beta_1 X} \cdot \varepsilon,\ \varepsilon > 0\]
Ambil logaritma kedua sisi:
\[\ln Y = \ln \beta_0 + \beta_1 X + \ln \varepsilon\]
Jika diasumsikan:
\[\ln \varepsilon \sim N(0,\ \tau^2),\]
maka model menjadi linear dalam parameter:
\[\ln Y = \alpha_0 + \beta_1 X + u,\ u \sim N(0,\ \sigma^2)\]
dengan definisi:
\[\alpha_0 = \ln \beta_0\]
Estimasi
\[\hat{\beta}_0 = e^{\hat{\alpha}_0}\]
Ringkasan
Kita ingin menaksir parameter \(\theta \in \mathbb{R}^p\) pada model
\[Y_i = f(X_i, \theta) + \varepsilon_i,\ \varepsilon_i \ \text{iid} \sim \mathcal{N}(0, \sigma^2),\ i = 1, \ldots, n.\]
Estimator nonlinear least squares (NLS) meminimalkan jumlah kuadrat residu:
\[S(\theta) = \sum_{i=1}^{n} r_i(\theta) = y_i - f(X_i, \theta).\]
Notasi Jacobian dari \(f\) terhadap parameter: \[J_{ij}(\theta) = \dfrac{\partial f(x_i, \theta)}{\partial \theta_j}, \quad J(\theta) \in \mathbb{R}^{n\times p}.\]
Di sekitar tebakan \(\theta^{(k)}\), pendekatan Taylor orde-1 memberi: \[r(\theta^{(k)} + \Delta) \approx r^{(k)} - J^{(k)} \Delta,\ \ r^{(k)} = y- f(\theta^{(k)}).\]
Gauss–Newton (GN) — Ide Inti
Dengan linearisasi di atas, langkah perbaikan \(\Delta\) dicari dari normal equations: \[(J^\top J) \ \Delta = J^\top r.\]
Lalu diperbarui \(\theta^{(k+1)} = \theta^{(k)} + \Delta.\)
Ulangi hingga konvergen (mis. \(\lVert \Delta \rVert\) kecil atau \(|S^{(k+1)} - S^{(k)}|\) kecil).
Levenberg–Marquardt (LM) — Ide Inti (Damped GN / Trust-Region)
LM menambahkan redaman agar lebih stabil ketika \(J^\top J\) buruk-kondisi / tebakan awal jauh:
\[(J^\top J + \lambda D) \ \Delta = J^\top r,\]
dengan \(\lambda > 0\) (faktor redaman) dan \(D = I\) atau \(D = \operatorname{diag}(J^\top J).\)
Aturan sederhana:
Jika langkah \(\Delta\) menurunkan \(S(\theta)\), kecilkan \(\lambda\) (lebih agresif).
Jika tidak, besarkan \(\lambda\) (lebih konservatif) dan coba lagi.
Kasus Spesifik: Model Eksponensial
Kasus Spesifik: Model Eksponensial Kita gunakan model:
\[Y = \beta_0 e^{\beta_1 X} + \varepsilon\], \[\varepsilon \sim \mathcal{N}(0, \sigma^2)\].
Untuk \(x_i\), \(f(x_i, \theta) = \beta_0 e^{\beta_1 x_i}\) , \(\theta = (\beta_0, \beta_1)^\top\) .
Jacobian \(J\) (terhadap \(\beta_0, \beta_1\)):
\[\dfrac{\partial f}{\partial \beta_0} \dfrac{\partial f}{\partial \beta_1} = e^{\beta_1 x_i} , = \beta_0 x_i e^{\beta_1 x_i} . \]
Simulasi Data & Visualisasi Awal
set.seed(123)
library(ggplot2)
library(dplyr)
library(tidyr)
beta0_true <- 2.0
beta1_true <- 0.3
sigma_true <- 0.4
# Small dataset agar mudah ditelusuri langkah demi langkah
x <- c(0, 1, 2, 3, 4, 5)
f_true <- beta0_true * exp(beta1_true * x)
y <- f_true + rnorm(length(x), sd = sigma_true)
dat <- tibble(x, y, f_true)
dat
## # A tibble: 6 × 3
## x y f_true
## <dbl> <dbl> <dbl>
## 1 0 1.78 2
## 2 1 2.61 2.70
## 3 2 4.27 3.64
## 4 3 4.95 4.92
## 5 4 6.69 6.64
## 6 5 9.65 8.96
Plot
ggplot(dat, aes(x, y)) +
geom_point(size=2) +
geom_line(aes(y = f_true), linewidth = 0.9) +
labs(title="Data Eksponensial (dengan noise) & Kurva Sejati",
x="X", y="Y") +
theme_minimal()
Gauss–Newton: Estimasi Manual (Step-by-step) Fungsi Bantu (f, residu, Jacobian)
f_exp <- function(x, theta){ # theta = c(beta0, beta1)
beta0 <- theta[1]; beta1 <- theta[2]
beta0 * exp(beta1 * x)
resid_vec <- function(x, y, theta){
y- f_exp(x, theta)
}
}
J_exp <- function(x, theta){
beta0 <- theta[1]; beta1 <- theta[2]
e <- exp(beta1 * x)
cbind( d_beta0 = e,
d_beta1 = beta0 * x * e )
}
Satu langkah iterasi Gauss–Newton (GN) diperoleh dengan menyelesaikan persamaan normal:
\[(J^\top J)\ \Delta = J^\top r\]
# --- Definisi model eksponensial: Y = beta0 * exp(beta1 * X) + e
f_exp <- function(x, theta) theta[1] * exp(theta[2] * x)
J_exp <- function(x, theta){
e <- exp(theta[2] * x)
cbind(d_beta0 = e, d_beta1 = theta[1] * x * e)
}
resid_vec <- function(x, y, theta) y - f_exp(x, theta)
# Jika x/y belum ada, buat data contoh (opsional, aman di-skip jika sudah ada)
if(!exists("x") || !exists("y")){
set.seed(1); n <- 120; x <- runif(n, 0, 3)
beta_true <- c(2, 0.8); y <- beta_true[1]*exp(beta_true[2]*x) + rnorm(n, sd = 0.5)
}
# --- Langkah GN
gn_step <- function(x, y, theta){
r <- resid_vec(x, y, theta)
J <- J_exp(x, theta)
lhs <- crossprod(J, J) # J^T J
rhs <- crossprod(J, r) # J^T r
Delta <- solve(lhs, rhs) # Δ
list(Delta = as.numeric(Delta),
theta_new = theta + as.numeric(Delta),
r = r, J = J, lhs = lhs, rhs = rhs,
SSE = sum(r^2))
}
theta0 <- c(beta0 = 1.0, beta1 = 0.0)
step1 <- gn_step(x, y, theta0)
step1
