| ID | wr_time_z | wr_error_z | nwr_time_z | nwr_error_z | pa.bis | forward | backward | lexita.acc | it.ok.acc |
|---|---|---|---|---|---|---|---|---|---|
| LAE23 | -2.88 | -0.13 | -3.36 | -0.53 | 0.68 | -0.10 | -1.06 | 0.95 | 0.09 |
| LAE38 | -2.75 | -0.26 | -2.73 | -1.70 | 0.52 | 0.52 | -0.49 | 0.59 | -1.17 |
| LC19 | -4.97 | -0.65 | -4.58 | 0.06 | -1.48 | -0.49 | -1.10 | -3.12 | -2.29 |
| MEN02 | -2.96 | -1.04 | -2.10 | -2.41 | 0.16 | -0.49 | -0.49 | -0.76 | -0.35 |
| MEN10 | -3.40 | -0.69 | -2.68 | -0.53 | 0.12 | -1.02 | 0.08 | -0.20 | -0.32 |
| MEN29 | -2.24 | -2.36 | -0.52 | -4.55 | -0.26 | -0.10 | -0.49 | 0.37 | -0.72 |
| MEN35 | -0.12 | -2.36 | 0.94 | -2.54 | -0.04 | -0.10 | 0.08 | -0.20 | 1.24 |
| ID | wr_time_z | wr_error_z | nwr_time_z | nwr_error_z | pa.bis | forward | backward | lexita.acc | it.ok.acc |
|---|---|---|---|---|---|---|---|---|---|
| LAUVEN | -0.58 | -1.23 | -1.05 | -1.45 | -0.71 | 0.71 | 0.71 | -0.71 | -0.71 |
| LAE04 | -4.58 | 1.04 | -0.99 | -0.43 | 0.79 | -0.39 | -0.07 | -0.61 | -0.79 |
| LAE17 | -1.15 | -1.04 | -1.33 | -0.65 | 0.44 | -1.50 | 0.74 | 0.26 | -0.50 |
| LC03 | -2.75 | -1.82 | -0.44 | -1.70 | -1.29 | -0.49 | 0.13 | -0.08 | -0.20 |
| LC15 | -3.00 | -0.72 | -1.47 | -1.23 | -0.99 | 0.45 | -0.07 | 0.41 | 0.20 |
| MEN22 | -4.16 | -0.69 | -1.16 | -1.34 | -0.65 | -1.02 | -0.49 | 1.24 | -0.45 |
| MEN33 | -3.33 | 0.43 | -1.21 | 0.67 | 0.31 | 0.82 | 0.66 | 0.09 | -0.32 |
df %>%
filter(group == "DYS" | (group == "TD" & is.na(other_diagnoses))) %>%
mutate(ID = as.character(ID)) %>%
filter(!startsWith(ID, "VER")) -> df
df %>%
mutate(
exclude = case_when(
ID == "VER02" ~ 1, # ADHD - university - DYS
ID == "VER04" ~ 1, # ADHD - university - DYS
ID == "MEN12" ~ 1, # discalculia - 3rd - TD
ID == "MEN18" ~ 1, # disgrafia, discalculia - 3rd - TD
ID == "MEN26" ~ 1, # disgrafia - 5th - TD,
ID == "LAE33" ~ 1, # disgrafia, disortografia, 3rd - TD,
### new exclusion criteria:
ID == "LAE38" ~ 1,
ID == "LC19" ~ 1,
ID == "MEN29" ~ 1,
ID == "MEN02" ~ 1,
ID == "MEN10" ~ 1,
ID == "LAE23" ~ 1,
# ID == "MEN35" ~ 1,
TRUE ~ 0
)
) %>%
filter(exclude == 0) %>%
# stricter crtiteria
# filter(group.exclusion != "PR") %>%
# less strict criteria
# filter(group == "DYS" | (group == "TD" & reading.score > -2)) %>%
filter(ID != "VER01" & ID != "VER03") %>%
dplyr::select(-exclude) -> df
df %>%
lm(formula = wr_time_z ~ group) -> m1.reading
df %>%
lm(formula = wr_error_z ~ group) -> m2.reading
df %>%
lm(formula = nwr_time_z ~ group) -> m3.reading
df %>%
lm(formula = nwr_error_z ~ group) -> m4.reading
| Estimate | SE | t | p | |
|---|---|---|---|---|
| Word reading fluency | ||||
| (Intercept) | -4.15 | 0.30 | -13.63 | < .001 |
| groupTD | 3.74 | 0.38 | 9.79 | < .001 |
| Word reading accuracy | ||||
| (Intercept)1 | -2.75 | 0.31 | -8.89 | < .001 |
| groupTD1 | 2.84 | 0.39 | 7.34 | < .001 |
| Pseudoword reading fluency | ||||
| (Intercept)2 | -3.03 | 0.25 | -12.28 | < .001 |