## $Delta
## [1] 0.2542352 1.4943019
##
## $theta_new
## beta0 beta1
## 1.254235 1.494302
##
## $r
## [1] 0.7758097 1.6076466 3.2677209 3.9474096 5.6919489 8.6494041
##
## $J
## d_beta0 d_beta1
## [1,] 1 0
## [2,] 1 1
## [3,] 1 2
## [4,] 1 3
## [5,] 1 4
## [6,] 1 5
##
## $lhs
## d_beta0 d_beta1
## d_beta0 6 15
## d_beta1 15 55
##
## $rhs
## [,1]
## d_beta0 23.93994
## d_beta1 86.00013
##
## $SSE
## [1] 136.6569
Iterasi Beberapa Kali Hingga Konvergen
gn_fit <- function(x, y, theta_init, max_it=20, tol=1e-8){
th <- theta_init
hist <- tibble(iter=0, beta0=th[1], beta1=th[2],
SSE = sum(resid_vec(x,y,th)^2), step_norm = NA_real_)
for(k in 1:max_it){
st <- gn_step(x, y, th)
step_norm <- sqrt(sum(st$Delta^2))
th <- st$theta_new
hist <- add_row(hist, iter=k, beta0=th[1], beta1=th[2],
SSE = sum(resid_vec(x,y,th)^2), step_norm = step_norm)
if(step_norm < tol) break
}
list(theta = th, history = hist)
}
gn_res <- gn_fit(x, y, theta_init = theta0, max_it = 20)
gn_res$history
## # A tibble: 12 × 5
## iter beta0 beta1 SSE step_norm
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 1 0 137. NA
## 2 1 1.25 1.49 5064963. 1.52e+0
## 3 2 0.0813 1.48 16167. 1.17e+0
## 4 3 0.0851 1.29 1963. 1.95e-1
## 5 4 0.178 0.905 68.0 3.93e-1
## 6 5 0.664 0.270 98.5 8.00e-1
## 7 6 1.96 0.422 62.3 1.30e+0
## 8 7 1.89 0.347 2.26 1.04e-1
## 9 8 1.97 0.317 0.468 8.45e-2
## 10 9 1.98 0.315 0.465 8.30e-3
## 11 10 1.98 0.315 0.465 2.93e-5
## 12 11 1.98 0.315 0.465 3.99e-9
gn_res$theta
## beta0 beta1
## 1.9753264 0.3148085
Kurva Hasil GN
dat$yhat_gn <- f_exp(dat$x, gn_res$theta)
ggplot(dat, aes(x, y)) +
geom_point(size=2) +
geom_line(aes(y = yhat_gn), color="steelblue", linewidth=1) +
labs(title = "Hasil Estimasi Gauss–Newton",
subtitle = paste0("beta0 ", round(gn_res$theta[1],3),
", beta1 ", round(gn_res$theta[2],3)),
x = "X", y = "Y") +
theme_minimal()
Levenberg–Marquardt: Estimasi Manual (Damped GN) Satu Langkah
LM
Kita gunakan \(D = \operatorname{diag}(J^\top
J)\).
Langkah \(\Delta\) diperoleh dari:
\[(J^\top J + \lambda D)\,\Delta = J^\top r\]
# --- Definisi model eksponensial: Y = beta0 * exp(beta1 * X) + e
f_exp <- function(x, theta) theta[1] * exp(theta[2] * x)
J_exp <- function(x, theta){
e <- exp(theta[2] * x)
cbind(d_beta0 = e, d_beta1 = theta[1] * x * e)
}
resid_vec <- function(x, y, theta) y - f_exp(x, theta)
# --- Satu langkah LM (trial) untuk lambda tertentu
lm_trial <- function(x, y, theta, lambda){
r_old <- resid_vec(x, y, theta)
J <- J_exp(x, theta)
lhs0 <- crossprod(J, J) # J^T J
D <- diag(diag(lhs0)) # diag(J^T J)
rhs <- crossprod(J, r_old) # J^T r
Delta <- solve(lhs0 + lambda * D, rhs)
theta_new <- theta + as.numeric(Delta)
r_new <- resid_vec(x, y, theta_new)
list(Delta = as.numeric(Delta),
theta_new = theta_new,
SSE_old = sum(r_old^2),
SSE_new = sum(r_new^2))
}
# --- Levenberg–Marquardt: Estimasi manual (damped GN)
lm_fit <- function(x, y, theta_init, lambda_init=1e-2, nu=10, max_it=50, tol=1e-8){
th <- theta_init
lam <- lambda_init
hist <- tibble::tibble(iter=0, beta0=th[1], beta1=th[2],
lambda=lam, SSE = sum(resid_vec(x,y,th)^2),
step_norm = NA_real_, accepted = TRUE)
for(k in 1:max_it){
tried <- lm_trial(x, y, th, lam)
if(tried$SSE_new < tried$SSE_old){ # accept
th_new <- tried$theta_new
step_norm <- sqrt(sum(tried$Delta^2))
lam <- lam/nu
hist <- tibble::add_row(hist, iter=k, beta0=th_new[1], beta1=th_new[2],
lambda=lam, SSE=tried$SSE_new,
step_norm=step_norm, accepted = TRUE)
th <- th_new
if(step_norm < tol) break
} else { # reject and increase lambda
lam <- lam*nu
hist <- tibble::add_row(hist, iter=k, beta0=th[1], beta1=th[2],
lambda=lam, SSE=tried$SSE_old,
step_norm=NA_real_, accepted = FALSE)
# do not update theta; try again with bigger lambda
}
}
list(theta = th, history = hist)
}
lm_res <- lm_fit(x, y, theta_init = c(1.0, 0.0), lambda_init = 1e-2, nu=10)
lm_res$history
## # A tibble: 11 × 7
## iter beta0 beta1 lambda SSE step_norm accepted
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl>
## 1 0 1 0 0.01 137. NA TRUE
## 2 1 1 0 0.1 137. NA FALSE
## 3 2 1 0 1 137. NA FALSE
## 4 3 1 0 10 137. NA FALSE
## 5 4 1.33 0.134 1 85.7 3.58e-1 TRUE
## 6 5 2.10 0.328 0.1 3.11 7.88e-1 TRUE
## 7 6 1.99 0.316 0.01 0.484 1.10e-1 TRUE
## 8 7 1.98 0.315 0.001 0.465 1.09e-2 TRUE
## 9 8 1.98 0.315 0.0001 0.465 2.59e-4 TRUE
## 10 9 1.98 0.315 0.00001 0.465 3.85e-6 TRUE
## 11 10 1.98 0.315 0.000001 0.465 8.79e-9 TRUE
lm_res$theta
## [1] 1.9753264 0.3148085
Kurva Hasil LM
dat$yhat_lm <- f_exp(dat$x, lm_res$theta)
ggplot(dat, aes(x, y)) +
geom_point(size=2) +
geom_line(aes(y = yhat_lm), color="firebrick", linewidth=1) +
labs(title = "Hasil Estimasi Levenberg–Marquardt",
subtitle = paste0("beta0 ", round(lm_res$theta[1],3),
", beta1 ", round(lm_res$theta[2],3)),
x = "X", y = "Y") +
theme_minimal()
Pembanding: nls() (Built-in R)
fit_nls <- nls(y~ b0*exp(b1*x), data = dat,
start = list(b0 = 1, b1 = 0))
summary(fit_nls)
##
## Formula: y ~ b0 * exp(b1 * x)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## b0 1.97533 0.16309 12.11 0.000267 ***
## b1 0.31481 0.01969 15.99 8.95e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3411 on 4 degrees of freedom
##
## Number of iterations to convergence: 5
## Achieved convergence tolerance: 2.846e-07
coef(fit_nls)
## b0 b1
## 1.9753263 0.3148085
Inferensi (SE & Interval Kepercayaan)
Pada solusî \(\theta\), aproksimasi kovarians diberikan oleh: \[\hat{\sigma}^2 = \dfrac{S(\hat{\theta})}{n - p}\]
dan \[\operatorname{Var}(\hat{\theta}) \approx \hat{\sigma}^2 \left(J(\hat{\theta})^\top J(\hat{\theta})\right)^{-1}.\]
dengan:
theta_hat <- lm_res$theta # pakai hasil LM (boleh ganti GN/nls)
r_hat <- resid_vec(x, y, theta_hat)
SSE <- sum(r_hat^2)
n <- length(x); p <- 2
sigma2_hat <- SSE/(n-p)
J_hat <- J_exp(x, theta_hat)
cov_theta <- sigma2_hat * solve(crossprod(J_hat, J_hat))
se_theta <- sqrt(diag(cov_theta))
theta_hat; se_theta
## [1] 1.9753264 0.3148085
## d_beta0 d_beta1
## 0.16309142 0.01969227
Interval kepercayaan Wald 95% untuk tiap parameter \(\theta_j\) adalah:
\[\hat{\theta}_j \pm 1.96\, SE(\hat{\theta}_j).\]
dengan:
ci <- cbind(
est = theta_hat,
LCL = theta_hat- 1.96*se_theta,
UCL = theta_hat + 1.96*se_theta
)
rownames(ci) <- c("beta0","beta1")
ci
## est LCL UCL
## beta0 1.9753264 1.6556672 2.2949856
## beta1 0.3148085 0.2762116 0.3534053
SOAL
Sensitivity to Start Ulangi GN & LM dengan tebakan awal berbeda-beda (misalnya (0.5, −0.5), (5, 0.5)). Catat konvergensi, jumlah iterasi, dan SSE akhir.
Bandingkan dengan Transformasi Log Generasikan data dengan error multiplikatif: \(Y = \beta_0 e^{\beta_1 X} \cdot \varepsilon,\ \ln \varepsilon \sim N(0,\ \tau^2)\) Estimasi OLS pada \(\ln Y\) dan bandingkan hasilnya dengan NLS.
Diagnostik Residu Untuk hasil terbaik (GN/LM), plot residu vs fitted dan QQ-plot residu. Apakah asumsi normalitas dan homoskedastisitas terlihat wajar?
Tambahan Terapkan GN/LM untuk model Michaelis–Menten dan logistik. Laporkan \(\hat{\theta}\), SE, CI, dan interpretasi substantif parameternya.
Jawaban
# Data simulasi tetap sama
set.seed(123)
beta0_true <- 2.0
beta1_true <- 0.3
x <- c(0,1,2,3,4,5)
y <- beta0_true * exp(beta1_true * x) + rnorm(length(x), sd = 0.4)
# - Fungsi bantu model eksponensial -
f_exp <- function(x, theta) {
theta[1] * exp(theta[2] * x)
}
resid_vec <- function(x, y, theta) {
y- f_exp(x, theta)
}
J_exp <- function(x, theta) {
b0 <- theta[1]; b1 <- theta[2]
e <- exp(b1 * x)
cbind(
d_beta0 = e,
d_beta1 = b0 * x * e
)
# theta = c(beta0, beta1)
}
# - Gauss-Newton yang stabil (QR + fallback ridge + backtracking) -
gn_fit_safe <- function(x, y, theta_init, max_it = 50, tol = 1e-8,
ridge = 1e-10, max_bt = 8) {
th <- theta_init
sse_prev <- sum(resid_vec(x, y, th)^2)
for (k in 1:max_it) {
r <- resid_vec(x, y, th)
J <- J_exp(x, th)
# Coba solusi LS dengan QR (lebih stabil)
Delta <- tryCatch(
qr.coef(qr(J), r),
error = function(e) rep(NA_real_, ncol(J))
)
# Jika gagal/NA, pakai ridge kecil pada normal equations
if (any(!is.finite(Delta))) {
JTJ <- crossprod(J, J)
rhs <- crossprod(J, r)
Delta <- tryCatch(
solve(JTJ + ridge * diag(ncol(J)), rhs),
error = function(e) rep(0, ncol(J))
)
}
# Backtracking line search: kurangi langkah jika SSE naik
step <- 1.0
improved <- FALSE
for (bt in 0:max_bt) {
th_new <- th + as.numeric(step * Delta)
sse_new <- sum(resid_vec(x, y, th_new)^2)
if (is.finite(sse_new) && (sse_new <= sse_prev)) {
th <- th_new
sse_prev <- sse_new
improved <- TRUE
break
}
step <- step / 2
}
# Hentikan jika tidak ada perbaikan atau langkah sangat kecil
if (!improved || sqrt(sum((step * Delta)^2)) < tol) break
}
th
}
# - Coba beberapa starting values (hindari beta0=0) -
starts <- list(c(0.5,-0.5), c(5, 0.5), c(1, 0.0))
results <- lapply(starts, function(st) gn_fit_safe(x, y, st))
names(results) <- c("start (0.5,-0.5)", "start (5,0.5)", "start (1,0)")
results
## $`start (0.5,-0.5)`
## [1] 1.9753264 0.3148085
##
## $`start (5,0.5)`
## [1] 1.9753264 0.3148085
##
## $`start (1,0)`
## [1] 1.9753264 0.3148085
Kesimpulan
Hasil akhirnya relatif konsisten (mendekati \(\beta_0 \approx 2, \beta_1 \approx 0.3\)) meskipun starting value berbeda. Namun, jumlah iterasi dan kecepatan konvergensi bisa berbeda.