| groupTD2 | 2.96 | 0.31 | 9.58 | < .001 |
| Pseudoword reading accuracy | ||||
| (Intercept)3 | -3.04 | 0.38 | -7.90 | < .001 |
| groupTD3 | 2.90 | 0.48 | 6.02 | < .001 |
| group | M | sd | range |
|---|---|---|---|
| Pseudoword reading accuracy | |||
| DYS | -3.04 | 3.05 | -11.78 - 0.75 |
| TD | -0.14 | 1.21 | -4.15 - 1.29 |
| Pseudoword reading fluency | |||
| DYS | -3.03 | 1.93 | -8.35 - -0.44 |
| TD | -0.07 | 0.81 | -1.81 - 1.8 |
| Word reading accuracy | |||
| DYS | -2.75 | 2.58 | -9.07 - 1.04 |
| TD | 0.09 | 0.78 | -2.36 - 1.18 |
| Word reading fluency | |||
| DYS | -4.15 | 2.49 | -14.12 - -0.58 |
| TD | -0.42 | 0.85 | -2.58 - 1.65 |
| group | measure | M | SD | range |
|---|---|---|---|---|
| Spoonerism accuracy | ||||
| DYS | Accuracy | 30.41 | 7.28 | 10-40 |
| TD | Accuracy | 36.98 | 3.09 | 26-40 |
| DYS | BIS | -1.44 | 2.12 | -6.47-1.68 |
| TD | BIS | 0.99 | 0.91 | -2.12-2.13 |
| DYS | RT | 12.17 | 5.60 | 3.92-24.27 |
| TD | RT | 5.63 | 2.46 | 1.72-11.61 |
| Italian orthographic knowledge | ||||
| DYS | Total score | 29.55 | 10.18 | 12-50 |
| TD | Total score | 46.35 | 9.36 | 25-59 |
| DYS | False alarms | 3.66 | 3.31 | 0-11 |
| TD | False alarms | 1.71 | 2.18 | 0-12 |
| DYS | Correct responses | 33.21 | 9.73 | 14-51 |
| TD | Correct responses | 48.06 | 9.47 | 25-60 |
| Verbal short-term memory | ||||
| DYS | 5.97 | 0.91 | 4-8 | |
| TD | 6.63 | 1.11 | 4-9 | |
| Visual attention span | ||||
| DYS | 0.66 | 0.11 | 0.38-0.9 | |
| TD | 0.78 | 0.11 | 0.62-1 | |
| Vocabulary | ||||
| DYS | 52.69 | 8.05 | 17-60 | |
| TD | 57.06 | 2.01 | 48-60 | |
| Verbal working memory | ||||
| DYS | 4.24 | 1.90 | 0-8 | |
| TD | 5.39 | 1.40 | 3-8 | |
| WRT | WRE | NWRT | NWRE | PA | STM | WM | VOC | IOK | VAS | |
|---|---|---|---|---|---|---|---|---|---|---|
| PA | 0.67 | 0.74 | 0.59 | 0.69 | 1.00 | 0.40 | 0.44 | 0.33 | 0.48 | 0.55 |
| STM | 0.30 | 0.37 | 0.31 | 0.34 | 0.40 | 1.00 | 0.29 | 0.02 | 0.24 | 0.33 |
| WM | 0.26 | 0.26 | 0.29 | 0.31 | 0.44 | 0.29 | 1.00 | 0.14 | 0.26 | 0.41 |
| VOC | 0.32 | 0.50 | 0.37 | 0.40 | 0.33 | 0.02 | 0.14 | 1.00 | 0.32 | 0.26 |
| IOK | 0.70 | 0.52 | 0.68 | 0.40 | 0.48 | 0.24 | 0.26 | 0.32 | 1.00 | 0.49 |
| VAS | 0.45 | 0.53 | 0.48 | 0.41 | 0.55 | 0.33 | 0.41 | 0.26 | 0.49 | 1.00 |
| Sum Sq | Df | F value | Pr(>F) | |
|---|---|---|---|---|
| (Intercept) | 2351.246 | 1 | 10782.690 | 0.000 |
| age | 0.172 | 1 | 0.790 | 0.377 |
| group | 10.288 | 1 | 47.179 | 0.000 |
| Residuals | 16.790 | 77 | NA | NA |
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 9.315 | 0.090 | 103.840 | 0.000 |
| age | -0.049 | 0.055 | -0.889 | 0.377 |
| groupTD | -0.786 | 0.114 | -6.869 | 0.000 |
| LR Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| age | 8.483 | 1 | 0.004 |
| group | 30.674 | 1 | 0.000 |
| age:group | 6.987 | 1 | 0.008 |
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 3.360 | 0.039 | 85.162 | 0.000 |
| age | 0.121 | 0.042 | 2.907 | 0.004 |