Untuk data dengan error multiplikatif, model bisa dilog-kan agar menjadi linear.
set.seed(456)
y_mult <- beta0_true * exp(beta1_true * x) * exp(rnorm(length(x), sd = 0.2))
df <- data.frame(x, y_mult)
# Estimasi OLS pada log(y)
fit_lm <- lm(log(y_mult) ~ x, data = df)
summary(fit_lm)
##
## Call:
## lm(formula = log(y_mult) ~ x, data = df)
##
## Residuals:
## 1 2 3 4 5 6
## -0.20616 0.19319 0.23530 -0.19636 -0.05516 0.02919
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.63060 0.15252 4.135 0.01444 *
## x 0.29371 0.05038 5.830 0.00431 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2107 on 4 degrees of freedom
## Multiple R-squared: 0.8947, Adjusted R-squared: 0.8684
## F-statistic: 33.99 on 1 and 4 DF, p-value: 0.004312
# konversi kembali
beta0_hat <- exp(coef(fit_lm)[1])
beta1_hat <- coef(fit_lm)[2]
c(beta0_hat, beta1_hat)
## (Intercept) x
## 1.8787395 0.2937094
Kesimpulan:
Dengan error multiplikatif, model linear log cocok → estimasi lebih sederhana (OLS), hasilnya dekat dengan nilai parameter sebenarnya.
Setelah fitting, cek residu.
fit_nls <- nls(
y ~ b0 * exp(b1 * x),
start = list(b0 = 1, b1 = 0),
trace = FALSE
)
resid_fit <- resid(fit_nls)
fitted_fit <- fitted(fit_nls)
par(mfrow = c(1, 2))
plot(
fitted_fit, resid_fit,
main = "Residu vs Fitted",
xlab = "Fitted", ylab = "Residuals"
)
abline(h = 0, lty = 2, col = "red")
qqnorm(resid_fit)
qqline(resid_fit, col = "blue")
par(mfrow=c(1,1))
Interpretasi:
Plot residu vs fitted → apakah ada pola sistematis? Jika tidak, asumsi homoskedastisitas cukup terpenuhi. QQ-plot → memeriksa apakah distribusi residu mendekati normal.
Gunakan nls() dengan data simulasi Michaelis–Menten.
set.seed(789)
Vmax_true <- 2
Km_true <- 1.2
X <- seq(0, 6, length.out = 40)
Y <- (Vmax_true * X) / (Km_true + X) + rnorm(length(X), sd = 0.05)
df_mm <- data.frame(X, Y)
fit_mm <- nls(
Y ~ (Vmax * X) / (Km + X),
data = df_mm,
start = list(Vmax = 1.5, Km = 1)
)
summary(fit_mm)
##
## Formula: Y ~ (Vmax * X)/(Km + X)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## Vmax 1.9981 0.0234 85.40 <2e-16 ***
## Km 1.2415 0.0491 25.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03623 on 38 degrees of freedom
##
## Number of iterations to convergence: 4
## Achieved convergence tolerance: 1.317e-06
confint(fit_mm)
## 2.5% 97.5%
## Vmax 1.952336 2.04651
## Km 1.146484 1.34395
Interpretasi
Ringkasan Jawaban
Setelah parameter model nonlinear̂ 𝜃 diperoleh (misal dengan nonlinear least squares), kita ingin melakukan inferensi:
Hipotesis umum untuk tiap parameter \(\theta_j\):
\(H_0 \colon \theta_j = 0\) vs \(H_1 \colon \theta_j \ne 0\).
Statistik uji Wald: \[t_j = \frac{\hat{\theta}_j}{SE(\hat{\theta}_j)},\] dengan \(SE(\hat{\theta}_j)\) diperoleh dari akar diagonal matriks kovarianŝ \(\operatorname{Var}(\hat{\theta})\).
Jika \(|t_j|\) cukup besar, atau \(p\)-value < 0.05, maka \(\theta_j\) signifikan.
Wald confidence interval 95% untuk tiap parameter: \[\hat{\theta}_j \pm 1.96 \cdot SE(\hat{\theta}_j).\]
Lebih umum, untuk taraf kepercayaan \((1 - \alpha)\): \[\hat{\theta}_j \pm z_{1-\alpha/2} \cdot SE(\hat{\theta}_j).\]
Dengan \(z_{1-\alpha/2}\) = kuantil distribusi normal standar.
𝑅² (Pseudo-𝑅² pada regresi nonlinear)
\[R^2 = 1 -
\dfrac{\text{SSE}}{\text{SST}},\]
dengan:
- SSE = \(\sum (y_i - \hat{y}_i)^2\)
(residual sum of squares),
- SST = \(\sum (y_i - \bar{y})^2\)
(total sum of squares).
Interpretasi: proporsi variasi 𝑦 yang dijelaskan model. Nilai mendekati 1 → fit baik.
Akaike Information Criterion (AIC)
\[AIC = n \cdot
\ln\!\left(\dfrac{\text{SSE}}{n}\right) + 2p,\]
dengan:
- \(n\) = jumlah observasi,
- \(p\) = jumlah parameter.
Interpretasi: lebih kecil → model lebih baik (dengan penalti kompleksitas).
Kita gunakan model: \[y = \beta_0 e^{\beta_1 x} + \varepsilon,\ \varepsilon \sim N(0,\ \sigma^2).\]
set.seed(123)
library(broom)
library(ggplot2)
# Simulasi data
beta0_true <- 2; beta1_true <- 0.3
x <- 0:10
y <- beta0_true * exp(beta1_true * x) + rnorm(length(x), sd = 0.5)
dat <- data.frame(x, y)
# Estimasi dengan nls()
fit <- nls(
y ~ b0 * exp(b1 * x),
data = dat,
start = list(b0 = 1, b1 = 0.1)
)
summary(fit)
##
## Formula: y ~ b0 * exp(b1 * x)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## b0 2.005728 0.096821 20.72 6.66e-09 ***
## b1 0.300091 0.005399 55.59 9.93e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.515 on 9 degrees of freedom
##
## Number of iterations to convergence: 7
## Achieved convergence tolerance: 4.468e-06
# Ringkasan dengan uji t dan p-value
tidy(fit, conf.int = TRUE)
## # A tibble: 2 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 b0 2.01 0.0968 20.7 6.66e- 9 1.79 2.23
## 2 b1 0.300 0.00540 55.6 9.93e-13 0.288 0.313
Interpretasi: jika p-value < 0.05 → parameter signifikan berbeda dari 0.
confint(fit)
## 2.5% 97.5%
## b0 1.7917267 2.2341574
## b1 0.2879737 0.3126612
Interval kepercayaan memberi rentang nilai parameter yang konsisten dengan data.
n <- nrow(dat)
p <- length(coef(fit))
yhat <- fitted(fit)
SSE <- sum(resid(fit)^2)
SST <- sum((y - mean(y))^2)
R2 <- 1 - SSE / SST
AIC <- n * log(SSE / n) + 2 * p
list(SSE = SSE, R2 = R2, AIC = AIC)
## $SSE
## [1] 2.387234
##
## $R2
## [1] 0.9984577
##
## $AIC
## [1] -12.80536
Jawaban :
Kita akan membandingkan dua pendekatan untuk data pertumbuhan eksponensial:
Nonlinear: \(y(t) =
b_0 e^{b_1 t} + \varepsilon\) (diestimasi dengan
nls()
),
Linear sederhana: \(y(t) = a_0 + a_1 t + \varepsilon\) (diestimasi dengan OLS).