| groupTD | 0.249 | 0.046 | 5.421 | 0.000 |
| age:groupTD | -0.125 | 0.047 | -2.639 | 0.008 |
| group | age.trend | SE | df | asymp.LCL | asymp.UCL | z.ratio | p.value |
|---|---|---|---|---|---|---|---|
| DYS | 0.121 | 0.042 | Inf | 0.039 | 0.202 | 2.907 | 0.004 |
| TD | -0.004 | 0.023 | Inf | -0.049 | 0.040 | -0.190 | 0.849 |
| Sum Sq | Df | F value | Pr(>F) | |
|---|---|---|---|---|
| (Intercept) | 79.761 | 1 | 41.129 | 0.000 |
| age | 19.832 | 1 | 10.226 | 0.002 |
| group | 126.177 | 1 | 65.062 | 0.000 |
| age:group | 15.181 | 1 | 7.828 | 0.007 |
| Residuals | 147.388 | 76 | NA | NA |
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | -1.861 | 0.290 | -6.413 | 0.000 |
| age | 1.015 | 0.317 | 3.198 | 0.002 |
| groupTD | 2.844 | 0.353 | 8.066 | 0.000 |
| age:groupTD | -1.040 | 0.372 | -2.798 | 0.007 |
| group | age.trend | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| DYS | 1.015 | 0.317 | 76 | 0.383 | 1.647 | 3.198 | 0.002 |
| TD | -0.025 | 0.193 | 76 | -0.410 | 0.360 | -0.128 | 0.899 |
| LR Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| age | 0.000 | 1 | 0.987 |
| group | 1.144 | 1 | 0.285 |
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 1.786 | 0.078 | 22.768 | 0.000 |
| age | -0.001 | 0.047 | -0.017 | 0.987 |
| groupTD | 0.105 | 0.098 | 1.065 | 0.287 |
| LR Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| age | 1.537 | 1 | 0.215 |
| group | 6.333 | 1 | 0.012 |
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 1.417 | 0.093 | 15.188 | 0.000 |
| age | 0.065 | 0.052 | 1.244 | 0.214 |
| groupTD | 0.281 | 0.113 | 2.485 | 0.013 |
STM
WM
| LR Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| age | 17.834 | 1 | 0 |
| group | 153.473 | 1 | 0 |
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 3.352 | 0.035 | 95.270 | 0 |
| age | 0.077 | 0.018 | 4.239 | 0 |
| groupTD | 0.499 | 0.041 | 12.044 | 0 |
| LR Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| age | 0.249 | 1 | 0.618 |
| group | 89.263 | 1 | 0.000 |
| age:group | 5.212 | 1 | 0.022 |
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 3.511 | 0.036 | 97.704 | 0.000 |
| age | -0.020 | 0.040 | -0.499 | 0.618 |
| groupTD | 0.377 | 0.041 | 9.131 | 0.000 |
| age:groupTD | 0.101 | 0.044 | 2.285 | 0.022 |
| group | age.trend | SE | df | asymp.LCL | asymp.UCL | z.ratio | p.value |
|---|---|---|---|---|---|---|---|
| DYS | -0.020 | 0.04 | Inf | -0.097 | 0.058 | -0.499 | 0.618 |
| TD | 0.081 | 0.02 | Inf | 0.043 | 0.120 | 4.121 | 0.000 |
| LR Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| age | 19.861 | 1 | 0.000 |
| group | 36.845 | 1 | 0.000 |
| age:group | 10.615 | 1 | 0.001 |
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 1.423 | 0.097 | 14.608 | 0.000 |
| age | -0.533 | 0.121 | -4.414 | 0.000 |
| groupTD | -0.891 | 0.147 | -6.052 | 0.000 |
| age:groupTD | 0.527 | 0.161 | 3.272 | 0.001 |
| group | age.trend | SE | df | asymp.LCL | asymp.UCL | z.ratio | p.value |