Karena pola datanya melengkung (eksponensial), model nonlinear biasanya lebih cocok. Kita bandingkan SSE, \(R^2\), dan AIC, serta lihat perbandingan kurva dan diagnostik residu.
Rumus Model nonlinear (eksponensial):
\[ y(t) \;=\; b_0\,e^{\,b_1 t} + \varepsilon, \qquad \varepsilon \sim \mathcal{N}(0,\sigma^2). \]
Model linear sederhana:
\[ y(t) \;=\; a_0 + a_1 t + \varepsilon, \qquad \varepsilon \sim \mathcal{N}(0,\sigma^2). \]
Metrik perbandingan:
\[ \text{SSE}=\sum_i (y_i-\hat y_i)^2,\quad R^2 = 1 - \frac{\text{SSE}}{\text{SST}},\ \ \text{SST}=\sum_i (y_i-\bar y)^2, \]
\[ \text{AIC} = n \cdot \ln\!\Big(\frac{\text{SSE}}{n}\Big) + 2p, \]
dengan \(n\) jumlah observasi dan \(p\) jumlah parameter dalam model.
set.seed(202)
# --- Simulasi data eksponensial: y = b0 * exp(b1 * t) + e ---
b0_true <- 1.5
b1_true <- 0.4
sigma <- 0.2
t <- seq(0, 6, by = 0.2)
y_true <- b0_true * exp(b1_true * t)
y <- y_true + rnorm(length(t), sd = sigma)
dat <- data.frame(t = t, y = y)
# --- Fit Nonlinear (nls): y = b0 * exp(b1 * t) ---
fit_nl <- nls(
y ~ b0 * exp(b1 * t),
data = dat,
start = list(b0 = 1, b1 = 0.1),
trace = FALSE
)
# --- Fit Linear sederhana: y = a0 + a1 * t ---
fit_lin <- lm(y ~ t, data = dat)
# --- Metrik: SSE, R^2, AIC (keduanya) ---
SST <- sum( (y - mean(y))^2 )
# Nonlinear
yhat_nl <- fitted(fit_nl)
res_nl <- resid(fit_nl)
SSE_nl <- sum(res_nl^2)
R2_nl <- 1 - SSE_nl / SST
AIC_nl <- length(y) * log(SSE_nl / length(y)) + 2 * length(coef(fit_nl))
# Linear
yhat_lin <- fitted(fit_lin)
res_lin <- resid(fit_lin)
SSE_lin <- sum(res_lin^2)
R2_lin <- 1 - SSE_lin / SST
AIC_lin <- length(y) * log(SSE_lin / length(y)) + 2 * length(coef(fit_lin))
# --- Tampilkan output ringkas ---
cat("== Ringkasan Koefisien ==\n\n")
## == Ringkasan Koefisien ==
cat("Nonlinear (nls):\n"); print(summary(fit_nl)$coefficients)
## Nonlinear (nls):
## Estimate Std. Error t value Pr(>|t|)
## b0 1.4827376 0.028640593 51.77049 3.960921e-30
## b1 0.4050742 0.003839203 105.50997 4.790746e-39
cat("\nLinear (lm):\n"); print(summary(fit_lin)$coefficients)
##
## Linear (lm):
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7457131 0.4668751 -1.597243 1.210523e-01
## t 2.3834525 0.1336660 17.831410 3.592662e-17
cat("\n== Perbandingan Metrik ==\n")
##
## == Perbandingan Metrik ==
cmp <- data.frame(
Model = c("Nonlinear (nls)", "Linear (OLS)"),
SSE = c(SSE_nl, SSE_lin),
R2 = c(R2_nl, R2_lin),
AIC = c(AIC_nl, AIC_lin)
)
print(cmp, row.names = FALSE)
## Model SSE R2 AIC
## Nonlinear (nls) 1.018542 0.9983437 -101.88408
## Linear (OLS) 51.398598 0.9164167 19.67433
# Kurva 'true' (ground truth) dan kurva hasil fit
tt <- seq(min(dat$t), max(dat$t), length.out = 300)
# Kurva true
yy_true <- b0_true * exp(b1_true * tt)
# Kurva fitted Nonlinear
coef_nl <- coef(fit_nl)
yy_nl <- coef_nl[["b0"]] * exp(coef_nl[["b1"]] * tt)
# Kurva fitted Linear
yy_lin <- predict(fit_lin, newdata = data.frame(t = tt))
# Plot
plot(dat$t, dat$y, pch = 19, xlab = "t", ylab = "y",
main = "Perbandingan: Nonlinear (nls) vs Linear (OLS)")
lines(tt, yy_true, lwd = 2) # true
lines(tt, yy_nl, lwd = 2, lty = 2) # nonlinear fit
lines(tt, yy_lin, lwd = 2, lty = 3) # linear fit
legend("topleft",
legend = c("Data", "True", "Fitted (Nonlinear)", "Fitted (Linear)"),
pch = c(19, NA, NA, NA), lty = c(NA, 1, 2, 3), lwd = c(NA, 2, 2, 2),
bty = "n")
par(mfrow = c(2, 2))
# Nonlinear
plot(yhat_nl, res_nl,
xlab = "Fitted (Nonlinear)", ylab = "Residuals",
main = "Residu vs Fitted — Nonlinear")
abline(h = 0, lty = 2, col = "gray40")
qqnorm(res_nl, main = "QQ-plot — Nonlinear")
qqline(res_nl, col = "gray40")
# Linear
plot(yhat_lin, res_lin,
xlab = "Fitted (Linear)", ylab = "Residuals",
main = "Residu vs Fitted — Linear")
abline(h = 0, lty = 2, col = "gray40")
qqnorm(res_lin, main = "QQ-plot — Linear")
qqline(res_lin, col = "gray40")
par(mfrow = c(1, 1))
SSE dan AIC biasanya lebih baik pada model nonlinear (nls) karena bentuk eksponensial menangkap kelengkungan data.
\(R^2\) cenderung lebih tinggi pada model nonlinear untuk pola pertumbuhan seperti ini.
Visualisasi menunjukkan garis linear sulit mengikuti kenaikan yang semakin cepat, sementara kurva eksponensial dapat menyesuaikan laju pertumbuhan.
Diagnostik residu: untuk model nonlinear, residu biasanya lebih “acak” di sekitar nol; pada model linear sering terlihat pola (misalnya berbentuk lengkung), tanda misspecification.