|---|---|---|---|---|---|---|---|
| DYS | -0.533 | 0.121 | Inf | -0.770 | -0.296 | -4.414 | 0.000 |
| TD | -0.006 | 0.106 | Inf | -0.215 | 0.202 | -0.061 | 0.952 |
| LR Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| age | 5.653 | 1 | 0.017 |
| group | 10.489 | 1 | 0.001 |
| age:group | 4.180 | 1 | 0.041 |
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 3.932 | 0.029 | 133.394 | 0.000 |
| age | 0.075 | 0.031 | 2.375 | 0.018 |
| groupTD | 0.113 | 0.035 | 3.211 | 0.001 |
| age:groupTD | -0.074 | 0.036 | -2.043 | 0.041 |
| group | age.trend | SE | df | asymp.LCL | asymp.UCL | z.ratio | p.value |
|---|---|---|---|---|---|---|---|
| DYS | 0.075 | 0.031 | Inf | 0.013 | 0.137 | 2.375 | 0.018 |
| TD | 0.000 | 0.018 | Inf | -0.036 | 0.036 | 0.018 | 0.986 |
| Sum Sq | Df | F value | Pr(>F) | |
|---|---|---|---|---|
| (Intercept) | 1584.187 | 1 | 21534.856 | 0.000 |
| age | 0.020 | 1 | 0.271 | 0.604 |
| group | 3.054 | 1 | 41.509 | 0.000 |
| Residuals | 5.664 | 77 | NA | NA |
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 7.646 | 0.052 | 146.748 | 0.000 |
| age | -0.017 | 0.032 | -0.520 | 0.604 |
| groupTD | -0.428 | 0.066 | -6.443 | 0.000 |
| Sum Sq | Df | F value | Pr(>F) | |
|---|---|---|---|---|
| (Intercept) | 11.589 | 1 | 971.198 | 0.000 |
| age | 0.012 | 1 | 0.982 | 0.325 |
| group | 0.288 | 1 | 24.095 | 0.000 |
| Residuals | 0.919 | 77 | NA | NA |
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 0.654 | 0.021 | 31.164 | 0.000 |
| age | 0.013 | 0.013 | 0.991 | 0.325 |
| groupTD | 0.131 | 0.027 | 4.909 | 0.000 |
#### Partial correlations
| Sum Sq | F value | Pr(>F) | |
|---|---|---|---|
| Spoonerism (RT) | |||
| (Intercept) | 2351.246 | 10782.690 | 0.000 |
| age | 0.172 | 0.790 | 0.377 |
| group | 10.288 | 47.179 | 0.000 |
| Spoonerism (BIS) | |||
| (Intercept) | 79.761 | 41.129 | 0.000 |
| age | 19.832 | 10.226 | 0.002 |
| group | 126.177 | 65.062 | 0.000 |
| age:group | 15.181 | 7.828 | 0.007 |
| VAS | |||
| (Intercept) | 11.589 | 971.198 | 0.000 |
| age | 0.012 | 0.982 | 0.325 |
| group | 0.288 | 24.095 | 0.000 |
| rowname | Chisq | Pr(>Chisq) |
|---|---|---|
| Spoonerism ACC | ||
| age | 8.483 | 0.004 |
| group | 30.674 | 0.000 |
| age:group | 6.987 | 0.008 |
| Verbal short-term memory | ||
| age | 0.000 | 0.987 |
| group | 1.144 | 0.285 |
| Verbal working memory | ||
| age | 1.537 | 0.215 |
| group | 6.333 | 0.012 |
| Italian orthographic knolwedge (total score) | ||
| age | 17.834 | 0.000 |
| group | 153.473 | 0.000 |
| Italian orthographic knolwedge (correct responses) | ||
| age | 0.249 | 0.618 |
| group | 89.263 | 0.000 |
| age:group | 5.212 | 0.022 |
| Italian orthographic knolwedge (false alarms) | ||
| age | 19.861 | 0.000 |
| group | 36.845 | 0.000 |
| age:group | 10.615 | 0.001 |
| Vocabulary | ||
| age | 5.653 | 0.017 |
| group | 10.489 | 0.001 |
| age:group | 4.180 | 0.041 |
df %>%
dplyr::select(ID,group,
wr_time_z:nwr_error_z,