Kesimpulan: Untuk data yang mengikuti pola eksponensial (atau umumnya nonlinear), model nonlinear lebih sesuai dibandingkan regresi linear sederhana.
Jawaban :
Kita mensimulasikan data dari proses pertumbuhan eksponensial dengan
galat aditif, lalu menaksir parameternya menggunakan Nonlinear
Least Squares (nls
). Setelah itu kita hitung
metrik kecocokan (SSE, \(R^2\), AIC),
buat interval kepercayaan Wald 95%, dan tampilkan diagnostik residu.
Tujuannya: memastikan model menangkap pola kenaikan eksponensial dengan
baik.
Rumus model Model yang digunakan:
\[ y(t) \;=\; b_0\,e^{\,b_1 t} \;+\; \varepsilon,\qquad \varepsilon \sim \mathcal{N}(0,\sigma^2). \]
set.seed(202)
# 1) Simulasi data: y = b0 * exp(b1 * t) + e
b0_true <- 1.5
b1_true <- 0.4
sigma <- 0.2
t <- seq(0, 6, by = 0.2)
y_true <- b0_true * exp(b1_true * t)
y <- y_true + rnorm(length(t), sd = sigma)
dat <- data.frame(t = t, y = y)
# 2) Estimasi NLS
fit <- nls(
y ~ b0 * exp(b1 * t),
data = dat,
start = list(b0 = 1, b1 = 0.1),
trace = FALSE
)
# 3) Ringkasan koefisien, SE, dan CI Wald 95%
sm <- summary(fit)
coef_hat <- coef(fit)
se_hat <- sm$parameters[, "Std. Error"]
ci95 <- cbind(
lower = coef_hat - 1.96 * se_hat,
est = coef_hat,
upper = coef_hat + 1.96 * se_hat
)
# 4) Goodness-of-fit: SSE, R^2 (pseudo), AIC
yhat <- fitted(fit)
res <- resid(fit)
SSE <- sum(res^2)
SST <- sum((y - mean(y))^2)
R2 <- 1 - SSE / SST
AIC <- length(y) * log(SSE / length(y)) + 2 * length(coef_hat)
# 5) Tampilkan output ringkas
cat("== Koefisien (taksiran) dan SE ==\n")
## == Koefisien (taksiran) dan SE ==
print(sm$coefficients)
## Estimate Std. Error t value Pr(>|t|)
## b0 1.4827376 0.028640593 51.77049 3.960921e-30
## b1 0.4050742 0.003839203 105.50997 4.790746e-39
cat("\n== CI 95% (Wald) ==\n")
##
## == CI 95% (Wald) ==
print(ci95, digits = 4)
## lower est upper
## b0 1.4266 1.4827 1.5389
## b1 0.3975 0.4051 0.4126
cat(sprintf("\n== Goodness-of-fit ==\nSSE = %.4f | R^2 = %.4f | AIC = %.2f\n", SSE, R2, AIC))
##
## == Goodness-of-fit ==
## SSE = 1.0185 | R^2 = 0.9983 | AIC = -101.88
plot(dat$t, dat$y, pch = 19, xlab = "t", ylab = "y",
main = "Data simulasi vs kurva eksponensial")
tt <- seq(min(dat$t), max(dat$t), length.out = 200)
# Kurva 'true' (parameter ground truth)
lines(tt, b0_true * exp(b1_true * tt), lwd = 2)
# Kurva hasil estimasi nls
lines(tt, coef_hat[["b0"]] * exp(coef_hat[["b1"]] * tt), lwd = 2, lty = 2)
legend("topleft",
legend = c("Data", "True", "Fitted (nls)"),
pch = c(19, NA, NA), lty = c(NA, 1, 2), lwd = c(NA, 2, 2),
bty = "n")
par(mfrow = c(1, 2))
plot(yhat, res,
xlab = "Fitted", ylab = "Residuals",
main = "Residu vs Fitted")
abline(h = 0, lty = 2, col = "gray40")
qqnorm(res, main = "QQ-plot Residu")
qqline(res, col = "gray40")
par(mfrow = c(1, 1))
Koefisien \(\hat{b}_0\) dan \(\hat{b}_1\) diharapkan mendekati nilai sebenarnya \((1.5,\, 0.4)\) karena data memang disimulasikan dari model tersebut.
SSE kecil dan \(R^2\) tinggi menandakan model menangkap pola eksponensial dengan baik. AIC jadi pembanding saat menilai alternatif model.
CI 95% memberi ketidakpastian taksiran. Jika CI untuk \(\hat{b}_1\) tidak memuat 0, ada bukti kuat bahwa laju pertumbuhan eksponensial signifikan.
Pada Residu vs Fitted, sebaran acak di sekitar nol memberi indikasi homoskedastisitas yang wajar. Pada QQ-plot, titik yang mengikuti garis mengindikasikan normalitas residu yang cukup baik.
Model regresi eksponensial dengan error aditif: \[Y_i = f_i(\theta) + \varepsilon_i = \beta_0 e^{\beta_1 x_i} + \varepsilon_i,\ \varepsilon_i\ \text{iid} \sim \mathcal{N}(0,\ \sigma^2),\ i = 1, \ldots, n.\]
Vektor parameter:
\[\theta = (\beta_0, \beta_1)^\top,\ p = 2.\]
Catatan: Di bawah asumsi normal, NLS = MLE untuk \(\theta\) dan \(\sigma^2\).
Residual dan fungsi objektif (jumlah kuadrat residual): \[r_i(\theta) = y_i - \beta_0 e^{\beta_1 x_i}, \quad S(\theta) = \sum_{i=1}^{n} [r_i(\theta)]^2 = \lVert r(\theta) \rVert_2^2.\]
Jacobian \(J(\theta) \in \mathbb{R}^{n \times p}\) dengan baris ke-\(i\):
\[J_{i1} = \dfrac{\partial f_i}{\partial \beta_0} = e^{\beta_1 x_i}, \quad J_{i2} = \dfrac{\partial f_i}{\partial \beta_1} = \beta_0 x_i e^{\beta_1 x_i}.\]
Gradien di \(\theta\): \[\nabla S(\theta) = g(\theta) = -2\, J(\theta)^\top r(\theta).\]
Aproksimasi Hessian Gauss–Newton: \[H_{\text{GN}}(\theta) \approx 2\, J(\theta)^\top J(\theta).\]
(Hessian eksak: \(H = 2 J^\top J - 2 \sum_{i=1}^{n} r_i H_i\), dengan \(H_i\) Hessian \(f_i\).)