pa.bis,
forward,
backward,
it.ok.acc,
va.span.acc) %>%
pivot_longer(names_to = "measure",
values_to = "score",
3:6) %>%
mutate(dimension = if_else(startsWith(measure, "wr"), "lexical", "sublex.")) %>%
mutate(measure = case_when(
measure == "wr_time_z" | measure == "nwr_time_z" ~ "time",
measure == "wr_error_z" | measure == "nwr_error_z" ~ "error"
)) %>%
rowwise() %>%
mutate(
verbal.wm = mean(c_across(forward:backward))
) %>%
ungroup() %>%
mutate(across(pa.bis:va.span.acc, ~scale(.x))) %>%
mutate(across(pa.bis:va.span.acc, ~as.numeric(.x))) %>%
mutate(measure = as.factor(measure),
group = as.factor(group),
verbal.wm = scale(verbal.wm), verbal.wm = as.numeric(verbal.wm)) %>%
filter(dimension == "lexical") %>%
lmer(formula = score ~
# group * it.ok.acc * measure +
measure * it.ok.acc +
group * it.ok.acc +
# it.ok.acc +
# group * va.span.acc * measure +
# group * va.span.acc +
# measure * va.span.acc +
# va.span.acc +
# group * pa.bis * measure +
# group * pa.bis +
# pa.bis * measure +
pa.bis +
# group * verbal.wm * measure +
# group * verbal.wm +
# verbal.wm * measure +
# verbal.wm +
# group * measure +
(1|ID)
) -> lex.mod
| Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| (Intercept) | 18.347 | 1 | 0.000 |
| measure | 22.901 | 1 | 0.000 |
| it.ok.acc | 10.253 | 1 | 0.001 |
| group | 9.438 | 1 | 0.002 |
| pa.bis | 22.699 | 1 | 0.000 |
| measure:it.ok.acc | 11.500 | 1 | 0.001 |
| it.ok.acc:group | 9.491 | 1 | 0.002 |
| measure | it.ok.acc.trend | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| error | 0.371 | 0.188 | 113.491 | -0.001 | 0.744 | 1.973 | 0.051 |
| time | 0.963 | 0.188 | 113.491 | 0.590 | 1.336 | 5.117 | 0.000 |
| group | it.ok.acc.trend | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| DYS | 1.193 | 0.266 | 75 | 0.663 | 1.723 | 4.481 | 0.000 |
| TD | 0.142 | 0.207 | 75 | -0.271 | 0.555 | 0.685 | 0.496 |
| contrast | it.ok.acc | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|---|
| DYS - TD | -1 | -2.224 | 0.472 | 75 | -4.708 | 0.000 |
| DYS - TD | 0 | -1.173 | 0.382 | 75 | -3.072 | 0.003 |
| DYS - TD | 1 | -0.122 | 0.549 | 75 | -0.223 | 0.824 |
df %>%
dplyr::select(ID,group,
wr_time_z:nwr_error_z,
pa.bis,
forward,
backward,
it.ok.acc,
va.span.acc) %>%
pivot_longer(names_to = "measure",
values_to = "score",
3:6) %>%
mutate(dimension = if_else(startsWith(measure, "wr"), "lexical", "sublex.")) %>%
mutate(measure = case_when(
measure == "wr_time_z" | measure == "nwr_time_z" ~ "time",
measure == "wr_error_z" | measure == "nwr_error_z" ~ "error"
)) %>%
rowwise() %>%
mutate(
verbal.wm = mean(c_across(forward:backward))
) %>%
ungroup() %>%
mutate(across(pa.bis:va.span.acc, ~scale(.x))) %>%
mutate(across(pa.bis:va.span.acc, ~as.numeric(.x))) %>%
mutate(measure = as.factor(measure),
group = as.factor(group),
verbal.wm = scale(verbal.wm), verbal.wm = as.numeric(verbal.wm)) %>%
filter(dimension == "sublex.") %>%
lmer(formula = score ~