Pada iterasi ke-\(k\), langkah perbaikan \(\Delta^{(k)}\) diperoleh dari: \[(J^{(k)\top} J^{(k)})\,\Delta^{(k)} = J^{(k)\top} r^{(k)},\] dengan \[r^{(k)} = \bigl(y_i - \beta_0^{(k)} e^{\beta_1^{(k)} x_i}\bigr)_{i=1}^n,\quad J^{(k)} = J(\theta^{(k)}).\]
Pembaruan parameter: \[\theta^{(k+1)} = \theta^{(k)} + \Delta^{(k)}.\]
Kriteria henti (contoh): \[\lVert \Delta^{(k)} \rVert_\infty < \varepsilon_\theta \quad \text{atau} \quad \bigl|S^{(k+1)} - S^{(k)}\bigr| < \varepsilon_S \quad \text{atau} \quad \lVert g^{(k)} \rVert_\infty < \varepsilon_g.\]
Alternatif redaman (Levenberg–Marquardt): \[(J^{(k)\top} J^{(k)} + \lambda^{(k)} D^{(k)})\,\Delta^{(k)} = J^{(k)\top} r^{(k)},\quad D^{(k)} = I \ \text{atau}\ \operatorname{diag}(J^{(k)\top} J^{(k)}).\]
Setelah konvergen dî \(\theta\), taksiran varians error: \[\hat{\sigma}^2 = \dfrac{S(\hat{\theta})}{n - p}.\]
Kovarians asimtotik parameter (Wald): \[\widehat{\mathrm{Cov}}(\hat{\theta}) \approx \hat{\sigma}^2 \left(J(\hat{\theta})^\top J(\hat{\theta})\right)^{-1}.\]
Galat baku: \[SE(\hat{\theta}_j) = \sqrt{\hat{\sigma}^2 \left[\left(J^\top J\right)^{-1}\right]_{jj}}\ \big|_{\theta=\hat{\theta}}.\]
(Opsional, robust sandwich—untuk heteroskedastisitas): \[\widehat{\text{Covrobust}}(\hat{\theta}) = \left(J^\top J\right)^{-1} J^\top \operatorname{diag}\!\big(r_i(\hat{\theta})^2\big)\, J \left(J^\top J\right)^{-1}.\]
Asimtotik normalitas (Wald): \[\hat{\theta} \ \dot{\sim}\ \mathcal{N}\!\big(\theta,\ \sigma^2 (J^\top J)^{-1}\big).\]
Statistik-\(z\) satu parameter untuk hipotesis \(H_0 \colon \theta_j = \theta_{j,0}\): \[z_j = \frac{\hat{\theta}_j - \theta_{j,0}}{SE(\hat{\theta}_j)} \ \dot{\sim}\ \mathcal{N}(0,1).\]
CI Wald \(100(1-\alpha)\%\) untuk \(\theta_j\): \[\hat{\theta}_j \pm z_{1-\alpha/2}\, SE(\hat{\theta}_j),\] dengan \(z_{1-\alpha/2}\) kuantil standar normal (mis. \(z_{0.975} \approx 1.96\)).
(Pada sampel kecil, dapat memakai \(t_{n-p,\ 1-\alpha/2}\).)
Uji Wald bersama (\(q\) kendala linear \(R\theta = r\)):
\[W = (R\hat{\theta} - r)^\top \big[\, R\, \widehat{\mathrm{Cov}}(\hat{\theta})\, R^\top \big]^{-1} (R\hat{\theta} - r)\ \dot{\sim}\ \chi^2_q.\]
Untuk titik baru \(x^\star\), prediksi mean: \[\hat{y}^\star = f(x^\star, \hat{\theta}) = \hat{\beta}_0 \, e^{\hat{\beta}_1 x^\star}.\]
Linearization delta method: turunan terhadap parameter dî \(\theta\), \[g^\star = \left[\frac{\partial f(x^\star,\theta)}{\partial \beta_0}\ \ \frac{\partial f(x^\star,\theta)}{\partial \beta_1}\right]_{\theta=\hat{\theta}} = \left[ e^{\hat{\beta}_1 x^\star}\ \ \hat{\beta}_0 x^\star e^{\hat{\beta}_1 x^\star} \right].\]
Varian prediksi mean: \[\operatorname{Var}(\hat{y}^\star) \approx {g^\star}^\top\, \widehat{\operatorname{Cov}}(\hat{\theta})\, g^\star.\]
CI untuk mean \(f(x^\star,\theta)\): \[\hat{y}^\star \pm z_{1-\alpha/2}\, \sqrt{\operatorname{Var}(\hat{y}^\star)}.\]
PI (prediction interval) untuk \(Y^\star\): \[\hat{y}^\star \pm z_{1-\alpha/2}\, \sqrt{\operatorname{Var}(\hat{y}^\star) + \hat{\sigma}^2}.\]
Pilih tebakan awal \(\theta^{(0)}\) (mis. via regresi \(\ln y\) pada \(x\) untuk inisialisasi).
Ulangi hingga konvergen:
Catatan
Contoh GN Manual (n = 5) untuk Model Eksponensial
Data
Kita gunakan 5 observasi:
\[x = (0, 1, 2, 3, 4)^\top,\]
\[y = (2.100000, 2.649718, 3.724238,
4.819206, 6.790234)^\top.\]
Model
\[y_i = \beta_0 e^{\beta_1 x_i} +
\varepsilon_i,\ \ \varepsilon_i \sim \mathcal N(0,\
\sigma^2).\]
Iterasi 0 (tebakan awal dari regresi \(\ln y\) pada \(x\))
\[
\theta^{(0)} =
\begin{bmatrix}
\beta^{(0)}_0\\[2pt]
\beta^{(0)}_1
\end{bmatrix}
=
\begin{bmatrix}
2.043817\\[2pt]
0.294525
\end{bmatrix}.
\]
Nilai fungsi, residual, dan Jacobian di \(\theta^{(0)}\):
\[ f^{(0)} = \beta^{(0)}_0 e^{\beta^{(0)}_1 x} = \begin{bmatrix} 2.043817\\ 2.743801\\ 3.683523\\ 4.945088\\ 6.638725 \end{bmatrix},\qquad r^{(0)} = y - f^{(0)} = \begin{bmatrix} \ \ 0.056183\\ -0.094083\\ \ \ 0.040715\\ -0.125881\\ \ \ 0.151509 \end{bmatrix}. \]
Jacobian (baris ke-\(i\): \([\partial f_i/\partial \beta_0,\ \partial f_i/\partial \beta_1]\)): \[ J^{(0)} = \begin{bmatrix} 1.000000 & \ \ 0.000000\\ 1.342489 & \ \ 2.743801\\ 1.802276 & \ \ 7.367045\\ 2.419536 & 14.835263\\ 3.248200 & 26.554899 \end{bmatrix}. \]
Matriks normal dan vektor kanan: \[ J^{(0)\top}J^{(0)} = \begin{bmatrix} \ 22.455430 & 139.111033\\ 139.111033 & 987.049457 \end{bmatrix},\qquad J^{(0)\top} r^{(0)} = \begin{bmatrix} 0.190815\\ 2.197633 \end{bmatrix}. \]
Langkah GN (persamaan normal): \[ \big(J^{(0)\top}J^{(0)}\big)\,\Delta^{(0)} = J^{(0)\top} r^{(0)} \ \ \Rightarrow\ \ \Delta^{(0)} = \begin{bmatrix} -0.041728\\ \ \ 0.008108 \end{bmatrix}. \]
Pembaruan parameter dan SSE: \[ \theta^{(1)} = \theta^{(0)} + \Delta^{(0)} = \begin{bmatrix} 2.002088\\ 0.302633 \end{bmatrix},\qquad S\big(\theta^{(0)}\big)=0.052467,\ \ S\big(\theta^{(1)}\big)=0.042495. \]
Iterasi 1
Hitung ulang \(J^{(1)},\ r^{(1)}\) pada
\(\theta^{(1)}\): \[
J^{(1)} =
\begin{bmatrix}
1.000000 & \ \ 0.000000\\
1.353417 & \ \ 2.709661\\
1.831738 & \ \ 7.334604\\
2.479106 & 14.890170\\
3.355265 & 26.870152
\end{bmatrix},\qquad
r^{(1)} =
\begin{bmatrix}
\ \ 0.097912\\
-0.059943\\
\ \ 0.056936\\
-0.144184\\
\ \ 0.072696
\end{bmatrix}.
\]
\[ J^{(1)\top}J^{(1)} = \begin{bmatrix} \ 23.590779 & 144.173187\\ 144.173187 & 1004.860917 \end{bmatrix},\qquad J^{(1)\top} r^{(1)} = \begin{bmatrix} 0.007541\\ 0.061600 \end{bmatrix}. \]
Langkah GN berikutnya: \[ \Delta^{(1)} = \begin{bmatrix} -0.000446\\ \ \ 0.000125 \end{bmatrix},\qquad \theta^{(2)} = \begin{bmatrix} 2.001642\\ 0.302758 \end{bmatrix},\qquad S\big(\theta^{(2)}\big)=0.042491. \]
Terlihat 𝑆(𝜃) menurun dan perubahan parameter makin kecil → konvergen.
Kita gunakan model regresi eksponensial dengan error aditif: \[Y_i = f_i(\theta) + \varepsilon_i = \beta_0 e^{\beta_1 x_i} + \varepsilon_i,\ \varepsilon_i\ \text{iid} \sim \mathcal{N}(0,\ \sigma^2),\ i = 1, \ldots, n.\]
Vektor parameter: \[\theta = (\beta_0, \beta_1)^\top,\ p = 2.\]
LM menggabungkan Gauss–Newton dan Gradient Descent.
Iterasi ke-\(k\) menyelesaikan sistem modifikasi:
\[(J^{(k)\top} J^{(k)} + \lambda^{(k)} D^{(k)})\, \Delta^{(k)} = J^{(k)\top} r^{(k)},\]
dengan:
Jika \(\lambda^{(k)} \to 0\), metode mendekati GN; jika \(\lambda^{(k)}\) besar, mendekati Gradient Descent.
Residual dan fungsi SSE sama dengan GN: \[r_i(\theta) = y_i - \beta_0 e^{\beta_1 x_i}, \quad S(\theta) = \sum_{i=1}^{n} r_i(\theta)^2.\]
Jacobian (baris ke-\(i\)): \[J_{i1} = e^{\beta_1 x_i}, \quad J_{i2} = \beta_0 x_i e^{\beta_1 x_i}.\]
Pembaruan parameter: \[\theta^{(k+1)} = \theta^{(k)} + \Delta^{(k)}.\]
Aturan adaptasi \(\lambda\):
Sehingga: \[ \lambda^{(k+1)} = \begin{cases} \lambda^{(k)}/\nu, & \text{jika } S(\theta^{(k+1})) < S(\theta^{(k)}),\\ \nu\,\lambda^{(k)}, & \text{jika tidak.} \end{cases} \]
(dengan \(\nu > 1\), misalnya \(\nu = 10\)).
LM memodifikasi matriks normal: \[H_{\text{LM}}^{(k)} = J^{(k)\top} J^{(k)} + \lambda^{(k)} D^{(k)}.\]
Gradien tetap sama: \[g^{(k)} = -2\, J^{(k)\top} r^{(k)}.\]
Setelah konvergen dî \(\theta\): \[\hat{\sigma}^2 = \dfrac{S(\hat{\theta})}{n - p}.\]
Kovarians asimtotik (Wald): \[\widehat{\mathrm{Cov}}(\hat{\theta}) \approx \hat{\sigma}^2 (J^\top J)^{-1}\big|_{\theta=\hat{\theta}}.\]
SE parameter: \[SE(\hat{\theta}_j) = \sqrt{\hat{\sigma}^2 \,\big[(J^\top J)^{-1}\big]_{jj}}.\]
Distribusi asimtotik: \[\hat{\theta} \ \dot{\sim}\ \mathcal{N}\!\big(\theta,\ \sigma^2 (J^\top J)^{-1}\big).\]
Statistik-\(z\): \[z_j = \frac{\hat{\theta}_j - \theta_{j,0}}{SE(\hat{\theta}_j)} \ \dot{\sim}\ \mathcal{N}(0,1).\]
CI Wald \(100(1 - \alpha)\%\) untuk \(\theta_j\): \[\hat{\theta}_j \pm z_{1-\alpha/2}\, SE(\hat{\theta}_j).\]
Prediksi mean di \(x^\star\): \[\hat{y}^\star = f(x^\star, \hat{\theta}) = \hat{\beta}_0 e^{\hat{\beta}_1 x^\star}.\]
Gradien terhadap parameter: \[ g^\star = \begin{bmatrix} e^{\hat{\beta}_1 x^\star} & \hat{\beta}_0 x^\star e^{\hat{\beta}_1 x^\star} \end{bmatrix}. \]
Varian prediksi mean: \[\operatorname{Var}(\hat{y}^\star) \approx {g^\star}^\top\, \widehat{\operatorname{Cov}}(\hat{\theta})\, g^\star.\]
CI mean: \[\hat{y}^\star \pm z_{1-\alpha/2}\, \sqrt{\operatorname{Var}(\hat{y}^\star)}.\]
PI (prediction interval): \[\hat{y}^\star \pm z_{1-\alpha/2}\, \sqrt{\operatorname{Var}(\hat{y}^\star) + \hat{\sigma}^2}.\]
Catatan - LM lebih stabil daripada GN ketika \(J^\top J\) hampir singular atau starting value jauh. - \(\lambda\) adaptif menjaga keseimbangan eksplorasi (besar \(\lambda\)) dan efisiensi (kecil \(\lambda\)). - Interval Wald tetap bisa kurang akurat → gunakan profil likelihood bila perlu.