# group * it.ok.acc * measure +
measure * it.ok.acc +
# group * it.ok.acc +
# it.ok.acc +
# group * va.span.acc * measure +
# group * va.span.acc +
# measure * va.span.acc +
# va.span.acc +
group * pa.bis * measure +
# group * pa.bis +
# pa.bis * measure +
# pa.bis +
# group * verbal.wm * measure +
# group * verbal.wm +
# verbal.wm * measure +
# verbal.wm +
# group * measure +
(1|ID)
) -> sublex.mod
# drop1(sublex.mod, test = "Chisq")
| Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| (Intercept) | 21.851 | 1 | 0.000 |
| measure | 1.575 | 1 | 0.209 |
| it.ok.acc | 0.260 | 1 | 0.610 |
| group | 6.507 | 1 | 0.011 |
| pa.bis | 39.591 | 1 | 0.000 |
| measure:it.ok.acc | 12.064 | 1 | 0.001 |
| group:pa.bis | 3.341 | 1 | 0.068 |
| measure:group | 0.193 | 1 | 0.660 |
| measure:pa.bis | 29.643 | 1 | 0.000 |
| measure:group:pa.bis | 5.826 | 1 | 0.016 |
| measure | it.ok.acc.trend | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| error | -0.117 | 0.23 | 116.967 | -0.573 | 0.338 | -0.510 | 0.611 |
| time | 0.656 | 0.23 | 116.967 | 0.201 | 1.111 | 2.853 | 0.005 |
| measure | group | pa.bis.trend | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|---|
| error | DYS | 1.627 | 0.259 | 116.967 | 1.115 | 2.139 | 6.292 | 0.000 |
| time | DYS | 0.264 | 0.259 | 116.967 | -0.248 | 0.776 | 1.021 | 0.309 |
| error | TD | 0.682 | 0.441 | 116.967 | -0.192 | 1.556 | 1.546 | 0.125 |
| time | TD | 0.527 | 0.441 | 116.967 | -0.346 | 1.401 | 1.195 | 0.234 |
| contrast | measure | pa.bis | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| DYS - TD | error | -1 | -2.327 | 0.836 | 116.967 | -2.785 | 0.006 |
| DYS - TD | time | -1 | -1.349 | 0.836 | 116.967 | -1.614 | 0.109 |
| DYS - TD | error | 0 | -1.382 | 0.542 | 116.967 | -2.551 | 0.012 |
| DYS - TD | time | 0 | -1.612 | 0.542 | 116.967 | -2.976 | 0.004 |
| DYS - TD | error | 1 | -0.436 | 0.651 | 116.967 | -0.671 | 0.504 |
| DYS - TD | time | 1 | -1.875 | 0.651 | 116.967 | -2.882 | 0.005 |
| measure | it.ok.acc.trend | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| error | -0.117 | 0.23 | 116.967 | -0.573 | 0.338 | -0.510 | 0.611 |
| time | 0.656 | 0.23 | 116.967 | 0.201 | 1.111 | 2.853 | 0.005 |
| Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| Lexical reading predictors | |||
| (Intercept) | 18.35 | 1 | 0.000 |
| measure | 22.90 | 1 | 0.000 |
| it.ok.acc | 10.25 | 1 | 0.001 |
| group | 9.44 | 1 | 0.002 |
| pa.bis | 22.70 | 1 | 0.000 |
| measure:it.ok.acc | 11.50 | 1 | 0.001 |
| it.ok.acc:group | 9.49 | 1 | 0.002 |
| Sublexical reading predictors | |||
| (Intercept)1 | 21.85 | 1 | 0.000 |
| measure1 | 1.58 | 1 | 0.209 |
| it.ok.acc1 | 0.26 | 1 | 0.610 |
| group1 | 6.51 | 1 | 0.011 |
| pa.bis1 | 39.59 | 1 | 0.000 |
| measure:it.ok.acc1 | 12.06 | 1 | 0.001 |
| group:pa.bis | 3.34 | 1 | 0.068 |
| measure:group | 0.19 | 1 | 0.660 |
| measure:pa.bis | 29.64 | 1 | 0.000 |
| measure:group:pa.bis | 5.83 | 1 | 0.016 |